GAMBARAN JUMLAH DAN HITUNG JENIS LEUKOSIT SERTA WAKTU JENDAL DARAH PADA TIKUS PUTIH BETINA Sprague Dawley YANG DIINDUKSI 7,12-Dimetilbenzen(α) antrasen (DMBA) SETELAH PEMBERIAN EKSTRAK ETANOL BIJI JINTEN HITAM (Nigella sativa L) Akrom, Ermawati M.I.

KINERJA TEMULAWAK (C. xanthorrhiza, Roxb) DALAM TABUT BLOK DAN KONSENTRAT TERHADAP PRODUKSI SUSU DAN LEMAK SUSU RUMINANSIA LAKTASI Endang Sulistyowati

KEMAMPUAN SECANG DALAM MENURUNKAN PRODUKSI TNF-α: POTENSINYA SEBAGAI ANTI JERAWAT Irmamida Batubara, Tohru Mitsunaga, Satoko Kotsuka, Mohamad Rafi, Siti Sa'diah

PROSPEK SENYAWA FLAVONOID KULIT BATANG CEMPEDAK (Artocarpus champeden Spreng) SEBAGAI INHIBITOR DETOKSIFIKASI HEME PARASIT MALARIA Maria Nindatu, Aty Widyawaruyanti, Din Syafruddin, Yoes Prijatna Dachlan, Noor Cholies Zairi

PEMISAHAN FRAKSI DAN SENYAWA-SENYAWA YANG BERSIFAT ANTIPLASMODIUM DARI EKSTRAK METANOL KULIT KAYU MIMBA (Azadirachta indica Juss) Muhtadi

KAJIAN KONSENTRASI BAP DAN 2,4-D TERHADAP INDUKSI KALUS TANAMAN ARTEMISIA SECARA IN VITRO Samanhudi

KAJIAN ETNOBOTANI DI BEBERAPA KAWASAN HUTAN CAGAR ALAM, JAWA TIMUR Titiek Setyawati

KEKERABATAN FILOGENETIK BUAH MAKASSAR (Brucea javanica) BERDASARKAN GEN RIBULOSA-1,5-BIFOSFAT KARBOKSILASE/OKSIGENASE Tri Widayat, Dyah Subositi
DEWAN REDAKSI

PENASEHAT:
Kepala Badan Penelitian dan Pengembangan Kesehatan

PEMIMPIN UMUM:
Indah Yuning Prapti, SKM., MKes.

REDAKSI KEHORMATAN:
Prof. Dr. Lukman Hakim, MSc.
Prof. Dr. Suwijiyono Pramono, DEA.
Dr. Rifatul Widjhati, MSc.
L. Broto S. Kardono, Apt., Ph.D., APU
Ir. M. Januwati, MS, APU
Dr. Ervizal A.M. Zuhud

REDAKSI PELAKSANA

KETUA:
Ir. Yuli Widiyastuti, MP.

ANGGOTA:
Drs. Sutjipto, Apt
Drs. Katno, MSi.
Drs. Slamet Wahyono, Apt
Sari Haryanti, MSc. Apt
Ir. Sugeng Sugiarso, MP
Dra. Lucie Widowati, MSi. Apt

EDITOR:
Indah Yuning Prapti, SKM., MKes.
Ir. Usman Siswanto, MSc., Ph.D.

STAF SEKRETARIAT:
Muhammad Suryana, STP
Amalia Damayanti, MSi.
Indah Laksmiwiwati, SSos.
Fanie Indria Mustofa, SSI.

KELOMPOK KERJA NASIONAL TUMBUHUAN OBAT INDONESIA

Sekretariat:
BALAI BESAR PENELITIAN DAN PENGEMBANGAN
TANAMAN OBAT DAN OBAT TRADISIONAL
Jl. Raya Lawu No. 11 Tawangmangu, Karanganyar - Jawa Tengah
Telp. 0271-697010, Fax. 0271-697451
e-mail: b2p2to2t@gmail.com, b2p2to2t@litbang.depkes.go.id
Daftar Isi

Gambaran Jumlah dan Hitung Jenis Leukosit Serta Waktu Jendal Darah pada Tikus Putih Betina *Sprague Dawley* yang Diinduksi 7,12-dimetilbenz(a) antrasen (DMBA) Setelah Pemberian Ekstrak Etanol Biji Jinten Hitam (*Nigella sativa* L.)
Akrom, Ermaawati M.I. ... 49

Kinerja Temulawak (*C. xanthorrhiza*, Roxb) dalam Tabut Blok dan Konsentrat Terhadap Produksi Susu dan Lemak Susu Ruminansia Laktasi
Endang Sulistyowati ... 60

Kemampuan Secang dalam Menurunkan Produksi TNF-α: Potensinya Sebagai Anti Jerawat
Irmanida Batubara, Tohru Mitsunaga, Satoko Kotsuka, Mohamad Rafi, Siti Sa'diah.......................... 67

Prospek Senyawa Flavonoid Kulit Batang Cempedak (*Artocarpus champeden* Spreng) Sebagai Inhibitor Detoksifikasi Heme Parasit Malaria
Maria Nindatu, Aty Widyawaruyanti, Din Syafruddin, Yoes Prijatna Dachlan, Noor Cholies Zaini ... 72

Pembulatan Fraksi dan Senyawa-senyawa yang Bersifat Antiplasmodium dari Ekstrak Metanol Kulit Kayu Mimba (*Azadirachta indica* Juss)
Muhtadi .. 83

Kajian Konsentrasi BAP dan 2,4-D Terhadap Induksi Kalus Tanaman Artemisia Secara *In Vitro*
Samanhudi .. 94

Kajian Etnobotani di Beberapa Kawasan Hutan Cagar Alam, Jawa Timur
Titiek Setyawati ... 106

Kekerabatan Filogenetik Buah Makassar (*Brucea javanica*) Berdasarkan Gen Ribulosa-1,5- bisosfat Karboksilase/Oksigenase
Tri Widayat, Dyah Subositi .. 116
KINERJA TEMULAWAK (C. xanthorrhiza RoxB) DALAM TABUT BLOK DAN KONSENTRAT TERHADAP PRODUKSI SUSU DAN LEMAK SUSU RUMINANSIA LAKTASI

Endang Sulistyowati*

Abstract

The objective of this research was to evaluate the effect of different levels of Blok Tabut on milk production of lactating FH cross. The Blok Tabut contained of 40% fermented cassava, 15% temulawak fluid, 15% ground corn, 15% rice hulls, 3% limestone, 3% NaCl, 1% TSP, 3.5% cement, 1.5% Premix, and 3% urea, and is sized in 300 g/block. The Tabut Block with Temulawak, containing curcuminoid and atcric oil, which were maintaining lactation and milk let down, was also maintaining the rumen microbes balance; then synergically worked together withreadable carbohydrate from tape and others like mineral and urea would increase the biosynthesis of nutrients into milk production. It may be concluded that the increasing supplementation of Tabut block would increase milk production of FH cows.

PENDAHULUAN

Blok Tabut merupakan pengembangan dari pasta tape-temulawak dan Sakura Blok. Pasta tape-temulawak telah diaplikasikan pada sapi Madura dan sapi Bali laktasi sebanyak 5% BK ransum, hasilnya dilaporkan dapat meningkatkan produksi susu sebanyak 0,42 kg/ekor atau 9,5 kali lebih tinggi daripada sapi yang tidak diberi pasta tape-temulawak (Sulistyowati, 1999). Pada kambing PE laktasi, pemberian pasta tape (7,5%) tape dan larutan temulawak (50%) menghasilkan produksi susu tertinggi (0,37 kg/hr) dengan lemak susu terendah (2,09%), menurut Sulistyowati dan July (2009). Pasta Tapai (1000 g) dan larutan temulawak sebanyak 400 ml, meningkatkan produksi susu sapi perah FH sekitar 0,77- 1,09 kg/hr (Sulistyowati dan Badarina, 2009).

Blok Tabut pada tahap awal (larutan temulawak sebanyak 15%) telah diaplikasikan pada sapi Madura laktasi. Hasil penelitian menunjukkan bahwa sapi yang mendapat Blok Tabut sebanyak 300 g/blok/ekor memproduksi susu sebesar 0,76 kg/ekor/hari, sedangkan sapi kontrol hanya menghasilkan separuh atau 0,38 kg/ekor/hari. Ini berarti terjadi kenaikan produksi sebesar 100% dengan suplementasi Blok Tabut (Sulistyowati et al., 2001). Tabut blok yang diberikan dalam
jumlah yang semakin meningkat, dari 0.450 g/ekor/hari, menghasilkan produksi susu yang secara signifikan meningkat pula (Sulistyowati dan Erwanto, 2009). Selanjutnya, Blok Tabut yang telah dimodifikasi level larutan temulawak dan tapai serta ukuran bloknya telah diaplikasikan pada sapi FH laktasi dan hasilnya menunjukkan peningkatan produksi susu sebanyak 2,81 kg/ekor/hari (Sulistyowati et al., 2008). Blok Tabut berbeda dari suplemen yang lain karena adanya bioaktif yang terdapat pada temulawak, yaitu kurkuminoid (3,16%) dan minyak atsiri (15,5%) per 100 g bahan kering (Liang et al., 1985). Bioaktif ini berfungsi sebagai antinflamasi, anticacing, hipokoleretik, stimulan konsumsi ransum, dan zat serupa hormon Oxytocin dan Prolactin, serta memperbaiki kondisi rumen. Sementara itu, tapai yang merupakan sumber karbohidrat mudah tercerna dan kaya yeast, terutama S. cerevisiae akan menambah keseimbangan mikroba rumen, meningkatkan konsumsi nurisi dan kecernaan nutrisi yang pada akhirnya akan meningkatkan produksi susu. Pada berbagai penelitian suplementasi yeast pada sapi perah laktasi, berturut-turut, sebanyak 1 g/ekor/hari meningkatkan produksi susu sebesar 1,5 kg/hari (Moallem et al., 2009), sedangkan 60 g/ekor/hari dapat meningkatkan produksi susu sebesar 0,5 kg/ekor/hari (Schingoethe, et al., 2004). Dengan demikian, secara bersama-sama semua komponen Blok Tabut akan bersinergi menciptakan kondisi rumen yang kondusif untuk mikroba rumen, meningkatkan efisiensi metabolisme nutrien dan absorpsi nutrien untuk menghasilkan prakursor susu yang lebih tinggi (Lipharraguere and Clark, 2005). Konsentrat laktasi adalah konsentrat dengan bahan dan kandungan seperti pada Tabut blok dengan modifikasi bentuk tape menjadi tepung cassava dan ragi tape, sedangkan larutan temulawak diganti dengan tepung temulawak. Tulisan ini berisi rangkuman beberapa hasil penelitian pakan yang menggunakan temulawak (C. xanthorrhiza, Roxb) dan pengaruhnya terhadap produksi susu dan lemak susu pada sapi perah FH laktasi.

METODE PENELITIAN

LOKASI PENELITIAN

Berturut-turut penelitian ini dilakukan di Pondok Kelapa, Bengkulu Utara (pasta tape temulawak dan Tabut blok pada sapi potong laktasi); di UPTD Bengkulu (pasta tape temulawak pada kambing PE laktasi); di desa Air Duku, Selupu Rejang, Rejang Lebong, Bengkulu (pasta tape temulawak dan Tabut blok pada sapi perah FH); di desa Gisting Atas, Talang Padang, Tanggamus, Lampung (jumlah Tabut blok yang berbeda).

BAHAN

Ternak ruminansia laktasi (kambing perah, sapi potong laktasi dan sapi perah FH) yang digunakan masing-masing sebanyak empat ekor dengan fase laktasi awal dan tengah. Rancangan penelitian yang digunakan pada masing-masing penelitian adalah Bujur Sangkar Latin (RBSL) 4 x 4; empat perlakuan dan empat periode-3 mingguan (Lentner and Bishop, 1986).

METODE

Pasta tape temulawak pada sapi potong laktasi adalah kontrol (ransum dasar 65% rumput lapang dan 35% dedak, PTTO), 5% (850 g tape-345 ml larutan temulawak, PTTL), 7,5% (1250 g
tape- 495 ml larutan temulawak, PTT2), dan 10% (1650 g tape- 660 ml larutan temulawak, PTT3) menurut Sulistyowati (1999). Pada kambing PE laktasi diberi ransum dasar (70% rumput lapang dan 30% dedak, PTT0), 7,5% (dari BK hijauan) tape dikombinasi masing-masing dengan larutan temulawak 30% (dari berat tape, PTT1), 40% (PTT2), dan 50% (PTT3), menurut Sulistyowati (2009). Pada sapi perah FH laktasi diberi pasta tape (1000 g) dan larutan temulawak (2/1 w/v) sebanyak 400 ml sebagai PTT1 dan kontrol, PTT0, menurut Sulistyowati dan Badarina (2009). Tabul blok dibuat berdasarkan formula dasar yang terdiri atas tape singkong 40%, larutan temulawak (C. xanthorrhiza, Roxb) 15%, jagung giling 15%, dedak 15%, kapur 3%, garam 3%, TSP 1%, semen 3,5%, Premix 1,5%, dan urea 3%. Tabul blok ini diberikan pada sapi potong laktasi sebanyak 300 g/ekor/hari (TB1) dan kontrol TB0, menurut Sulistyowati et al (2001). Pada sapi perah FH, Tabul blok diberikan sebanyak 0 (TB0), 150 g (TB1), 300 g (TB2), dan 450 g (TB3), menurut Sulistyowati dan Erwanto (2009). Modifikasi level larutan temulawak- ukuran blok (15%- 450 g, 20%- 300 g, 20%- 450 g, dan 25%- 300 g), berturut-turut sebagai TB0, TB1, TB2, dan TB3 , menurut Sulistyowati et al (2008).

Perubah yang diukur adalah produksi susu ditimbang (kg) dari pemerahan pagi dan sore hari. Konsumsi bahan kering (BK) yang diukur dengan menghitung jumlah ransum yang dikonsumsi (kg) ternak sapi perah setiap hari dan dikalikan dengan kandungan BK ransum.

HASIL DAN PEMBAHASAN

1. **PASTA TAPE TEMULAWAK PADA RUMINANSIA LAKTASI**

 Data rataan produksi susu, lemak susu, dan konsumsi BK (bahan kering) pada sapi potong laktasi, kambing laktasi, dan sapi FH laktasi dengan suplementasi pasta tape temulawak sesuai masing-masing perlakuan disajikan pada Tabel 1.

 Produksi susu sapi potong laktasi dengan suplementasi pasta tape temulawak sebanyak 850 g tape dan 345 ml larutan, meningkatkan produksi susu sebesar hampir 10 kali lebih tinggi daripada

<table>
<thead>
<tr>
<th>Ruminansia</th>
<th>Variabel</th>
<th>PTT0</th>
<th>PTT1</th>
<th>PTT2</th>
<th>PTT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapi potong laktasi</td>
<td>Produksi susu (kg/ekor/ hari)</td>
<td>0,05</td>
<td>0,47</td>
<td>0,03</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>Konsumsi BK (kg/ekor/ hari)</td>
<td>5,18</td>
<td>5,96</td>
<td>6,01</td>
<td>5,90</td>
</tr>
<tr>
<td>Kambing laktasi</td>
<td>Produksi susu (kg/ekor/ hari)</td>
<td>0,27</td>
<td>0,29</td>
<td>0,35</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>Lemak susu (%)</td>
<td>2,31*</td>
<td>2,25*</td>
<td>2,18*</td>
<td>2,09*</td>
</tr>
<tr>
<td></td>
<td>Konsumsi ransum (kg/ekor/ hari)</td>
<td>0,93</td>
<td>0,94</td>
<td>0,94</td>
<td>0,93</td>
</tr>
<tr>
<td>Sapi perah laktasi</td>
<td>Produksi susu (kg/ekor/ hari)</td>
<td>5,88</td>
<td>6,94</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Konsumsi ransum (kg/ekor/ hari)</td>
<td>57,4</td>
<td>58,67</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Keterangan: superskrip berbeda antarperlakuan, menunjukkan perbedaan yang nyata (p<0,05)
KINERJA TEMULAWAK (C. xanthorrhiza, Roxb) DALAM TABUT BLOK DAN KONSENTRAT TERHADAP PRODUKSI SUSU DAN LEMAK SUSU RUMINANSIA LAKTASI

Tabel 2. Rataan produksi susu, lemak susu, dan konsumsi BK ternak ruminansia laktasi dengan suplementasi Tabut blok

<table>
<thead>
<tr>
<th>Variabel</th>
<th>TB0</th>
<th>TB1</th>
<th>TB2</th>
<th>TB3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapi potong laktasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produksi susu (kg/ekor/hari)</td>
<td>0,39</td>
<td>0,76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konsumsi ransum</td>
<td>19,06</td>
<td>19,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg/ekor/hari)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapi perah laktasi (0-450 g TB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produksi susu (kg/ekor/hari)</td>
<td>7,97</td>
<td>8,38</td>
<td>8,45</td>
<td>8,46</td>
</tr>
<tr>
<td>Konsumsi BK ransum (kg/ekor/hari)</td>
<td>17,33</td>
<td>16,64</td>
<td>17,03</td>
<td>16,70</td>
</tr>
<tr>
<td>Sapi perah laktasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produksi susu (kg/ekor/hari)</td>
<td>7,04a</td>
<td>7,57a</td>
<td>7,71a</td>
<td>9,37b</td>
</tr>
<tr>
<td>Konsumsi ransum</td>
<td>15,72</td>
<td>14,14</td>
<td>16,76</td>
<td>16,63</td>
</tr>
<tr>
<td>(kg/ekor/hari)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: superskrip berbeda antarperlakuan, menunjukkan perbedaan yang nyata (p<0,05)

sapi kontrol atau tanpa PTT. Dengan konsumsi bahan kering yang relatif sama, maka tingkat pemberian PTT ini sangat efektif dalam meningkatkan produksi susu sapi potong laktasi. Pada kambing laktasi, pasta tape (95 g)- temulawak (47 g) atau PTT3 menghasilkan produksi susu tertinggi (0,37 kg/ekor/hari). Sebaliknya, pada level ini, kandungan lemak susu menunjukkan angka terendah (p,0,05) yaitu 2,09%. Hal ini membuktikan bahwa salah satu fungsi temulawak adalah adanya kandungan zat yang berfungsi sebagai hipokoleretik, menurunkan lemak. Pada sapi perah, pemberian pasta tape (1000 g) dan larutan temulawak (400 ml) pada PTT1 menghasilkan peningkatan produksi susu sebesar 1,06 kg/ekor/hari18,03%.

2. TABUT BLOK PADA RUMINANSIA LAKTASI

Data rataan produksi susu, lemak susu, dan konsumsi BK (bahan kering) pada sapi potong laktasi, kambing laktasi, dan sapi FH laktasi dengan suplementasi Tabut blok sesuai masing-masing perlakuan disajikan pada Tabel 2.

Suplementasi Tabut blok (300 g) pada sapi potong laktasi adalah dua kali lebih tinggi daripada kontrol (tanpa blok). Namun demikian besarnya kedua produksi susu tersebut tidak berbeda nyata secara statistik (p>0,05). Hal ini karena pengaruh besarnya variasi yang disebabkan oleh sapi itu sendiri. Adapun konsumsi ransum sapi potong laktasi ini relatif sama, tetapi pada TB1 menghasilkan produksi susu 94,87% lebih tinggi. Ini berarti, suplementasi Tabut blok sebanyak 300 g, sangat efektif bagi peningkatan produksi susu sapi potong laktasi.

Namun demikian, jika ditinjau dari konsumsi BK, tingkat konsumsi tersebut (bervariasi 16,64-17,33 kg) sudah melebihi dari rekomendasi untuk sapi FH dengan bobot badan 400 kg dan produksi susu sebanyak 10 kg/ekor, yaitu 10,8 kg BK (NRC, 1989). Dibandingkan dengan Blok Tabut modifikasi, konsumsi BK blok dengan temulawak, tape, dan ukuran blok yang berbeda menghasilkan angka berkisar 16,64-17,33 kg/ekor (Sulis tyowati et al., 2008).

Ditinjau dari suplementasi ragi, hasil pene-
litian yang dilakukan oleh Moallem et al. (2009) menunjukkan bahwa kecemasan BK dari supplementasi live yeast, S. cerevisiae, Biosaf, Lesaffre 1 g/4kg konsumsi BK juga berbeda tidak nyata. Sebaliknya, supplementasi yeast dapat memperbaiki suasana keasaman rumen sehingga dapat meningkatkan konsumsi BK pada sapi perah selama musim panas).

Adapun bioaktif dari temulawak yang juga berfungsi antara lain sebagai antiseptik dapat dihubungkan dengan levelnya pada Blok Tabut dalam rangka menjaga keseimbangan mikroba rumen sedemikian sehingga tingkat konsumsi dan kecemasannya cukup stabil. Keadaan ini dapat dibandingkan dengan Blok Tabut dengan level temulawak yang dimodifikasi sekitar 15-25% juga menghasilkan tingkat konsumsi BK yang berbeda tidak nyata (p>0,05). Namun demikian, level temulawak yang optimal untuk produksi susu adalah 20% (Sulistyowati et al., 2008).

Hasil tersebut menunjukkan bahwa dengan pemberian Blok Tabut yang semakin banyak dari 0 hingga 450 g menghasilkan produksi susu yang meningkat dari 7,04 kg/ekor/hari menjadi 9,38 kg/ekor/hari atau sebesar 24,89%. Walaupun tidak setinggi kenaikan pada supplementasi Blok Tabut pada sapi potong laktasi yang sekitar 95% (Sulistyowati et al., 2001), namun kenaikan tersebut masih berpotensi untuk terus meningkat jika jumlah Blok Tabut ditambah. Kemudian, dengan modifikasi Blok Tabut, yaitu 20% larutan temulawak dan 35% tape serta berkurang 450 g/blok, meningkatkan produksi susu sebesar 2,82 kg/ekor/hari (Sulistyowati et al., 2008).

Hasil analisis ragam menunjukkan bahwa ransum perlakuan dengan meningkatnya Tabut blok 0-450 g berpengaruh nyata (p<0,05) terhadap produksi susu. Hasil uji lanjut polynomial orthogonal memperlihatkan bahwa pengaruh tersebut berpola regresi linear dengan persamaan,

\[Y = 6,66 + 0,005 \times \]

Adapun keeratan hubungan antara ransum perlakuan dan pengaruhnya terhadap produksi susu ditentukan oleh koefisien determinasi,

\[R^2 = 81\% \text{ dan koefisien korelasi, } r = 0,90. \]

Hal ini menunjukkan bahwa peningkatan supplementasi Blok Tabut (dari 0 menjadi 450 g) dalam ransum akan berpengaruh sangat kuat terhadap peningkatan produksi susu. Peningkatan produksi susu antara yang mendapat 450 g Blok Tabut dan control adalah 0,89 kg atau 64, 96%.

Hal ini dapat dijelaskan bahwa dalam bertambah banyaknya Blok Tabut yang dikonsumsi berarti bertambah pula ketersediaan nutrisi yang berupa karbohidrat, protein, mineral, dan kurkuminoid yang akan disintesis menjadi susu. Hal ini sejalan dengan hasil penelitian Ipearaguerre and Clark (2005) bahwa sapi FH yang mendapat ransum dengan 18,7% PK (protein kasar) mengkonsumsi BK lebih banyak sehingga produksi susunya juga lebih banyak dibandingkan dengan ransum 16,8 % PK atau 14,8% PK. Tape dalam Blok Tabut selain sebagai sumber karbohidrat mudah tercerna juga kaya akan kapang atau yeast, S. cerevisiae. Moallem et al. (2009) melaporkan bahwa supplementasi live yeast (S. cerevisiae, Biosaf, Lesaffre) sebanyak 1 g per 4 kg BK yang dikonsumsi sapi FH laktasi selama musim panas, menunjukkan adanya kenaikan produksi susu sebanyak 1,5 kg (4,1%) dan 4% FCM meningkat sebesar 2,0 kg (6,1%). Penelitian lain, Schingoethe et al. (2004) melaporkan bahwa pemberian yeast sebanyak 60 g/ekor meningkatkan produksi susu sebesar 0,5 kg (1,4%). Sebaliknya, pada penelitian Shwartz et al. (2009),
dilaporkan bahwa suplementasi yeast pada sapi Holstein laktasi tidak mampu menahan penurunan konsumsi BK dan produksi susu pada kondisi lingkungan stress panas.

Sebagai tanaman obat, bioaktif temulawak juga berfungsi menyerupai hormone Prolactin yang memelihara proses laktasi dan Oxytocin yang merangsang keluarnya susu (milk let down). Penelitian pada sapi perah laktasi dengan penyuntikan i.v. Oxytocin dilaporkan bahwa residu produksi susu setelah pemerahan lebih tinggi, yaitu 8,7 kg dan 3,2 kg pada control; sedangkan konsentrasi Prolactin meningkat setelah menyusui, yaitu 38,9 ng/ml (de Passille et al., 2008).

KESIMPULAN

Berdasarkan hasil yang telah diuraikan diatas, maka dapat disimpulkan bahwa pemberian pasta tape temulawak yang optimal terhadap peningkatan produksi susu dan lemak susu adalah 850 g tape dan 345 ml larutan temulawak (sapi potong laktasi); 95 g tape dan 47 g larutan temulawak (kambing PE laktasi), dan 1000 g tape dan 400 ml larutan temulawak (sapi perah FH laktasi). Suplementasi Tabut Blok yang optimal terhadap peningkatan produksi susu dan lemak susu adalah 300 g dengan kandungan 15% larutan temulawak (sapi potong laktasi); 450 g dengan kandungan 15% larutan temulawak (sapi perah FH laktasi); dan 35% tape- 20% larutan temulawak dengan ukuran blok 450 g (sapi perah FH laktasi).

UCAPAN TERIMAKASIH

Beberapa penelitian ini didanai dari beberapa program yaitu Vucer- DIKTI, Semi Que- DIKTI, dan Hibah Bersaing- DIKTI. Peneliti menyampaikan terimakasih atas semua hibah ini. Peneliti juga mengucapkan terimakasih kepada beberapa mahasiswa yang telah membantu dalam pelaksanaan penelitian, di lapangan dan di laboratorium. Selain itu, Peneliti juga menyampaikan terimakasih kepada para peternak yang terlibat dalam penelitian ini.

DAFTAR PUSTAKA

Supplementation to Dairy Cows during the Hot Season on Production, Feed Efficiency, and Digestibility. J. Dairy Sci. 92:343-351.