PROCEEDINGS
THE 3rd INTERNATIONAL SYMPOSIUM FOR SUSTAINABLE HUMANOSPHERE [ISSH]-
A Forum of the Humanosphere Science School [HSS] 2013

The Dynamic Interaction between People and Ecosystems for the Future of Human Sustainability

September, 2013
Gedung Rektorat, University of Bengkulu - Bengkulu
INDONESIA

Organized by
Research and Development Unit for Biomaterials – LIPI
Research Institute for Sustainable Humanosphere – Kyoto University
Faculty of Agriculture – University of Bengkulu

Supported by
Center for South East Asian Studies (CSEAS) – Kyoto University
International Center for Interdisciplinary and Advanced Research (ICCIAR)
– LIPI

Published by
Research and Development Unit for Biomaterials - LIPI
2014
Firda Aulia Syamani, S.TP., M.Si.
Deni Zulfiqar, S.Si., M.Si.
Fitria, M.Food.Sc.
Ika Wahyuni, S.Si., M.T.
Ismail Budiman, S.Hut., M.Si.
Ikhsan Guswenrivo, S.T., M.Sc.
Lucky Risanto, S.Si.
Ari Kusumaningtyas, S.T.
SCIENTIFIC COMMITTEE AND EDITORS
OF ISSH BENGKULU 2013

Chief
Dr. Wahyu Dwianto, M.Agr. (LIPI, Indonesia)

Atmospheric Sciences
Prof. Dr. Mamoru Yamamoto (RISH Kyoto University, Japan)

Biosphere Sciences
Prof. Dr. Priyono Prawito (UNIB, Indonesia)
Dr. Marwanto, M.Sc. (UNIB, Indonesia)
Dr. Chaisit Preecha (Rajamangala University of Technology Srivijaya, Thailand)

Geosphere Sciences
Dr. Munasri (LIPI, Indonesia)

Social Economic Sciences
Dr. Motoko Shimagami (CSEAS Kyoto University, Japan)

Forest Sciences
Dr. Haris Gunawan (Riau University, Indonesia)
Dr. Soo Min Lee (CIFOR, Indonesia)

Wood Science and Technology
Prof. Dr. Subyakto (LIPI, Indonesia)
Dr. Euis Hermiati, M.Sc. (LIPI, Indonesia)
Dr. Ridwan Yahya (UNIB, Indonesia)

Wood and Urban Pest Management
Prof. Dr. Tsuyoshi Yoshimura (RISH Kyoto University, Japan)
Prof. Dr. Chow-Yang Lee (USM, Malaysia)
PREFACE

The 3rd International Symposium for Sustainable Humanosphere 2013 attracted the interest of scientists from Indonesia and Japan. The symposium covered the disciplines of community-based development and social economic science (climate change and society; ecosystem and community; the economical of natural resources; the role of traditional knowledge and values in managing ecosystems; women and natural resources), atmospheric science (airpollution; equatorial atmosphere; global climate change models; land-ocean weather systems; radar observations; solar activities; space environment; weather patterns), biosphere science (agricultural in changing world; animal ecology and animal husbandry; anthropological approach; bio-indicator; ethnobotany; food security; human development index), geosphere science (earth geological dynamics and natural disasters; earth carbon cycle dynamics; heat, water and CO; hydrology and water management system; land resource management), wood science and technology (biomass conversion; carbonized wood based composites; cellulose; chemical, physical and mechanical properties of wood; timber structure; wood for energy; wood cell formation; wood biochemistry; wood anatomy and plant physiology; wood deteriorating organisms; wood preservation; wooden construction; wood-based material; wood adhesive), wood and urban pest management (insect pest management, ecology and biology of urban pests, control of urban pest including biological, cultural, mechanical, physical and chemical controls), and forest science (biodiversity and society; biodiversity in tropical plantation forests; climate change and biodiversity; forest biomass dynamics; forest carbon accounting and monitoring; forest fire; invasive species; intensive silviculture; structure, growth and function; tree biotechnology). The technical program consisted of 38 oral presentations under 11 sessions and 19 poster presentations.

This publication is a compilation of presented papers. Every effort has been carried out to retain the original meaning and views of authors during the editing processes. All claims on trade products and processes and views expressed do not necessarily imply endorsement by the editors.

We believe that this publication will be a useful source of information and achieved its primary objective of disseminating new experiences and information to researchers, academics, policy makers and students.

The organization of this international gathering and compilation of the proceedings could not have been achieved without the combined effort of all members of the organizing committee and the supports of Research Institute for Sustainable Humanosphere (RISH), Center for South East Asian Studies (CSEAS) Kyoto University, International Center for Interdisciplinary and Advanced Research (ICIAR) – LIPI, University of Bengkulu (UNIB). The editors hereby wish to acknowledge the contributions of all parties.

Editors
March, 2014
<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Siti Nuramaliati Prijono</td>
<td>BIODIVERSITY FOR SUSTAINABLE DEVELOPMENT</td>
<td>xii</td>
</tr>
<tr>
<td>2.</td>
<td>Soekotjo</td>
<td>INDONESIA GREEN BUSINESS STRATEGY</td>
<td>xiii-xxiii</td>
</tr>
<tr>
<td>3.</td>
<td>Bambang Subiyanto, Firman Tria Ajie, Ferianto, Syafizal Maulana, Kumihiro Tanaka, Tsuyoshi Tokunaga, Yukio Kawamoto, Fumihiko Sugiyama, dan Ken Ikheata</td>
<td>SUPER SWEET Sorghum (Sorghum bicolor (L.) Moench) POTENTIAL AS A RAW MATERIAL INDUSTRY IN INDONESIA</td>
<td>xxiv</td>
</tr>
<tr>
<td>4.</td>
<td>Motoko Shimagami</td>
<td>LEARNING FROM COMMUNITIES, BRIDGING GENERATIONS: INDONESIA-JAPAN COLLABORATIVE PROJECT FOR DOCUMENTING COMMUNITY'S ECOLOGICAL KNOWLEDGE</td>
<td>xxv</td>
</tr>
<tr>
<td>5.</td>
<td>Herry Purnomo, Agus Djoko Ismanto and Bayuni Shantiko Munasri</td>
<td>COMMUNITY DEVELOPMENT MODELS IN HANDLING CONFLICTS IN FORESTED LANDSCAPE: TOWARDS HORIZONTAL AND VERTICAL EQUITY</td>
<td>xxvi-xl</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>THE USE OF MODIFIED MERCALLI INTENSITY (MMI) SCALE FOR THE GUIDANCE OF PREPAREDNESS IN EARTHQUAKE ANTICIPATING</td>
<td>xli</td>
</tr>
<tr>
<td>7.</td>
<td>Chaisit Preecha, Wethi Wisutthiphact and Pornsil Seephueak</td>
<td>OCCURRENCE OF SILENCE DEAD, WHITE ROOT DISEASE (Rigidoporus microporus) ON PARA RUBBER (Hevea brasiliensis) AT SOUTHERN PART OF THAILAND</td>
<td>xlii-xlviii</td>
</tr>
<tr>
<td>8.</td>
<td>Wiriyono and Yansen</td>
<td>THE CHALLENGES FOR SUSTAINABLE FOREST MANAGEMENT IN BENGKULU PROVINCE: A BROAD REVIEW</td>
<td>xlix-lvii</td>
</tr>
<tr>
<td>9.</td>
<td>Soo Min Lee, Byeong-II Na, Byoung-Jun Ahn and Jae-Won Lee</td>
<td>MESOCARP, OIL PALM RESIDUES AND TORREFACTION FOR IMPROVING ITS ENERGY CONTENT</td>
<td>lviii-lxvii</td>
</tr>
<tr>
<td>10.</td>
<td>Chow-Yang Lee</td>
<td>SUSTAINABLE URBAN PEST MANAGEMENT IN SOUTHEAST ASIA -- CHALLENGES AND FEASIBILITIES</td>
<td>lxviii</td>
</tr>
<tr>
<td>Paper Number</td>
<td>Authors</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>A - 03</td>
<td>Savitri Dyah and Rachmimi Saparita</td>
<td>APPROPRIATE TECHNOLOGY DIFFUSION IN SUPPORT FOR SUSTAINABLE DEVELOPMENT IN BORDER LINE EAST NUSA TENGGARA FROM FISHERIES CONSERVATION TO COMMUNITY SUSTAINABILITY (STUDY ON BENGKULU GOVERNMENT'S POLICY ON FISHERIES)</td>
<td>1-5</td>
</tr>
<tr>
<td>A - 04</td>
<td>Ema Septaria</td>
<td>OVERVIEW OF RADAR STUDIES OF EQUATORIAL ATMOSPHERE AND IONOSPHERE IN INDONESIA</td>
<td>Ixix</td>
</tr>
<tr>
<td>B - 03</td>
<td>Muhamad Nur and Iskaq Iskandar</td>
<td>COMPARISON OF MONTHLY PRECIPITATION FROM RAIN-GAUGE AND TRMM SATELLITE OVER PALEMBANG DURING 1998-2008</td>
<td>13-19</td>
</tr>
<tr>
<td>B - 04</td>
<td>Fikri Bamahry, Khomsin, Susilo, and Joni Efendi</td>
<td>ANALYSES ON SPATIAL DISTRIBUTION OF ATMOSPHERIC WATER VAPOR OVER EAST JAVA REGION, INDONESIA USING CONTINUOUS GPS</td>
<td>20-24</td>
</tr>
<tr>
<td>B - 05</td>
<td>Khomsin, M. Taufik, Yuwono, and Dewangga Eka</td>
<td>ANALYSIS OF SEA SURFACE HEIGHT USING WAVEFORMS RETRACKING IN THE COASTAL AREA (CASE STUDY: JAVA SEA)</td>
<td>25-30</td>
</tr>
<tr>
<td>C - 01</td>
<td>Gusta Gunawan, Besperi, M. Khairel, Amri Rosa, and Melli Suryanty</td>
<td>ASSESSING WATER DISCHARGE IN MANJUNTO WATERSHED-INDONESIA USING GIS AND SWAT MODEL</td>
<td>31-37</td>
</tr>
<tr>
<td>C - 02</td>
<td>Fahrudin and Drajat Agung Permana</td>
<td>PALEOSEISMOLOGY STUDY AT KALIGARANG FAULT ZONE RESULT EARTHQUAKE IN THE PAST, SEMARANG, INDONESIA</td>
<td>38-45</td>
</tr>
<tr>
<td>C - 03</td>
<td>Diyan Parwatiningtyas, Erlin Windia Ambarasari, and Dwi Martina, Yogi Wiratomo</td>
<td>CALCULATION OF DISASTER RISK VALUE IN THE PROSPECT MINING AREA, BLITAR DISTRICT, EAST JAVA USING MICROTREMOR ANALYSIS</td>
<td>46-55</td>
</tr>
<tr>
<td>C - 04</td>
<td>Sonny Aribowo and Indah Pratiwi</td>
<td>GEOMORPHIC FEATURES ALONG THE MANNA FAULT SEGMENT OF SUMATRAN FAULT ZONE BASED ON REMOTE SENSING INTERPRETATION</td>
<td>56-62</td>
</tr>
<tr>
<td>C - 05</td>
<td>Qurna Wulan Sari, Udrekh, Azhar K., Affandi, and Ermi</td>
<td>CHARACTERISTICS OF TEMPERATURE AND PRESSURE ON GAS HYDRATE STABILITY ZONE USING SEISMIC 2D-MULTI CHANNEL IN SIMELUE FORE ARC BASIN, SUMATRA</td>
<td>63-69</td>
</tr>
</tbody>
</table>
Biosphere Science

D - 01 Kasrina and Rita Susanti
ETHNOBOTANICAL STUDY OF MEDICINAL PLANTS FOR LEMBAK DELAPAN ETHNIC IN TANJUNG TERANDA, BENGKULU
70-76

D - 02 Effendi Parlingungan Sagala
THE IMPORTANCE ROLE OF ANIMAL ECOLOGY DEEPLY TO CONSERVATION POPULATION OF PANGOLIN IN SECONDARY FOREST OF SUMATRA ISLAND
77-80

D - 03 Rizwar, Zulkifli Dahlan, Dwi Setyawawan, and Indra Yustian
INITIAL STUDY ON INVENTORY OF VEGETATION IN SUMATRAN ELEPHANT HABITAT IN PADANG SUGIHAN RESERVE, SOUTH SUMATRA PROVINCE
81-87

D - 04 Yuwana
GREEN HOUSE EFFECT SOLAR DRYERS : AN APPROPRIATE TECHNOLOGY FOR FOOD SECURITY
88-94

D - 05 Choirul Muslim
DEVELOPING SUBJECTIVE ECOLOGY FOR SUSTAINABLE AND THE FITNESS OF HUMANOSPHERE
95-102

D - 06 A. Romeida, D.W. Ganefianti, Rustikawati, and Marlin
FOLIAR FERTILIZER APLICATION FOR INDUCING RAPID AND UNIFORM FLOWERING ON Spahoglotis picata Blume. var. ALBA ORCHID
103-107

D - 07 D.W. Ganefianti, M. Chozin, S.H. Hidayat, and M.Syukur
DIALLEL ANALYSIS OF BEGOMOVIRUS RESISTANCE AND AGRONOMIC PERFORMANCES IN CHILI PEPPER
108-112

D - 08 M. Chozin and D.W. Ganefianti
CORRELATION AND PATH ANALYSES FOR DETERMINATION OF SELECTION CRITERIA IN CHILI PEPPER BREEDING FOR FRUIT YIELD IMPROVEMENT
113-117

D - 09 Marwanto, Roziman Efendi, Muhammad Chosin, and Merakati Handajaningsih
PROMOTING EFFECT OF ETHANOLIC EXTRACT OF ROOT TUBER OF Gloriosa superba L. ON MELON GROWTH AND FRUIT QUALITY
118-122

D - 10 Rr. Yudhy H.Bertham, Abimanyu D. Nusantara, and Usman Siswanto
GROWTH OF ARTEMISIA ANNUA, ARTEMISININ SYNTHESIS, AND ARBUCULAR MYCORRHIZAL FUNGUS COLONIZATION AS AFFECTED BY ACCESSION AND FERTILIZATION
123-129

D - 11 Tunjung Pamekas, Christanti Sumardiyyono, Nursamsi Puspodosono, and Didik Indradewa
VARIABILITY OF SEVEN ISOLAT OF Colletotrichum musae THE PATOGEN OF ANTHRACNOSE DISEASE ON BANANA FRUIT
130-136
Forest Science
E – 02 Haris Gunawan, Shigeo Kobayashi, Kosuke Mizuno, Yasuyuki Kono, Wahyu Dwianto, and Sukma Surya Kusumah
THE PROMOTION OF RURAL COMMUNITIES PARTICIPATION TO CONSERVE BIOMASS AND CARBON FUNCTIONS OF PEATLAND ECOSYSTEM IN RIAU BIOSPHERE RESERVE
137-144

E – 03 Hanifa Marisa, Nita Aminasih, and Muhami
THE PROVING OF POWERLESS MYSTIC OF AKAR NYILUM (Millettia pachycarpa) IN KEMELAK FOREST AREA, BATURAJA, SOUTH SUMATERA
145-148

E – 04 Siti Latifah
POTENTIAL OF BIOMASS AND SPATIAL DISTRIBUTION OF FOREST PLANTATION OF HYBRID EUCALYPTUS
149-155

E – 05 Widyatmami Sih Dewi, Sumarno, and MTh. Sri Budiastuti
TREES CHARACTERIZATION POTENTIALLY TO REHABILITATION OF WATER CATCHMENT AREAS AFTER 2010th MOUNT MERAPI ERUPTION
156-162

E – 06 Septri Widiono, Ketut Sukiyono, and Enggar Apriyanto
POPULATION PRESSURE ON THE VILLAGES AROUND KERINCI SEBLAT NATIONAL PARK (TNKS) OF LEBONG DISTRICT, PROVINCE OF BENGKULU, INDONESIA
163-169

E – 07 Yansen, Robert A. Congdon, and Paul R. Williams
THE ESTABLISHMENT OF Alstonia muelleriana, A RAINFOREST SPECIES IN WET SCLEROPHYLL FOREST IN NORTH QUEENSLAND FAVOURED BY FIRE: IMPLICATIONS FOR ITS MANAGEMENT
170-175

Wood Science and Technology
F – 01 Wahyu Dwianto, Fitria, Ika Wahyuni, and Sri Hartati
A STUDY ON THE MECHANISM OF CELLULOSE DEGRADATION BY ENZYME
176-180

F – 04 Irfan Gustian, Eka Angasa, Ghufira, and Hairulmah
POLYELECTROLYTE MEMBRANE BASED ON FIBER OF WASTE OF PALM OIL INDUSTRY
181-186

F – 05 Euis Hermiati, Widya Patriasari, Dede Heri Yuli Yanto, Faizatul Falah, and Lucky Risanto
NATURAL RUBBER-BASED WOOD ADHESIVE TO SUPPORT GREEN BUILDINGS
187-194

Wood and Urban Pest Management
G – 01 Kazuko Ono, Toshimitsu Hata, Tsuyoshi Yoshimura, and Kazuhiko Kinjo
DEACY PERFORMANCE OF TERMITE MUSHROOM, Termitomyces eurhizus AND THE SEM OBSERVATION OF DECAYED WOOD
195-198
G - 02	Suswati, Asmah Indrawati, and Deddi Prima Putra	THE USE OF COCONUT FIBRE AND ARBUSCULAR MYCORRHIZAL FUNGI TO ENHANCE PISANG BARANGAN SEEDLING RESISTANCE TO BLOOD DISEASE BACTERIUM AND *Fusarium Oxysporum* F SP. CUBENSE	199-204
G - 03	Munadian, Yuji Nakada, Yoshida Makoto, Ridwan Yahya, Mucharromah, and Tsuyoshi Yoshimua	ANALYSIS OF FUNGAL DIVERSITY EXISTING IN NATURAL AGARWOOD (JINKOU) OF *Aquilariia malacensis* FROM BENGKULU, SUMATERA USING DENATURING GRADIENT GEL ELECTROPHORESIS	205-208
G - 06	Asmah Indrawati and Suswati	THE STUDY OF SUPPRESSIVE EFFECT OF BIOFUMIGANT BRASSICACEAE AND MYCORRHIZAE FUNGI INDIGENOUS TO BLOOD DISEASE BACTERIUM ON PISANG BARANGAN SEEDLING	217-222
G - 07	Siti Herlinda, Rafika Dewi, Triani Adam, Suwandi, Rosdah Thalib, and Khodijah	SPECIES ABUNDANCE AND DIVERSITY OF PREDATORY SPIDERS FOR INSECT PEST OF RATOONING RICE APPLIED BY MYCOINSECTICIDE AND WITHOUT MYCOINSECTICIDE	223-230
G - 09	Fanani Haryo Widodo, Chairil Anwar, Ngudiantoro, Dwi Setyawan, and Darmawijoyo	MALARIA TRANSMISSION AS A PROBLEM OF DYNAMIC INTERACTION BETWEEN PEOPLE AND ECOSYSTEM AND ITS SOLUTION THROUGH QUANTITATIVE APPROACH CASE STUDY ON MALARIA TRANSMISSION IN BENGKULU CITY	231-239

Poster Presentation

P - 01	Savitri Dyah	TECHNOLOGY TRANSFER FOR EMPOWERMENT OF SMALL SCALE FOOD PROCESSING ENTERPRISE	240-244
P - 03	Bandi Hermawan	DEVELOPING REMOTE SOIL MOISTURE MONITORING TECHNIQUES FOR IMPROVED DECISION MAKING ON IRRIGATION	245-250
P - 04	Muhammad Fauzi, Dwi Setyawan, Budhi Setiawan, and Ridhah Taqwa	ANALYSIS OF THE SOIL BEARING CAPACITY FOR SETTLEMENT IN THE CONSTRUCTED AREA IN WETLANDS (CASE STUDY IN SUBDISTRICT OF MUARA BANGKAHULU, BENGKULU CITY)	251-258
P - 05	Sunarti, Heri Junedi, and Refliaty	SOIL CARBON STOCK AS AFFECTED CONSERVATION FARMING SYSTEM APPLICATION ON SOYBEAN FARMING INITIAL DETECTION OF SENSITIVITY OF UPLAND RICE CULTIVARS UNDER ALUMINUM STRESS	259-263
P - 08	Marulak Simarmata, Dwi Wahyuni Ganefianti, and Rinova C. Manurung	THE EFFECTIVENESS OF *Metarhizium anisopliae* AND *Nomuraea rileyi* EXTRACT TOWARDS *Spodoptera litura* ON LABORATORY SCALE THE EFFECT OF GROWTH SITE FACTORS AND SILVICULTURAL TREATMENTS ON PRODUCTIVITY OF KAYU BAWANG (*Dysoxylum mollissimum* Blume) IN PRIVATE FOREST IN BENGKULU	272-275 276-283
P - 09	Deni Zulfiana and Anis Sri Lestari		
P - 10	Efratenta Katherina Depari, Istomo, and Omo Rusdiana		
P - 13	Danang Sudarwoko Adi, Lucky Risanto, Ratih Darnayanti, Sri Rullyati, Kulyana Susanti, Euis Hermiati, and Takashi Watanabe	ANATOMICAL AND PHYSICAL PROPERTIES OF FAST GROWING WOOD SPECIES FROM CENTRAL KALIMANTAN AS STRUCTURAL MATERIAL	284-291
P - 16	Wida B.Kusumaningrum, Ismadi, and Sasa Sofyan M	FIBRILLATION PROCESS DEVELOPMENT OF FIBERS FROM MILLED EMPTY FRUIT BUNCH (EFB) AND CHARACTERISTICS OF POLYVINYL ALCOHOL/EFB FIBERS COMPOSITES PHYSICAL AND MECHANICAL PROPERTIES OF POLYLACTIC ACID-FILLED CHITIN OR CHITOSAN COMPOSITES	292-299 300-304
P - 17	Kurnia Wiji Prasetyo, Lisman Suryanegara, and Subyakto		
P - 18	Yusup Amin and Imam Wahyuadi	ANATOMICAL CHARACTERISTICS OF WANGKAL WOOD (*Albizia procera* (Roxb.) Benth) LARVICIDAL ACTIVITY OF *Cerbera manghas* EXTRACT AGAINST TWO MOSQUITO VECTORS, *Aedes aegypti* AND *Culex quinquefasciatus* (Diptera: Culicidae)	305-310 311-316
P - 19	Didji Tarmadi, S. Khoirul Himmi, and Sulaeman Yusuf	CONTACT TRACING STRATEGY TO IMPROVE THE FINDING QUALITY OF TUBERCULOSIS (TB) SUSPECTS IN BENGKULU TENGAH DISTRICT	317-320
P - 21	Buyung Keraman, H.M.T. Kamaluddin, Ngudiantoro, and Dwi Putro Priadi	TOMATO PLANT RESPON TO DIFFERENT DOSAGE OF NPK PHONSKA FERTILIZER IN SUNGAI SERUT SUBDISTRICT, BENGKULU CITY SITE SPECIFIC FERTILIZATION OF RGL CITRUS IN LEBONG DISTRICT, PROVINCE OF BENGKULU	321-325 326-330
P – 26 Nurmegawati and Yahumri
LAND SUITABILITY EVALUATION OF RUBBER PLANT, OIL-PALM AND ROBUSTA COFFEE AT KAYU AJARAN VILLAGE IN DISTRICT OF ULUMANNA SOUTH BENGGULU 331-338

P – 27 Yartiwi, Yulie Oktavia, and Andi Ishak
INCREASING RICE PRODUCTION USING “JAJAR LEGOWO” PLANTING SYSTEM 339-343

P – 28 Wahyu Wibawa and Nurmegawati
POTENTIAL OF IMPROVED SWAMP RICE VARIETIES ON TIDAL SWAMP IN BENGGULU CITY 344-346

P – 31 Firda Aulya Syamani, Dian Susanth, Sudarmanto, and Lisman Suryanegara
PRODUCTION OF GREEN COMPOSITES BASED ON POLYLACTIC ACID AND BLEACHED PULP FROM OIL PALM FRONDS 347-353

Symposium Schedule
CORRELATION AND PATH ANALYSES FOR DETERMINATION OF SELECTION CRITERIA IN CHILI PEPPER BREEDING FOR FRUIT YIELD IMPROVEMENT

M. Chozin* and D.W. Ganefianti

1Agriculture Production Department, Faculty of Agriculture, University of Bengkulu
Jl. W.R. Supratman, Kandang Limun-Bengkulu 38371A, Indonesia

*Corresponding author: m_chozin@unib.ac.id

Abstract

Knowledge on trait association provides basic criteria for an efficient selection program. This study was undertaken to elucidate the most reliable fruit yield contributing traits in chili pepper. Measurements were made on 15 agronomic traits of 49 chili pepper families generated from a complete diallel cross of 7 parental lines. Analysis correlation revealed that fruit yield per plant had highly significant positive correlations with canopy diameter, fruit number, marketable yield, average fruit weight, and fruit length. Path coefficient analysis based on fruit yield per plant as the dependent variable indicated that positive direct effects of fruit number, marketable yield, average fruit weight, and fruit length were the main contributing traits to fruit yield per plant with the maximum effect was exhibited by fruit length. The significant correlation of canopy diameter with fruit yield per plant was mainly due to indirect effect over marketable yield. Both analyses suggested that chili pepper selection program for higher fruit yield could be based on these traits as selection criteria.

Key words: chili pepper, fruit yield, correlation, path analysis, selection criteria

Introduction

Chili pepper (Capsicum annum sp.) almost always presents in Indonesian dishes making the crop as one of the most important vegetables in term of harvest area and production. The area under cultivation of chili pepper in Indonesia during 2011 was 237,253 ha with total production 1.4 million tones, whereas the annual consumption was 1.12 million tones [1]. This figure should indicate self sufficiency for national demand on chili pepper. Nevertheless, shortage is often occurred due to the use of low yielding genotypes and fluctuation in production patterns. Current average yield 6.07 tones ha\(^{-1}\) was comparatively lower than 21.5 and 14.2 ton ha\(^{-1}\) achieved by China and Thailand, respectively [2]. Development of high yielding cultivars, therefore, is the ultimate objective in chili pepper breeding program.

Fruit yield is the most important and complex trait for the genetic improvement of chili pepper [3]. It depends directly or indirectly dependent on a number of traits known as yield components. The knowledge of traits association will be helpful in determining the selection criteria for yield improvement for which direct selection is not effective. Correlation analysis generally reveals the degree of association among traits and degree of linear relation between these traits. It is not sufficient to describe causal relationship among traits and, hence, is not sufficient determine reliable selection criteria. Path analysis provides an effective means of partitioning the correlation coefficients into direct and indirect effects of the component characters on yield by which the selection criteria in crop breeding program for yield improvement can be logically devised [4]. Considering these stand points, the present study was undertaken to elucidate the most reliable fruit yield contributing traits in chili pepper as selection criteria in chili pepper breeding program.
Materials and Methods

This study was carried out on ultisol at Experiment Station of Agricultural Production Department orchard, University of Bengkulu during July 2011 and November 2011. Genetic materials consisted of 49 families of chili pepper generated from a complete diallel cross of 7 chili pepper lines, i.e. IPBC110, IPBC19, IPBC120, IPBC12, UNIBC GTS1, IPBC10, and IPBC 1. A randomized complete block design with 3 replications was used to allocate the genetic materials in 1.2 m x 3.6 m plots with 12 plants per plot. Seedlings were prepared by growing the seeds on plastic trays filled with a mixture of 1/2 soil, 1/4 compost, and 1/4 rice hull ash and maintained for 4 weeks. Seedlings from each family were transplanted on the experimental plots in a double row with spacing of 60 cm between rows and plants. All recommended cultural practices, including fertilizer application, weeding, pest and disease controls, and irrigation, were followed to rise healthy chili pepper plants.

Eight harvests at one week interval were made by hand picking the ripe fruits. Six randomly selected plants in each plot were observed for the following traits: plant height and first branch height (cm, measured at the first harvest); canopy diameter (cm, measured at the first harvest); leaf width and length (cm, mean width and length of 10 leaves per plant at the first harvest); days to first harvest (number of days from transplanting to first harvest); fruit number (number of fruits per plant from all harvest); marketable yield (number of non-defective fruits per plant from all harvest); average fruit weight (g, ratio between total weight of fruit per plant and number of fruits per plant); fruit length (cm, mean length of 10 fruits per plant); fruit diameter (mm, mean diameter of 10 fruits per plant); pericarp thickness (mm, mean pericarp thickness of 10 fruits per plant); seed number (number of seed per fruit considering 10 fruits per plant); pedicel length (cm, mean pedicel length of 10 fruits per plant); and fruit yield per plant (g, total fruit weight obtained in eight harvests).

Simple correlation analysis was performed to estimate the coefficient of correlation for every pair of the traits using IBM SPSS Statistics v19. Path analysis to estimate the direct and indirect effect to the fruit yield per plant was performed following procedure given by [3].

Result and Discussion

Estimations of correlation coefficients among the observed agronomic traits were presented in Table 1. Traits showing highly significant positive correlation with fruit yield per plant were canopy diameter, fruit number, marketable yield, average fruit weight, and fruit length. These findings were in accordance with [6,7,8,9]. Therefore, these five traits can be regarded as the yield components. In addition, degree and direction of these traits with the other traits were varied. Canopy diameter showed positive and highly significant correlation only with marketable yield. Fruit number had highly significant positive correlations with plant height, first branch height, and marketable yield, but it had highly significant negative correlations with average fruit weight, fruit diameter, and pericarp thickness. Average fruit weight was observed to have highly significant positive correlation with fruit length, fruit diameter, pericarp thickness, and pedicel length, but it had highly significant negative correlation with plant height, first branch height, and days to first harvest, beside with fruit number. Furthermore, fruit length conferred highly significant positive correlation with leaf length, seed number, and pedicel length alongside with average fruit weight, and highly significant negative correlation with leaf width and seed number.

Partition of coefficient correlations between fruit yield per plant and yield components by path analysis were shown in Table 2. The maximum positive direct effect to fruit yield per plant was exhibited by fruit length (0.575), followed by marketable yield (0.477), average fruit weight (0.426), fruit number (0.358). The importance of fruit length, average fruit length and fruit number in determining fruit yield has been reported by [10]. Highly significant positive correlation between canopy diameter and fruit yield per plant was mainly due to indirect effect over marketable yield. Similarly, Pedicel length had a comparable negative direct effect to fruit yield per plant but its total effect was relatively low. These results suggested that longer fruit, less defective fruit, heavier individual fruit, and more fruit per plant should be used as reliable criteria in the selection program for chili pepper yield improvement.
Table 1. Correlation coefficients among different pairs of agronomic traits of chili pepper

<table>
<thead>
<tr>
<th>Trait</th>
<th>First branch height</th>
<th>Canopy diameter</th>
<th>Leaf width</th>
<th>Leaf length</th>
<th>Days to first harvest</th>
<th>Fruit Number</th>
<th>Marketable yield</th>
<th>Average fruit weight</th>
<th>Fruit length</th>
<th>Fruit dian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height</td>
<td>0.486**</td>
<td>0.074</td>
<td>-0.006</td>
<td>0.488**</td>
<td>0.431**</td>
<td>0.555**</td>
<td>0.071</td>
<td>-0.578**</td>
<td>-0.273</td>
<td>-0.7</td>
</tr>
<tr>
<td>First branch height</td>
<td>0.482**</td>
<td>0.175</td>
<td>-0.092</td>
<td>0.371**</td>
<td>0.458**</td>
<td>0.203</td>
<td>-0.426**</td>
<td>-0.206</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>Canopy diameter</td>
<td>0.082</td>
<td>0.363*</td>
<td>-0.123</td>
<td>0.350*</td>
<td>0.444**</td>
<td>-0.026</td>
<td>0.095</td>
<td>-0.3</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>Leaf width</td>
<td>-0.049</td>
<td>0.066</td>
<td>0.068</td>
<td>-0.086</td>
<td>-0.303*</td>
<td>0.621**</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf length</td>
<td>-0.364*</td>
<td>-0.231</td>
<td>0.049</td>
<td>0.384**</td>
<td>0.439**</td>
<td>-0.3</td>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days to first harvest</td>
<td>0.340*</td>
<td>0.067</td>
<td>0.588**</td>
<td>-0.550**</td>
<td>-0.293*</td>
<td>0.598**</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit length</td>
<td></td>
</tr>
<tr>
<td>Fruit diameter</td>
<td></td>
</tr>
<tr>
<td>Pericarp thickness</td>
<td></td>
</tr>
<tr>
<td>Seed number</td>
<td></td>
</tr>
<tr>
<td>Pedicel length</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Path coefficients showing direct and indirect effects of different traits on fruit yield per plant

<table>
<thead>
<tr>
<th>Trait</th>
<th>Direct effect</th>
<th>Indirect effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plant height</td>
<td>First branch height</td>
</tr>
<tr>
<td>Plant height</td>
<td>0.065</td>
<td>-0.017</td>
</tr>
<tr>
<td>First branch height</td>
<td>-0.035</td>
<td>0.032</td>
</tr>
<tr>
<td>Canopy diameter</td>
<td>0.050</td>
<td>0.005</td>
</tr>
<tr>
<td>Leaf width</td>
<td>0.024</td>
<td>0.000</td>
</tr>
<tr>
<td>Leaf length</td>
<td>-0.020</td>
<td>-0.032</td>
</tr>
<tr>
<td>Days to first harvest</td>
<td>-0.016</td>
<td>0.028</td>
</tr>
<tr>
<td>Fruit Number</td>
<td>0.358</td>
<td>0.036</td>
</tr>
<tr>
<td>Marketable yield</td>
<td>0.477</td>
<td>0.005</td>
</tr>
<tr>
<td>Average fruit weight</td>
<td>0.426</td>
<td>-0.038</td>
</tr>
<tr>
<td>Fruit length</td>
<td>0.575</td>
<td>-0.018</td>
</tr>
<tr>
<td>Fruit diameter</td>
<td>-0.044</td>
<td>-0.019</td>
</tr>
<tr>
<td>Pericarp thickness</td>
<td>0.024</td>
<td>-0.022</td>
</tr>
<tr>
<td>Seed number</td>
<td>-0.006</td>
<td>0.020</td>
</tr>
<tr>
<td>Pedicel length</td>
<td>-0.346</td>
<td>-0.009</td>
</tr>
</tbody>
</table>

The 3rd International Symposium for Sustainable Humanity (ISSH)
A Forum of Humanosphere Science School (HSS)
Benguela, 17-18 September 2013
Conclusion

Fruit yield per plant had highly significant positive correlations with canopy diameter, fruit number, marketable yield, average fruit weight, and fruit length. Path coefficient analysis based on fruit yield per plant as the dependent variable indicated that positive direct effects of fruit number, marketable yield, average fruit weight, and fruit length were the main contributing traits to fruit yield per plant with the maximum effect was exhibited by fruit length. The significant correlation of canopy diameter with fruit yield per plant was mainly due to indirect effect over marketable yield. Both analyses suggested that chili pepper selection program for higher fruit yield could be based on these traits as selection criteria.

Acknowledgment

The authors wish to thank Agriculture Production Department, University of Bengkulu for facilitating the experimentation. A special thank is extended to Dr. Simarmata who gave invaluable attention and suggestion to this work.

References

 [Retrieved August 12, 2013].