

Reny Herawati <reny.herawati@unib.ac.id>

Submission Confirmation

1 pesan

noreply@ejmanager.com <noreply@ejmanager.com>

Balas Ke: "noreply@ejmanager.com" <noreply@ejmanager.com> Kepada: reny.herawati@unib.ac.id 14 Mei 2020 16.09

Dear Reny Herawati,

Your submission entitled Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice (Manuscript Number: AJAB-2020-05-295) has been received by Asian Journal of Agriculture and Biology.

You could follow status of your manuscript by login to your author account at www.ejmanager.com.

Thank you for submitting your work to our journal.

Best regards,

Editor Asian Journal of Agriculture and Biology http://www.asianjab.com/

IMPORTANT: USE JOURNAL CONTACT EMAIL for your messages. Do not answer to this email. It is not checked for messages

http://www.ejmanager.com

Reny Herawati <reny.herawati@unib.ac.id>

29 Oktober 2020 12.21

Article Revision Letter for Authors - (AJAB-2020-05-295)

1 pesan

noreply@ejmanager.com <noreply@ejmanager.com> Balas Ke: "noreply@ejmanager.com" <noreply@ejmanager.com> Kepada: reny.herawati@unib.ac.id

Dear Reny Herawati,

Your manuscript entitled \"Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice\" (Ms.Nr. AJAB-2020-05-295) was reviewed by editorial board members of the Asian Journal of Agriculture and Biology. As initial decision, your manuscript was found interesting but some revisions have to be made before it can reach a publishable value.

Please answer all the comments below point-by-point in an accompanying response letter to your revised submission.

You should send your revised manuscript via the online system of eJManager on http://my.ejmanager.com.

Sincerely yours,

Rashid Mehmood, Dr. Editor Asian Journal of Agriculture and Biology rashid.pbg@uaar.edu.pk http://my.ejmanager.com/ajab http://www.asianjab.com/

COMMENTS for Authors:

=> Reviewer # 1

1. Authors need to fix all mistakes that higlighted in the manuscript.

2. When author stated some lines or varieties, it should be clearly stated which lines are tolerant and sensitive (at the first time are in abstract).

3. Make sure that author wrote the complete phare of an abbreviation when state it at the first time, and it should be consistent to using the abbreviation for further writing.

4. There is formula of SSR and RRL in the methods. But in discussion the SSR was changed to become RSR, so which is the right one.

5. Authors need to provide the measurment unit of the variables.

6. References: 20 out of 36 are not up to date or older than 2014. Probably these need to be changed with up to date literatures.

9. Some corrections as highligted in References are needed to be fixed.

Corrected Document (Click OR copy+paste link) : http://www.ejmanager.com/mnstemps/170/doc/170-1589444832 BYREV-94006.docx?t=1603948895

IMPORTANT: USE JOURNAL CONTACT EMAIL for your messages. Do not answer to this email. It is not checked for messages

http://www.ejmanager.com

1	
2	Assessment of Aluminum Tolerant of Double Haploid Lines for Developing
3	New Type of Upland Rice
4	
5	Herawati, R. ^{1*} , Ganefianti, D.G. ¹ , Pujiwati, H. ¹ , Purwoko, B.S. ² , Dewi, I.S. ³
6	
7	¹ Crop Production Department, Faculty of Agriculture, University of Bengkulu, Indonesia;
8	² Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural
9	University,Indonesia;
10	³ Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and
11	Development, Indonesia.
12 13	*Corresponding Author email: reny.herawati@unib.ac.id
14	Corresponding Addior email: <u>reny.netawau@umb.ac.id</u>
15	ABSTRACT
16	
17	Aluminum (Al) has a direct or indirect adverse effect on plant growth which is not the same for
18	all plants, even in the same species. The roots of plants are the most sensitive to Al toxicity. The
19	initial symptoms of Al toxicity are inhibition of cell extension and the retarded development of
20	root systems. This study was aimed to evaluate doubled haploid line (DHL) of upland rice lines
21	derived from anther culture to Al stress and to study the genetic diversity and population
22	distribution of DHL due to Al stress. Al tolerant testing was carried out in a greenhouse
23	arranged in a factorial randomized complete block design (RCBD) with three replicates. The first
24	factor was concentration of Yoshida nutrient included Al of 0 and 45 ppm was the first factor.
25	The second factor was upland rice lines obtained from previous experiments (DHL), four parents
26	(SGJT36, SGJT28, Fatmawati, and Way Rarem), while Dupa, and ITA131, respectively as an Al
27 28	tolerant and susceptible checks. The results showed that root length, shoot length, and shoot dry weight had high heritability values and correlated well with the observed characters. Al tolerant
28 29	doubled haploid upland rice lines derived from anther culture varied widely. Based on relative
30	root length (RRL), of the 58 lines tested, 19, 29, and 10 genotypes were highly tolerant, tolerant,
31	and moderate tolerant, respectively. DH1 rice derived from P3 showed highly tolerant, tolerant,
32	and moderate tolerant, while from P6 showed highly tolerant and tolerant.
33	
34	Keywords: Aluminum (Al) tolerance, Doubled Haploid (DH), Upland rice lines.
35	• • • • • • • • • •
36	
37	INTRODUCTION

39 The transition of land functions into residential areas, construction of social facilities and infrastructure has led to a reduction of land for agriculture. It resulted in the expansion of 40 agricultural land directed to areas of marginal land (dry land), especially on ultisol soils that 41 reacted acid. It was often lack of Ca, Mg, P, K, and N as well as Al toxicity. The high of Al in 42 acid soils has been shown to inhibit plant growth (Silva et al., 2010; Brunner and Sperisen, 43 2013). Utilization of acidic land faced with various obstacles, including low pH, which will 44 reduce the availability of nutrients for plant growth. On the other hand, Al toxicity is increasing. 45 In very acid soils (pH <4.5), Al solubility can increase Al saturation. Aluminum has detrimental 46

38

1 effects on plant, not only inhibit the growth of rice roots but also cause damage to rice root

2 systems which can both lead to significant reductions in rice yields (Ismail et al., 2007; Liu et al.,

3 2012). The effect of Al stress is not the same in all plants, even in the same species. The roots is

4 the most sensitive to Al toxicity.

The mechanism of Al toxicity in plants are inhibition of cell extension and the retarded 5 development of root systems. The availability of Al in soil solution depends on the acidity. In 6 very acidic soil reaction conditions (pH <4.5), Al becomes very soluble, especially in the form of 7 8 Al^{3+} , which is toxicity to plants. Aluminum also interferes with uptake, transport, and the utilization of nutrients, and inhibits enzyme activity and hormonal balance (Lupwayi et al., 2014; 9 Wan et al., 2019; Yamamoto, 2019). The presence of high soluble Al causes stunted root growth 10 and ultimately decreases the ability of roots to absorb mineral and water nutrients (Silva et al., 11 12 2012; Ma et al., 2014; Kochian et al., 2015). Inhibition of root growth occurs due to cell division 13 and elongation in the root meristem by Al stress.

Al accumulation in root tissue will determine the level tolerance of plant genotypes and correlated with the level of root damage. Al accumulation in the root tissue is lower than in the sensitive genotype (Ma 2000; Zang et al., 2019). The small number of negative charges on the cell wall in tolerant genotype caused the lower interaction. (Watanabe and Okada 2005; Kochian et al. 2015). This phenomenon has also been reported by some previous researchers that stated tolerant rice had a mechanism by reducing the interaction of Al on the root cell walls (Nursyamsi 2000; Awasthi et al., 2017; Qian et al., 2018).

Until now, not many of rice varieties have tolerated acid soils, and some lines are still in 21 the testing process. High genetic diversity is one of the main factors in improving plant traits, 22 both by conventional and biotechnological methods. Previous genetic diversity studied on DH1 23 had produced 58 double haploid of upland rice lines that are ready for further evaluated 24 25 (Herawati et al. 2009). Therefore, the selection of available genotypes needs to be done to obtain genotypes that are tolerant to aluminum stress. Identification of differences in root growth 26 characteristics is one indicator that can be used in the tolerance selection of Al stress because 27 roots are the main target of damage by Al. In rice, a quick method for evaluating tolerant 28 genotypes to Al stress can be done by observing the root length in the vegetative phase 29 (Bakhtiaret al., 2007; Belachew et al., 2017; Awasthi et al., 2017; Qian et al., 2018). This study 30 was aimed to evaluate the DH1 of upland rice derived from anther culture, and to study genetic 31 32 diversity and population distribution due to aluminum stress.

- 33
- 34 35

36

MATERIALS AND METHODS

The experiment was carried out in the greenhouse of the Indonesian Center for Research and Development on Biotechnology and Agricultural Genetic Resources, Cimanggu, Bogor. The materials used were 58 DH1 rice lines, four elders (SGJT36, SGJT28, Fatmawati, and Way Rarem), and two varieties checked, namely Dupa and ITA131 respectively as tolerant and sensitive aluminium (Al) (Prasetyono, 2003; Bakhtiar et al., 2007). The nutrient solution used was Yoshida nutrient solution (Yoshida et al., 1976).

43 The experiment organized in a factorial randomized complete block design (RCBD) 44 which repeated three times. Yoshida nutrient solution (Yoshida et al. 1976) was added with Al-45 solution at 0 ppm and 45 ppm as the first factor, while the second factor was 64 of upland rice 46 lines/varieties.

The seeds were roasted at 45 $^{\circ}$ C for 3 x 24 hours, and then the seeds were sown in a 1 nursery on husk media. Seeds germination were germinated in the dark room for five days. Rice 2 seeds that were healthy, uniform, and have a height of ± 5 cm were selected for planting. The 3 nutrient solution used was Yoshida method with the final composition as follows: 40 ppm N, ten 4 ppm P, 40 ppm K, 40 ppm Ca, 40 ppm Mg, 0.5 ppm Mn, 0.05 ppm Mo, 0.2 ppm B, 0.01 ppm 5 Zn, 0.01 ppm Cu and two ppm Fe (Yoshida et al. 1976). To reduce the formation of Al polymer, 6 the pH of the nutrient solution was adjusted by using 0.1 N NaHCO3 to pH 4.5 before the 7 addition of Al. The addition of Al by adding 0 and 2 ml of Al stock solution that had been made 8 for 1000 ml of Al (source AlCl3.5H2O) to get the treatment concentration of 45 ppm Al. The 9 pH of the nutrient solution was adjusted to 4.0 ± 0.1 using 0.1 N NaHCO3 or 0.1 N HCl. 10

Five-day-old healthy sprouts on with uniform root length were transplanted to the media. 11 Sprout stems wrapped in soft foam and then put into styrofoam holes that had been prepared and 12 floated on a nutrient solution in a pot. Each pot was planted with five sprouts and maintained for 13 14 14 days in a greenhouse. A growth period of 14 days was used because the composition of the 15 Yoshida nutrient solution was designed for 14 days (Yoshida et al. 1976). During this period, 16 the addition of water and pH adjustment was carried out with 0.1 N NaHCO3 or 0.1 N HCl every two days. Data were collected on plants at 14 days after planting by measuring root length, plant 17 height, root dry weight, shoot dry weight. The formula estimated shoot root weight ratio (SRR): 18 19

$$SRR = \frac{root \, dry \, weight}{shoot \, dry \, weight}$$

20

22

23

30

21 The formula measures variable relative root length (RRL):

 $RRL = \frac{root \ length \ under \ Al \ stress}{root \ length \ without \ Al}$

Data analysis was performed using the Least Significant Difference Test (LSD). The level of Al tolerance of rice was grouped into a susceptible = RRL<0.5, rather tolerant = 0.5 <RRL <0.70, tolerant = 0.70 <RRL <0.85, and highly tolerant = RRL> 0.85. Analysis of variance and correlation between variables using Pearson were performed using SAS software version 9.1. Genetic parameters were calculated based on the method used by Singh and Chaudhary (1979) as follows:

Source of v	ariance df	Means Square	expectation value
Genotipe	(g-1)	M2	$\sigma_e^2 + 3\sigma_g^2$
Error	(r-1)(g-1)	M1	σ_e^2

31 σ_e^2 = environment variance; σ_g^2 = genetic variance

$$\sigma_g^2 = \frac{M2 - M1}{r} \sigma_e^2 = M1 \sigma_p^2 = \sigma_g^2 + \sigma_e^2$$

32 The standard deviation of genetic variance using the formula:

33

$$\sigma_{\sigma_{g}^{2}} = \sqrt{\left(\frac{2}{r}\right) \left[\left(\frac{M2_{g}^{2}}{df_{g}} + 2\right) + \left(\frac{M1_{e}^{2}}{df_{e}} + 2\right)\right]}$$

- M2 = Means squared genotype
- M1 = Means squared error
- $\mathbf{r} = replication$
- dfg = degree of freedom genotype
- dfe = degree of freedom error

Genetic diversity could be estimated from genetic variance ($\sigma 2g$) and standard deviation of genetic variance ($\sigma\sigma 2g$). A character has a broad genetic diversity if $\sigma 2g > 2\sigma\sigma_g^2$. The estimation of Coefficient Genotype Diversity (CGD) using the formula:

$$CGD = \frac{\sqrt{\sigma_g^2}}{\bar{x}} \ge 100\% \bar{x}$$
 = average population observed

- if $0 < CGD \le 10.94$ (narrow); $0 < CGD \le 21.88$ (rather narrow); $0 < CGD \le 32.83$ (rather broad); 0<CGD≤43.77 (broad); 43.77 <CDG (very broad).

The formula estimated of coefficient phenotype diversity (CPD) as follows:

$$CPD = \frac{\sqrt{\sigma_p^2}}{\bar{x}} x100\%$$

if 0 <CPD≤24.94 (narrow); 0 <CPD ≤49.71 (rather narrow); 0 <CPD ≤74.71 (rather broad); 0

<CPD ≤99.65 (broad); 99.65 <CPD (very broad).

Heritability in a broad sense (h^2_{bs}) was calculated according to the formula:

$$h_{bs}^2 = \frac{\sigma_g^2}{\sigma_p^2}$$

Heritability values (h_{bs}^2) are grouped according to Stanfield (1983) as follows: $0.50 < h_{bs}^2 < 1.00 = height; 0.20 < h_{bs}^2 < 0.50 = moderate; h_{bs}^2 < 0.20 = low.$

Genotypic correlations can be calculated using the formula:

$$r_{g(xiji)} = \frac{cov.g(xixj)}{\sqrt{\left(\sigma_{g(xi)}^2, \sigma_{g(xj)}^2\right)}}$$

cov.g(xixj) = genotypic variation between properties i and j

- $\sigma_{g(xi)}^2$ = genetic variability i $\sigma_{g(xj)}^2$ = genetic variability j

RESULTS AND DISCUSSION

Analysis of genetic diversity

8			ι	ınder Al	stress in	nutrient	solution					
	V	/ariable			Sum S	Square	Mean S	quare	F val	ue		
	F	Root length			11:	59.4	20.	3	4.8	0^{**}		
	S	Shoot length			0.	.35	0.00)6	2.9	2**		
		Root dry wei			0.0	089	0.00	16	1.	10*		
		Shoot dry we	0		0.	.11	0.00)2		6**		
		Soot root wei	0	,		.35	0.00	62	2.9	2**		
	*Signific	ant different at	level 0.05; **	Significan	t different	t at level 0.	.01					
10 11												
		100% 90% 80% 70% 60% 50% 40%	21.95		<u>6.8</u> 93.1	94	4	22.14				Comment [MS1]: It is better if the decreased variables drown under 0 (zero), so the values are negative !!!!, such as21.95; - 6.8; -5.5; and - 22,14 Please write the number in the right form such as 21.91 not 21,91 and soon !!!

Root dry weight Shoot dry weight

Comment [MS2]: root length

Decresead

Analysis of variance of DH1 lines for Al stress in nutrient culture showed significant differences on all observed variables (Table 1). The response of each variable was different from Al stress. Al stress reduced root length by 21.95 percent and shoots dry weight by 22.14 percent,

5 while decreased shoot length and root dry weight by only 6 percent (Figure 1).

1 2

3

4

6

7

12 13

14 15 40% 30% 20% 10% 0%

Root length

Table 1. Analysis of variance of DH1 lines of new type upland rice under Al stress in nutrient solution

16 Decreasing in root length was caused by obstruction of the elongation of the primary and lateral roots. Field and laboratory experiments showed that there were mixed responses to Al 17 toxicity in rice (Watanabe and Okada 2005; Bakhtiaret al., 2007; Qian et al., 2018). Reduction in 18 shoot dry weight was due to nutrients available for suboptimal growth because of impaired 19 20 nutrient absorption and transport in roots (Kochian et al. 2015; Qian et al., 2018). The decreased 21 in root dry weight was only 5.55 percent, not as much as in dry shoot weight (22.14 percent) 22 (Figure 1) although the root length decreased, the roots were shorter, and adventitious roots grew 23 more. It showed that under Al stress conditions, more carbohydrates were directed to root 24 growth. Bakhtiar et al. (2007) and Belachew et al. (2017) also found that shoot dry weight was 25 more sensitive than root dry weight to Al toxicity. Inhibition of shoot growth is a secondary 26 effect due to nutrient deficiency, especially Mg, Ca, and P. The inhibition of water absorption

Figure 1. Effect of Al stress on variableslength of root, shoot length, root dry weight, and shoot

dry weight of DH1 lines

Shoot length

□ under Al stress 45 ppm

1 caused dwarf rice growth (Ma et al., 2014). Wang et al.(2015) demonstrated that the application

of NH4 decreased the Al content in rice roots by reducing the pectin content in rice roots.
 Freitas et al. (2019) revealed that aluminum chloride was more useful in producing aluminum

4 toxicity in the upland rice plants grown in the nutrient solution.

-5 6

Table 2. Genetic diversity of root length, shoot length, root dry weight, shoot dry weight, and root shoot weight ratio under stress conditions Al

7 8

Variable	Mean	GV*	PV	2xSD	GVC	PVC	h ² bs
				GV			
Root length	15.75	5.37	9.61	5.43	14.71	19.68	0.56
Shoot length	42.14	30.74	38.41	21.41	13.61	14.70	0.80
Root dry weight	0.037	0.00007	0.0015	3.25	22.12	100.0	0.05
Shoot dry weight	0.114	0.00053	0.0009	3.25	20.19	26.75	0.57
Shoot root weight ratio	0.29	0.0014	0.0035	3.25	12.92	20.40	0.40
(SRR)							

9 *GV =Genotipe Variability, PV=Phenotipe Variability, PVC=Phenotipe Variability Coefficient, GVC= Genotipe
 10 Variability Coefficient, SDGV=standar deviate genetic variability, h²_{bs}= heritability in a broad sense

11 The estimates of genetic parameters are shown in Table 11. Root length characters had a 12 narrow diversity of genotypes but had a broad coefficient of the diversity of genotypes, 13 respectively, 5.37 and 14.71 percent. Shoot length had a broad genotype diversity that was 30.74 14 percent but had a narrow coefficient of genotype diversity by 13.61 percent. Root dry weights 15 both had a broad of the coefficient of genotypic diversity and coefficient of phenotype diversity 16 (Table 2). The estimated heritability values for dry weight and shoot length were 0.05 and 0.8, 17 respectively (Table 2). Heritability value of root length, shoot length, and shoot dry weight were 18 classified as high. Characters that have high heritability values indicate that genetic factors are 19 more dominant than the environment so that the selection of these characters can be made in the 20 first generations (Akinwaleet al., 2011; Herawati et al., 2019). 21

22 23

25

24 Correlation and Relative Root Length (RRL)

Correlation analysis of all observed characters were positive, except for shoot length and RSR, while shoot dry weight and RSR were negatively (Table 3). Characters that have significantly different and positive correlations can be used as selection criteria. Root length, shoot length, and shoot dry weight can be selected as one of the criteria for Al tolerance for DH1 line. These characters had high genetic diversity and heritability values and have positively correlated with other characters.

32 33

34

 Table 3. Correlation of root length, shoot length, root dry weight, shoot dry weight, and shoot root weight ratio (SRR) under Al stress condition

Characters	Shoot length	Root dry weight	Shoot dry weight	Shoot root weight ratio (SRR)
Root length	0.42**	0.28**	0.53**	0.12*
Shoot length		0.25*	0.65**	-0.25*

Root dry weight			0.43**	0.11 ^{ns}
Shoot dry weight				-0.14*
*= significant at level 005;	**= very signif	ficant at level 001	, ns=no significant	

Among these characters, root length was more easily and quickly observed, so the researchers used relative root length (RRL) to distinguish tolerant and Al-susceptible genotypes. Previous research indicated that the main target of Al toxicity was the root tissue of the plant. Root damage occurs in sensitive genotypes due to Al toxicity, characterized by a decrease in protein content in the cytoplasm and increased membrane damage to cell walls, which results in cell membrane leakage (Zhu et al., 2018). Qian et al. (2018) reported that the fresh and dry weights of the rice seedlings were significantly positively correlated with chlorophyll content. This result indicates that a low Al concentration increases the fresh and dry weights of rice seedlings by increasing leaf chlorophyll content and promoting photosynthesis.

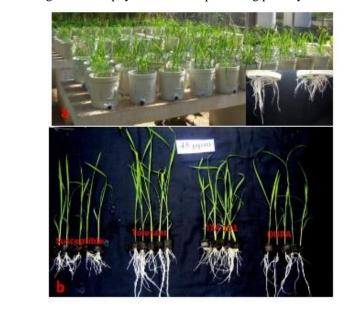


Figure 2. The experiment of Al stress on Yoshida nutrient solution (a); the appearance of root of
 susceptible lines, tolerant lines, ITA 131 (susceptible check), DUPA (tolerant check) under 45
 ppm Al (b, from left to right)

Root shortening is one of the consequences of Al inhibition of root length. The morphology of secondary roots appeared shorter, fat, and reduced branching, while adventitious roots grew more on the root neck (Figure 2a). The roots have hardy penetrating the soil layer so that the absorption of nutrients and water will be inhibited. The level of Al toxicity depends on the activity of Al^{+3} in the soil media. The root activity of the seedlings at the concentrations also significantly decreased. Al decreases the fresh weight by inhibiting the absorption of water and mineral substances (Qian et al., 2018).

RRL values in the DH1 lines varied between 0.53-1.03 (Table 4). The RRL value of the
Dupa (tolerant check) was 0.74, while ITA131 (susceptible check) was 0.53 (Figure 2b). The 5%

LSD test showed no significant difference between the RRL values for the rather tolerant 1 genotypes and the RRL values for susceptible checks (Table 4). It is consistent with previous 2 experiments carried out by Prasetiyono (2003), Bakhtiaret al. (2007) that Dupa was tolerant at 3 RRL value 0.7, however, for ITA131 (0.53) was an increase from the previous experiment of 4 0.41 (Bakhtiaret al., 2007). For this reason, it is necessary to review using ITA varieties as 5 susceptible checks (Figure 2b). The 5% LSD test on DH1-lines resulted in 8 lines having 6 7 significantly different and higher RRL values than the Dupa check varieties (RRL = 0.74), 8 namely lines P6-274, P6-314, P3-196, P6-273, P6- 311, P6-250, P6-267, and P6-278 (Table 4). 9

10 11

Table 4. Root lengths in treatments of 0 and 45 ppm A1 and the relative value of the root length (RRL) of DH1 lines at 14 days after planting.

Lines	Al_0	Al_{45}^{1}	RRL	Criteria ²	t 14 days afte		Al ₄₅	RRL	Criteria
Lines	(C1				Lines	(ci			
P6-274	16.2	16.7	1.03*	HT	P6-319	20.4	16.0	0.78	Т
P6-314	20.3	20.3	1.01*	HT	P6-275	20.3	15.6	0.78	Т
P3-196	17.1	16.8	0.98*	HT	P6-297	25.1	19.3	0.77	Т
P6-273	19.9	19.5	0.97*	HT	P3-210	20.6	15.8	0.76	Т
P6-311	15.3	14.9	0.96*	HT	P3-161	20.2	15.8	0.76	Т
P3-250	16.8	15.9	0.95*	HT	P3-135	23.1	17.2	0.76	Т
P6-267	10.6	10.1	0.95*	HT	P3-175	21.8	16.6	0.76	Т
P6-278	19.4	18.3	0.94*	HT	P3-221	23.8	18.1	0.76	Т
P6-286	23.4	21.6	0.93	HT	P3-190	20.2	15.3	0.75	Т
P6-266	12.5	11.7	0.93	HT	P6-320	19.9	15.2	0.75	Т
P3-191	21.5	19.6	0.90	HT	P3-162	20.9	15.4	0.74	Т
P6-264	14.0	12.6	0.90	HT	P1-108	20.2	15.0	0.74	Т
P3-238	17.9	15.1	0.88	HT	P6-317	16.3	12.2	0.73	Т
P3-204	17.2	15.1	0.88	HT	P3-131	21.3	15.2	0.72	Т
P6-291	14.9	13.1	0.87	HT	P3-248	18.7	13.5	0.72	Т
P6-265	12.4	10.9	0.87	HT	P6-103	20.6	14.7	0.70	RT
P6-261	17.1	14.8	0.87	HT	P3-160	24.2	16.8	0.70	RT
P6-257	20.6	17.8	0.86	HT	P3-31	22.4	13.8	0.63	RT
P6-255	21.0	17.9	0.85	HT	P3-26	23.7	14.6	0.61	RT
P6-276	20.1	16.9	0.85	Т	P4-45	22.1	13.3	0.60	RT
P6-271	21.7	17.8	0.84	Т	P5-50	22.1	12.9	0.59	RT
P3-148	20.9	17.3	0.83	Т	P2-1	18.5	11.1	0.59	RT
P3-120	23.2	19.6	0.83	Т	P3-27	25.7	14.0	0.54*	RT
P6-272	20.5	16.6	0.83	Т	P2-2	18.5	10.1	0.54*	RT
P6-62	20.6	16.8	0.83	Т	P3-28	23.9	12.7	0.53*	RT
P6-105	16.6	13.7	0.83	Т	Dupa	24.7	18.2	0.74	Т
P6-295	21.8	17.8	0.83	Т	ITA131	21.1	11.3	0.53	RT
P3-159	24.5	19.9	0.81	Т	SGJT-28			0.89	HT
P3-134	19.3	15.6	0.80	Т	SGJT-36			0.86	HT

Lines	Al_0	Al_{45}^{-1}	RRL	Criteria ²	Lines	Al ₀ Al ₄	5 RRL	Criteria
	(CI	n)				(cm)		
P3-150	21.9	17.6	0.80	Т	W.Rarem		0.52	RT
P6-302	20.3	15.5	0.79	Т	Fatmawati		0.76	Т
P3-158	24.1	19.2	0.79	Т	BNT 0.05		0.2	
P3-249	20.6	16.3	0.78	Т	KK (%)		15.69	

*Significantly different from Dupa based on LSD 0.05 test; ${}^{1}Al_{0}= 0$ AlCl₃, $Al_{45}= 45$ ppm AlCl₃; ${}^{2}HT = Highly$ tolerant, T=tolerant, AT=Rather tolerant

4 In tolerance genotypes, Al is prevented from passing through the plasma membrane and entering the symplast and sites that are sensitive to Al in the cytoplasm of the root tip. The ability 5 of the root cell wall to absorb low Al and the permeability of the cell membrane is thought to be 6 involved in the mechanism of external tolerance. Zhu et al. (2018) that Hydrogen sulfide (H2S) 7 plays an essential role in Al stress resistance in plants. HS reduces Al toxicity by reducing the Al 8 content in the apoplast and symplast rice root. Wang et al.(2017) revealed that the activity of 9 cytosolic glucose-6-phosphate dehydrogenase is also involved in resistance to Al through 10 mediating ROS levels in soybean. Reports by Qian et al. (2018) indicated that H2O2 11 accumulation is also a key factor contributing to the decrease in root activity. 12

In Al tolerance, plants will be able to raise the pH around the root area (Kochian et al., 2004; Ma, 2007). Increasing pH around the roots occurs due to the influx of H⁺ at the root tip. It resulted in the deposition of Al and a decreasing Al³⁺ activity so that it becomes a less toxic form to plants (Samac and Tasfaye, 2003; Zhao et al., 2014). Plants avoid from Al toxicity trough absorb NO³⁻ in large amounts. It caused the release of hydroxyl ions (OH⁻) or bicarbonate ions (HCO³⁻) into the rhizosphere,increased pH, and suppressed the solubility of Al (Justino et al., 2006; Zhao et al., 2018).

20

1 2

3

Table 5. The results of the DH1 lines selection for a new type of upland rice under Al stress

Criteria	Genotype	Number of lines
Highly	P6: 274, 314, 273, 311, 267, 278, 286, 266, 264, 291,	
tolerant	265, 261, 257, 255, dan P3: 196, 191, 238, 204, 250	19
Tolerant	P6: 276, 271, 272, 62, 105, 295, 302, 319, 275, 297,	
	320, 108, 317, dan P3: 148, 120, 159, 134, 150, 158,	
	249, 210, 161, 135, 175, 221, 190, 162, 131, 248	29
Rather	P2: 1, 2; P3:160, 31, 26, 27, 28; P4-45, P5-50, P6-103	
tolerant		10

22

The RRL values of the genotype P3-27, P2-2, P3-28 were lower than tolerant checks, classified as moderately tolerant genotypes (low) by 0.53-0.54, almost the same as the RRL values of theITA as susceptible checks by 0.53 (Table 4).The grouping was based on RRL values in 58 DH1 lines tested on nutrient cultures at 0 and 45 ppm Al, that is susceptible = RRL <0.5, rather tolerant = 0.5 < RRL < 0.70, tolerant = 0.70 < RRL < 0.85, and highly tolerant = RRL > 0.85, so 19 genotypes were highly tolerant, 29 tolerant genotypes, and 10 genotypes rather tolerant (Table 5).

30

Distribution of Population from Cross of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati)

Aluminum tolerance based on the relative root length (RRL) and root shoot weight ratio 4 (RSR) in DH1 populations from the crossing of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x 5 Fatmawati) and the two parents are presented in Table 6. The relative root lengths (RRL) in the 6 P3 population ranges from 0.53 - 0.98, while the P6 population ranges from 0.70 - 1.03. The 7 8 Fatmawati elders had an RRL of 0.77, while the SGJT-36 elders were 0.87. There was diversity in all observed characters. The root shoot weight ratio (RSR) of the P3 population ranged from 9 0.20 to 0.32, while the P6 population ranged from 0.22 to 0.39. The Fatmawati elders had an 10 RSR value of 0.30, while the SGJT-36 elders had an RRL value of 0.32 (Table 6). 11

Table 6. Relative root length (RRL) and root shootweight (RSR) ratio of DH1 lines in
 populations of crossing P3 (Fatmawati x SGJT-36)and P6 (SGJT-36 x Fatmawati)

1	с.
т	Э.

16

17

18

12

3

	$X \pm SD$	Range of D	H1 population	Mean value	e of parent **
Characters	DH1*	P3	P6***	Fatmawati	SGJT-36
Relative Root Length	0.8 ± 0.11	0.53 - 0.98	0.70 - 1.03	0.77	0.87
Root shoot weight ratio					
(RSR)	0.29 ± 0.04	0.20 - 0.32	0.22 - 0.39	0.30	0.32

 $*X \pm SD DH1$ is mean \pm standard deviate, **Fatmawati and SGJT-36 5 plants each, ***P3 were 26 lines, and P6 were 27 lines

RRL and RSR values observed in DH1 populations varied greatly, some of which were 19 similar to their parents, intermediates, and exceed both of their parents. The frequency 20 distribution of P3 and P6 populations based on RRL values is presented in Table 7.Based on 21 22 aluminum tolerance criteria, the frequency distribution of the two elders did not overlap. 23 Fatmawati had tolerant criteria, while SGJT-36 had highly tolerant. The frequency distribution of 24 DH1 populations of P3 derivatives was highly tolerant, tolerant, and rather tolerant, while the 25 frequency distribution of P6 populations was highly tolerant to tolerant (SGJT-36 elders) (Table 26 7).

Table 7. Distribution of DH1 lines in each population of crossing P3 (Fatmawati x SGJT36) and P6 (SGJT-36 x Fatmawati) based on aluminum tolerance

29

Criteria	Pare	ent*	DH1**		
Cinteria	Fatmawati	SGJT-36	P3	P6	
Highly tolerant	0	\checkmark	5	14	
Tolerant		0	16	12	
Rather tolerant	0	0	5	1	
Susceptible	0	0	0	0	

*The Fatmawati elders and SGJT-36 each with five plants, ** P3 were 26 lines, and P6 were 27
 lines, √ Al tolerance criteria on elders

32

It was due to the presence of transgressive segregation in the combination of an anther, which produced lines with different tolerance levels. Many genes control Al tolerance levels in rice, so not all genotypes will have this gene. Zang et al. (2019) were found that there were significant differences between the gene expression patterns of Indica Al-tolerant and Japonica Al-tolerant varieties, the gene expression patterns of the Al-tolerant varieties in the mixed
subgroup, which was inclined to Japonica, were similar to the Al-tolerant varieties in Japonica.
Each gene or combination will have a role in regulating the mechanism of Al tolerance in rice
that will be expressed in each phase of plant growth (Wu et al. 2000). Thus the elders used in this
study produced lines that were tolerant to aluminum stress. The next step will be an evaluation of
the leaf blast disease in the greenhouse.

CONCLUSION

Evaluation of Al tolerance based on RRL in nutrient culture showed that 19, 29, and 10 genotypes were highly tolerant, tolerant, and rather tolerant, respectively. The tolerance level of Al in the DH1 lines of upland rice produced by anther culture varied greatly. Root length, shoot length, and shoot dry weight had high coefficient of diversity and heritability and correlated with each other. The distribution of DH1 populations of P3 derivatives produced highly tolerant, tolerant, and rather tolerant criteria, while the populations of P6 derivatives produced highly tolerant to tolerant criteria.

19 Acknowledgment

8 9

10

18

23 24 25

26

30

34

We would like to thank Yenni and Imam (staff at the Indonesian Center for Agricultural
 Biotechnology and Genetic Resources Research and Development)for their assistance in the
 Laboratorium and field works.

REFERENCES

Akinwale MG, Gregorio G, Nwilane F, Akinyele BO, Ogunbayo SA and Odiyi AC, 2011.
Heritability and correlation coefficient analysis for yield and its components in rice (O.sativa L.).
Afr. J. Plant Sci. 5:207212.

 Awasthi JP, Saha B, Regon P, Sahoo S,Chowra U, Pradhan A, Roy A and Panda SK, 2017.
 Morphophysiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoSONE. 12(4): e0176357. https://doi.org/10.1371/journal.pone.0176357

Bakhtiar, Purwoko BS, Trikoesoemaningtyas, Chozin MA, Dewi IS and Amir M, 2007.
 Penapisangalurpadigogohasilkulturanterauntukketengganganaluminiumdanketahananterhadappe

37 nyakitblas (Screening of Doubled Haploid Upland Rice Lines Generated from Anther Culture to

38 Aluminum Tolerance).Bul. Agron. 35(1):8 – 14.

Belachew KY and Stoddard F, 2017. Screening of faba bean (*Viciafaba* L.) accessions to acidity
 and aluminium. PeerJ. 5: e2963; DOI 10.7717/peerj.2963.

42

39

BrunnerI and Sperisen C, 2013.Aluminum exclusion and aluminum tolerance in woodyplants.
Frontiers in Plant Science. 4:1-12.

44 45 Comment [MS3]: fix this
Comment [MS4]: fix this

Comment [MS5]: fix this

Freitas LB, Fernandes DM, Maia SCM, Moniz A, Mazziero BG and Steiner F, 2019. Sources 1 and doses of aluminum in experiments with rice in nutrient solution. R. Bras. Eng. 2 Agríc.Ambiental. 23(7):511-517. 3 4 Herawati R, Purwoko BS and Dewi IS, 2009. Keragaman genetik dan karakter agronomi 5 galur haploid ganda padi gogo dengan sifat-sifat tipe baru hasil kultur antera (Genetic 6 diversity and agronomic traits of double haploid lines with the characteristics of new types 7 8 upland rice derivated from anther culture). JurnalAgronomi Indonesia, 37(2):87-93. 9 Herawati R, Masdar and Alnopri, 2019. Genetic analysis of grain yield of F4populations for 10 developing new type of upland rice. SABRAO Journal of Breeding and Genetics.51(1):68-79. 11 12 13 Ismail AM, Heuer S, Thomson MJ and Wissuwa M, 2007.Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol. 65:547-570. 14 15 16 Justino GC, Cambraia J, Olivia MA and Oliveira Ja, 2006. Uptake and reduction of nitrate in two rice cultivars in the presence of aluminum.Pesqui.Agropec.Bras. 41:1285-1290. 17 Doi:10.1590/S0100-204X2006000800011 18 19 Kochian LV, Hoekenga OA, Pineros MA, 2004. How do crop plants tolerate acid soil? 20 Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Reviewof Plant 21 Biology 55:459–493. 22 23 Kochian LV, Piñeros MA, Liu JP and Magalhaes JV, 2015. Plant adaptation to acid soils: the 24 molecular basis for crop aluminum resistance. Annu Rev Plant Biol. 66: 571±598. 25 https://doi.org/10.1146/annurevarplant-043014-114822 26 Liu J, Luo X, Shaff J, Liang C, Jia X, Li Z, Magalhaes J and Kochian LV, 2012. A 27 promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis 28 aluminum resistance and improved carbon-use efficiency for aluminum resistance. Plant J. 71: 29 327-337. 30 31 Lupwayi NZ, Benke MB, Hao XY, O'Donovan JT and Clayton GW, 2014. Relating crop 32 productivity to soil microbial properties in acid soil treated with cattle manure. Agron. J. 106: 33 612–621. 34 35 Ma JF, 2000. Role of organic acids in detoxification of aluminum in higher plants. 36 Plant Cell Physiology. 41:383-390. 37 Ma JF, 2007. Sindrome of aluminum toxicity and diversity of aluminum resistance in higher 38 plant. Int. Rev. cytol. 264:225-252. Doi:10.1016/S0074-7696(07)64005-4 39 40 Ma JF, Chen ZC and Shen RF, 2014. Molecular mechanisms of Al tolerance in gramineous plants.Plant Soil. 381:1-12. 41 42 43 Nursyamsi D, 2000. Aluminum tolerance of tropical crops. MS. thesis. Hokkaido University.

44 Hokkaido.

Comment [MS6]: what is plus minus

1 2 3 4 5	Prasetiyono J, 2003. Identifikasimarkamikrosatelit yang terpautdengansifattoleransiterhadapkeracunanalumuniumpadapadipersilanganDupa x ITA 131 (Identification of microsatellite markers that are linked to the tolerance properties of aluminum toxicity in crossing rice DUPA x ITA 131). MS. thesis. Bogor University Bogor.	Comment [MS7]: what is Bogor University???
6 7 8 9	Qian L, Huang P, Hu Q, Qian Y, Xu S and Wang R, 2018. Morpho-Physiological Responses Of An Aluminum-Stressed Rice Variety 'Liangyoupei 9'. Pak. J. Bot. 50(3): 893-899. Samac DA and Tasfaye M, 2003. Plant improvement for tolerance to aluminum in acid soils.	
10	Plant Cell Tissue and Organ Culture. 75:189-207.	
11 12 13 14	Silva S, Pinto-Carnides, Martins-Lopes P, Mato M, Guedes-Pinto H and Santos C,2010. Differential aluminum changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Evir&Exp Bot. 68:91-98.	
15 16 17	Silva S, Pinto G, Dias MC, Correia CM, Moutinho-pereira J, Pinto-carnide O and Santos C, 2012. Aluminiumlong-term stress differently affects photosynthesis in rye genotypes. Plant Physiol. Biochem.54:105±112. https://doi.org/10.1016/j.plaphy.2012.02.004	Comment [MS8]: what is plus and min
18 19 20	Stanfield WD, 1983. Theory and Problems of Genetics. 2nd edition. Schain.s Outline Series. Mc.Graw Hill Book Co. New Delhi.	
21 22	Singh RK and Chaudhary BD, 1979. Biometrical Methods in Quantitative Genetics Analysis.Kalyani Publ. New Delhi. 304 hlm.	Comment [MS9]: what is hlm ???
23 24 25 26	Wang HH, Hou JJ, Li Y, Zhang YY, Huang JJ and Liang WH, 2017. Nitric oxide-mediated cytosolic glucose-6-phosphate dehydrogenase isinvolved in aluminum toxicity of soybean under high aluminum concentration.Plant Soil.416:39–52. doi: 10.1007/s11104-017-3197-x	
27 28 29 30	Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF and Shen RF, 2015. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant Cell Environ. 38:1382–1390.doi: 10.1111/pce.12490	
31 32 33	Wan WJ, Tan JD, Wang Y, Qin Y, He HM., Wu HQ, Zuo WL and He DL, 2019. Responses of the rhizosphere bacterial community in acidic crop soil to pH: changes in diversity, composition, interaction, and function. Sci. Total Environ. 697:134418.	Comment [MS10]: fix this
34 35 36	Watanabe T and Okada K, 2005. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH.Annals of Botany. 95:379–385.	
37 38 39	Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ and He C, 2000. QTL and epistasis for aluminum tolerances in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet. 100:1295-1303. <u>https://doi.org/10.1007/s001220051438</u>	
40 41 42 43	Yoshida S, Forno DS, Cock JH and Gomez KA. 1976. Laboratory Manual for Physiological Studies of Rice. IRRI 3 rd ed.	

1	Yamamoto Y, 2019. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition			
2	of cell elongation, Soil Science and Plant Nutrition 65(1):41-55, DOI:			
3	10.1080/00380768.2018.1553484			
4				
5	Zhang P, Ding Z, Zhong Zand Tong H, 2019. Transcriptomic Analysis for Indica and Japonica			
6	RiceVarieties under Aluminum Toxicity.Int. J. Mol. Sci. 20:997.doi:10.3390/ijms20040997		Comment [MS11]: fix this	
7				
8	Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ, Zhong C, Bai ZG, Sajid H, Cao XC and			
9	Jin QY, 2018. Hydrogen Sulfide Alleviates AluminumToxicity via Decreasing Apoplastand			
10	Symplast Al Contents in Rice.Front. Plant Sci. 9:294.doi:10.3389/fpls.2018.00294		Comment [MS12]: fix this	
11				
12	Zhao XQ, Chen RF and Shen RF, 2014. Coadaptation of plants to multiple stresses in acidic			
13	soils. Soil Sci. 179:503–513. doi:10.1097/SS.0000000000000086			
14				
15	Zhao XQ and Shen RF, 2018. Aluminum-Nitrogen Interactions in the Soil-Plant			
16	System. Frontiers in plant science, 9:807 https://doi.org/10.3389/fpls.2018.00807	_	Comment [MS13]: fix this	

Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice

Herawati, R.^{1*}, Ganefianti, D.W.¹, Pujiwati, H.¹, Purwoko, B.S.², Dewi, I.S.³

¹Crop Production Department, Faculty of Agriculture, University of Bengkulu, Indonesia; ²Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural

University, Indonesia; ³Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Indonesia.

*Corresponding Author email: reny.herawati@unib.ac.id

ABSTRACT

Aluminum has a can possibly have direct direct or indirect adverse effect on plant growth-The, however, this effect of Al stress is not the same for all plants, even in the same species. The roots of plants are most sensitive to Al toxicity. The toxicity accompanied to initial symptoms of Al toxicity in plants are such as the inhibition of cell extension and the retarded development of root systems.-. This study aimed aims to evaluate doubled haploid (DH1) upland rice lines derived from anther culture to aluminum stress-culture, and studying-also examine the genetic diversity and population-the distribution of doubled haploid lines due to aluminum stress. Al tolerant testing_test was carried out in a greenhouse using factorial randomized_complete block design-Randomized Complete Block Design (RCBD) with three replicates. Yoshida nutrient solution containing Al of 0 and 45 ppm was the first factor. The, while the second factor was the lines obtained from previous experiments (DH1), the four parents (SGJT36, SGJT28, Fatmawati, and Way Rarem), Dupa, and ITA131, respectively as Al tolerant and the ITA131 susceptible checks. The results showed that the shoot and root length, shoot length, and shoot with their dry weight values had high heritability values coefficient of diversity, heritability, and significantly correlated well-with the observed characterseach other. The tolerance level of Al tolerant doubled haploid-in DH1- lines of upland rice lines derived from anther produced by another culture varied widelysignificantly. Based on relative root length the Relative Root Length (RRL), out of 58 lines tested, 19 genotypes were highly tolerant, 29 lines tolerantwere moderate, and ten moderate tolerantwhile 10 were low. The DH1 rice derived from P3 showed highly toleranthigh, tolerantmoderate, and moderate tolerantlow tolerance, while those from P6 showed highly tolerant high and tolerant. moderate tolerance only.

Keywords: Aluminum tolerance, Doubled haploid, Upland rice

INTRODUCTION

The transition of land functions into residential areas, the construction of social facilities and infrastructure has led to a reduction in the field of land for agricultureagricultural land. It also resulted in the expansion shifting of agricultural land directed to areas of a marginal land (dry land)) area, especially on ultisol soils that reacted sourly. It was often found sourly to plant cultivation as a result of some symptoms of such as lack of Ca, Mg, P, K, and N as well as the presence of Al toxicity. Al content The high content of Al in acid soils acidic soil has been shown to inhibit plant growth (Silva et al., 2010; Brunner and Sperisen, 2013). The utilization of acidic land is faced with various obstacles, including such as low pH, pH which will reduce reduces the availability of nutrients for plant growth. On the other hand, Al toxicity is increasing. In-increases in very acid soils acidic soil (pH <4.5), with increasing Al solubility can increase Al saturation. Aluminum solubility, which has detrimental effects on plant, not plants. Not only is the growth of rice roots inhibited, but rice root systems can also be damaged by high concentrations of Al in the soil, which can both-lead to significant reductions in rice yields (Ismail et al., 2007; Liu et al., 2012). The impact of Al stress is not the same on all plants, even in the same species. The root is the part of the plant, which is most sensitive to Al toxicity.

The initial symptoms of Al toxicity in plants are inhibition of cell extension and the retarded development of root systems. The Its availability of Al-in soil land solution depends on the level of soil acidity. In very acidic soil reaction conditions (pH <4.5), Al becomes very soluble, especially in the form of Al^{3++} ion, which is toxicity highly toxic to plants. Aluminum It also interferes with the uptake, transport, and the utilization of nutrients, and also inhibits enzyme activity and hormonal balance (Lupwayi et al., 2014; Wan et al., 2019; Yamamoto, 2019). The presence of high content of Al solubility solution in the soil causes stunded root growth and ultimately decreases the ability of roots to absorb mineral and water nutrients (Silva et al., 2012; Ma et al., 2014; Kochian et al., 2015). Inhibition The inhibition of root growth by Al stress occurs occurs, due to cell division and elongation in the root meristem.

Al-<u>The</u> accumulation <u>of Al</u> in root tissue <u>will determine_determines</u> the <u>level</u>-tolerance <u>rate</u> of plant <u>genotypes</u> and <u>correlated genotypes</u>, which <u>correlate</u> with the level of root damage. In <u>genotypes tolerantIn</u> tolerant genotype, the Al accumulation in the <u>aggregation</u> root tissue was <u>generally</u>-lower than the sensitive genotype (Ma 2000; Zang et al., 2019). The small number of negative charges on the cell wall <u>in genotype_in</u> tolerant <u>caused genotype reduces the</u> <u>interaction of Al with</u> the <u>lower interaction.</u> <u>root layer</u> (Watanabe and Okada 2005; Kochian et al. 2015). This phenomenon has also been reported <u>by some_in</u> previous <u>researchers_studies</u> (Nursyamsi 2000; Awasthi et al., 2017; Qian et al., 2018) that <u>tolerant</u>-rice <u>had-tolerance has</u> a mechanism <u>by of</u> reducing the interaction of Al on the root cell walls.

Until now<u>Currently</u>, not many rice varieties have <u>not</u> tolerated <u>acid-acidic</u> soils, and some lines are still in the testing stage. <u>being tested</u>. High genetic diversity is one of the main factors <u>used</u> in improving plant traits, both <u>conventionally by conventional</u> and <u>biotechnology methods</u>. <u>biotechnological method</u>. Previous <u>study of</u> genetic diversity <u>studied</u> on DH1 had produced 58 double haploid upland rice lines that <u>are were</u> ready to be further evaluated (Herawati et al. 2009). Therefore, <u>the proper</u> selection <u>of available genotypes</u> needs to be done to obtain genotypes that <u>are tolerant to-tolerate</u> aluminum stress. <u>Identification of Al stress because</u> selection, since roots are the main target of damage by Al. In <u>upland</u> rice, a quick method for evaluating genotypes that tolerate Al stress can be done by observing the root length in the vegetative phase (Bakhtiar et al., 2007; Belachew et al., 2017; Awasthi et al., 2017; Qian et al., 2018). This study <u>aimed aims</u> to <u>evaluate the examine</u> DH1 of upland rice from derived anther from another culture, and also study genetic diversity, and as well as the population distribution due to aluminum stress.

MATERIALS AND METHODS

The experiment was carried out in the greenhouse of the Indonesian Center for Research and Development on Biotechnology and Agricultural Genetic Resources, Cimanggu, Bogor. The materials used were 58 DH1 rice lines, <u>the</u> four elders (SGJT36, SGJT28, Fatmawati, and Way Rarem), <u>and two varieties checkedDupa</u>, <u>namely Dupa</u> and ITA131 <u>respectively as tolerant and sensitive Al-susceptible check</u> (Prasetyono, 2003; Bakhtiar et al., 2007). <u>The nutrient solution</u> used was Yoshida nutrient solution (Yoshida et al., 1976).

Experiments using factorial randomized complete block design Randomized Complete Block Design (RCBD) were repeated three times. Experiments using, with the Yoshida nutrient solution (Yoshida et al. 1976) were given a). A solution of Al as much as aluminum at the concentrations of 0 ppm and 45 ppm were given as the first factor, while the second factor was 64 rice lines/line varieties.

The <u>rice</u> seeds were roasted for 3 x 24 hours at 45 ° C, C and then the seeds were sown in a nursery on husk media. Seed germination They were allowed to germinate in the dark for five days. Rice seeds After which those that were healthy, uniform, healthy and have uniform with a height of \pm 5 cm were selected for planting. The nutrient solution-used was Yoshida method solution with the final composition as follows: 40 ppm N, ten-10 ppm P, 40 ppm K, 40 ppm Ca, 40 ppm Mg, 0.5 ppm Mn, 0.05 ppm Mo, 0.2 ppm B, 0.01 ppm Zn, 0.01 ppm Cu-Cu, and two-2 ppm Fe (Yoshida et al. 1976). In the Al treatment, treatment to reduce the formation of Al polymer, the pH of the nutrient solution was adjusted to 4.5 by using 0.1 N NaHCO3 to pH 4.5 before the addition of AlNaHCO3. The addition of Al by adding 0 and After this, 2 ml of Al stock solution that had been made for 1000 ml from 1000ml of Al (source AlCl3.5H2O)-5H2O was added to get the a treatment concentration of 45 ppm Alppm. The pH of the nutrient solution was adjusted to pH 4.0 ± 0.1 with 0.1 N NaHCO3 or 0.1 N HCl.

Five-day-old healthy sprouts on from a uniform root length were transferred to the media. Sprout stems were then wrapped in soft foam and then put into styrofoam holes that had been prepared and floated-placed on a nutrient solution in a potstyrofoam holes. Each pot-pothole was planted with five sprouts and maintained for 14 days in a greenhouse. A growth period of 14 days was used because due to the composition of the Yoshida nutrient solution was designed for 14 days (Yoshida et al. 1976). During this periodphase, the water addition of water and pH adjustment was were carried out with 0.1 N NaHCO3 or 0.1 N HCl every two days. Observations were made on plants aged 14 days after planting planting, by measuring root length, plant height, root dry weight, and shoot dry weight. The formula estimated shoot root used to estimate the Shoot Root weight ratio (SRR)) was as follows:

$$SRR = \frac{root \, dry \, weight}{shoot \, dry \, weight} SRR = \frac{root \, dry \, weight}{shoot \, dry \, weight}$$

The formula <u>measures</u>-<u>used to measure the</u> variable <u>relative root length</u> <u>Relative Root Length</u> (RRL)) was as follows:

$$RRL = \frac{root \ length \ under \ Al \ stress}{root \ length \ under \ Al \ stress} RRL = \frac{root \ length \ under \ Al \ stress}{root \ length \ without \ Al}$$

Data analysis was performed using the Least Significant Difference Test (LSD). Tolerance of rice lines to Al stress <u>was-were</u> grouped into a susceptible = RRL <0.5, <u>rather tolerant-low</u> = 0.5 <RRL <0.70, <u>tolerant-moderate</u> = 0.70 <RRL <0.85, and <u>highly tolerant-high tolerance</u> = RRL> 0.85. Analysis of variance and <u>the</u> correlation between variables <u>were performed</u> using Pearson analysis <u>of-and</u> SAS software version 9.1. Genetic parameters were calculated based on the <u>method used by</u>-Singh and Chaudhary (1979) <u>method</u> as follows:

Source of variance	df	Means Square	expectation value
GenotipeGenotype	(g-1)	M2	$\frac{\sigma^2}{\sigma^2}\sigma^2 + 3\frac{\sigma^2}{\sigma^2}$
			σ_{g}^{2}
Error	(r-1)(g-1)	M1	_2 _2
LIIOI	(1 1)(g 1)	1411	$\sigma_e \sigma_e$

 $\sigma_e^2 \sigma_e^2$ = environment variance; $\sigma_g^2 \sigma_g^2$ = genetic variance

$$\sigma_g^2 = \frac{M2-M1}{r}\sigma_g^2 = \frac{M2-M1}{r} \qquad \sigma_e^2 = M1\sigma_e^2 = M1 \qquad \sigma_p^2 = \sigma_g^2 + \sigma_e^2\sigma_p^2 = \sigma_g^2 + \sigma_e^2$$

The standard deviation of formula for genetic variance using the formula variance:

$$\sigma_{\sigma_g^2} = \sqrt{\left(\frac{2}{r}\right) \left[\left(\frac{M2_g^2}{df_g} + 2\right) + \left(\frac{M1_e^2}{df_e} + 2\right)\right]} \quad \sigma_{\sigma_g^2} = \sqrt{\left(\frac{2}{r}\right) \left[\left(\frac{M2_g^2}{df_g} + 2\right) + \left(\frac{M1_e^2}{df_e} + 2\right)\right]}$$

M2 = Means squared genotype

M1 = Means squared error

r = replication

dfg = degree of freedom genotype

dfe = degree of freedom error

Genetic diversity could be estimated from <u>the</u> genetic variance ($\sigma 2g$) and <u>the</u> standard deviation of genetic variance ($\sigma \sigma 2g$). A character <u>has had</u> a broad genetic diversity <u>if $\sigma 2g > when</u>$ <u> $\sigma 2g > 2\sigma\sigma^2_g$ </u>. The <u>estimates of</u> Coefficient Genotype Diversity (CGD) <u>was estimated</u> using the <u>formula formula as follows</u>:</u>

$$CGD = \frac{\sqrt{\sigma_g^2}}{\bar{x}} \times 100\% CGD = \frac{\sqrt{\sigma_g^2}}{\bar{x}} \times 100\% \qquad \qquad \bar{x} = \text{average population observed} \bar{x} =$$

average population observed

if <u>When</u> $0 \ll CGD \leq 10.94$ (narrow); $0 \ll CGD \leq 21.88$ (rather narrownarrower); $0 \ll CGD \leq 32.83$ (rather broadbroader); $0 \ll CGD \leq CGD \leq 43.77$ (broad); $43.77 \ll CDG$ (very broadbroadest).

The formula estimated of coefficient phenotype diversity Coefficient Phenotype Diversity (CPD) was estimated using the formula as follows:

Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 6 pt Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 7 pt Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 6 pt Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 6 pt Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 7 pt

$$CPD = \frac{\sqrt{\sigma_p^2}}{\bar{x}} x 100\% CPD = \frac{\sqrt{\sigma_p^2}}{\bar{x}} x 100\%$$

if-<u>When</u> $0 < \text{CPD} \leq 24.94 \text{ (narrow)}; 0 < \text{CPD} \leq 49.71 \text{ (rather narrownarrower)}; 0 < \text{CPD} \leq 74.71 \text{ (rather broadbroader)}; 0 < \text{CPD} \leq 99.65 \text{ (broad)}; 99.65 < \text{CPD} \text{ (very broadbroadest)}.$

Heritability in a broad sense (h^2_{bs}) was calculated according to the formula:

$$h_{bs}^2 = \frac{\sigma_g^2}{\sigma_p^2} h_{bs}^2 = \frac{\sigma_g^2}{\sigma_p^2}$$

<u>Heritability</u> The heritability values (h_{bs}^2) are were grouped according to Stanfield (1983) as follows:

 $0.50 < h^2_{bs} \ll 1.00 = \frac{\text{heighthigh}}{1.00}; 0.20 < h^2_{bs} \ll 0.50 = \text{moderate}; h^2_{bs} \ll 0.20 = \text{low}.$

Genotypic correlations can be were calculated using the formula:

$$r_{g(xiji)} = \frac{cov.g(xixj)}{\sqrt{\left(\sigma_{g(xi)}^2,\sigma_{g(xj)}^2\right)}} r_{g(xiji)} = \frac{cov.g(xixj)}{\sqrt{\left(\sigma_{g(xi)}^2,\sigma_{g(xj)}^2\right)}}$$

cov.g(xixj) = genotypic variation between properties i and j
 $\sigma_{g(xi)}^2 \sigma_{g(xj)}^2 =$ genetic variability i
 $\sigma_{g(xj)}^2 \sigma_{g(xj)}^2 =$ genetic variability j

RESULTS AND DISCUSSION

Analysis of of genetic diversity

Analysis of variance of DH1 lines <u>in-of rice with</u> Al stress <u>on-in</u> nutrient culture showed significant differences in all observed variables (Table 1). The response of each variable was different from Al stress. Al-stress reduced root length by 21.95 percent and shoots dry weight by 22.14 percent, while <u>it</u> decreased shoot length and root dry weight by only 6 percent (Figure 1).

Table	1. Anal	ysis of	vari	ance	of DH1	lines	of	new	type	upland rice	

under Al stress in nutrient solution

Variable	Sum Sum	Mean Square	F value
	Square		
Root length	1159.4	20.3	4.80**
Shoot length	0.35	0.006	2.92**
Root dry weight	0.089	0.0016	1.10*
Shoot dry weight	0.11	0.002	4.46**
Root shoot weight Ratio (RSR)	0.35	0.0062	2.92**

*Significant different at level 0.05; ** Significant different at level 0.01

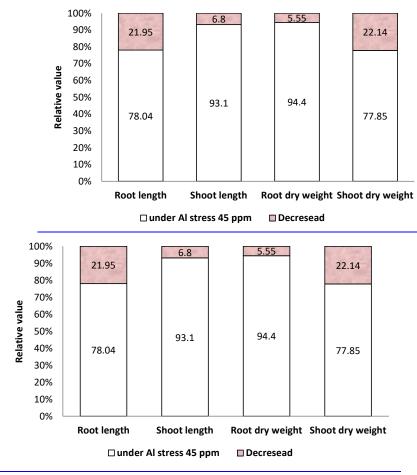


Figure 1. Effect of Al stress on variables <u>of the length and dry weight</u> of root, shoot length, the root dry weight, and shoot dry weight of DH1 lines.

Decreasing The decrease in root length is was caused by obstruction of the elongation obstruction of the primary and lateral rootsroots elongation. Field The field and laboratory experiments showed that there were the mixed responses to Al toxicity in rice (Watanabe and Okada 2005; Bakhtiar et al., 2007; Qian et al., 2018). Reduction in shoot dry weight was due to the unavailable nutrients available for suboptimal growth because growth, as a result of the impaired nutrient absorption and transport in roots (Kochian et al. 2015; Qian et al., 2018). The decreased decrease in root dry weight was only 5.55 percent, not as much as in compared to the dry shoot weight (22.14 percent) (Figure 1) because although.). Since the root length decreased, the roots were decreased and became shorter, and therefore the adventitious roots grew the more. It These showed that under stress-Al conditions, more carbohydrates were directed to root growth. Bakhtiar et al. (2007) and Belachew et al. (2017)-). It was also found observed that shoot dry weight was more sensitive to Al toxicity than root dry weight, -Inhibition

<u>. The inhibition of shoot growth is-was a secondary effect due to nutrient deficiency, especially</u> Mg, Ca, and P, and the inhibition restriction of water absorption causes which caused dwarf rice growth (Ma et al., 2014). Wang et al. (2015) demonstrated that the application of NH4 decreased the Al content in rice roots by reducing the pectin content in rice-their roots. Freitas et al. (2019) reveal showed that aluminum chloride was more useful important in producing aluminum Al toxicity in the upland rice plants plants, grown in the nutrient solution.

Table 2. Genetic diversity of root length, and shoot length, root dry weight, and shoot dry weight, and root shoot weight ratio under <u>Al</u> stress conditions <u>Alconditions</u>

Variable	Mean	GV*	PV	2xSD	GVC	PVC	h ² bs
				GV			
Root length	15.75	5.37	9.61	5.43	14.71	19.68	0.56
Shoot length	42.14	30.74	38.41	21.41	13.61	14.70	0.80
Root dry weight	0.037	0.00007	0.0015	3.25	22.12	100.0	0.05
Shoot dry weight	0.114	0.00053	0.0009	3.25	20.19	26.75	0.57
Root shoot weight Ratio	0.29	0.0014	0.0035	3.25	12.92	20.40	0.40
(RSR)							

*GV =Genotipe Variability,-__PV=PhenotipeVariability, PVC=Phenotipe Variability Coefficient, GVC= Genotipe Variability Coefficient, SDRG=standar deviate genetic variability, h²_{bs}= heritability in a broad sense

The <u>estimates of estimated</u> genetic parameters <u>are were</u> shown in Table 11. Root length <u>characters</u> had a narrow diversity of genotypes <u>but had with</u> a broad coefficient of <u>the diversity</u> of genotypes, respectively, 5.37 and 14.71 percent. Shoot length had a broad <u>genotype genetic</u> diversity that was 30.74 percent but had a narrow coefficient of <u>genotype diversity by</u> 13.61 percent. Root dry weights both had a broad of the coefficient of genotype diversity and coefficient of phenotype diversity <u>percent</u> (Table 2). The estimated heritability values for dry <u>weight of root</u> and shoot <u>length dry weight</u> were 0.05 and 0.8, respectively (Table 2). <u>Heritability value of root length</u>, shoot length, and shoot dry weight <u>The estimate for their lengths</u> were <u>classified as considerably</u> high. Characters that <u>have had</u> high heritability values <u>indicate indicated</u> that <u>these</u> genetic factors <u>are were</u> more dominant than <u>the environment so that the selection of these characters can be others</u>, therefore, their selections were made in the first generations generation (Akinwale et al., 2011; Herawati et al., 2019).

Correlation and Relative Root Length (RRL)

Correlation analysis of all <u>Positive correlations were</u> observed eharacters showed a positive for all characters, except for shoot length and RSR, while shoot dry weight and RSR were negatively which showed negative (Table 3). Characters Features that have significantly different had significant differences and positive correlations can be relationships were used as selection criteria. Root length, and shoot length, and the shoot dry weight can be were selected as one of the criteria for requirements of Al tolerance for DH1 line. These characters had high genetic diversity and diversity, heritability values values, and have were positively correlated with other characters features.

Characters	Shoot length	Root dry weight	Shoot dry weight	Root shoot weight ratio (RSR)
Root length	0.42**	0.28**	0.53**	0.12*
Shoot length		0.25*	0.65**	-0.25*
Root dry weight			0.43**	0.11 ^{ns}
Shoot dry weight				-0.14*

Table 3. Correlation of root <u>length, and</u> shoot length, <u>root dry weight, shoot their</u> dry <u>weightweights</u>, and <u>root shoot the Root Shoot</u> weight <u>ratio Ratio</u> (RSR) under Al stress

*= significant at level_level_005; **= very significant at level_001, ns=no significant

Among these characters, root length was more easily and quickly-observed, so-therefore, the researchers used relative root length (RRL) to distinguish tolerant and Al-susceptible genotypes. Previous research indicated that the main target of Al toxicity toxicity was the root tissue of the plant. Root damage occurs in sensitive genotypes due to Al toxicity, was characterized by a decrease in decreased protein content in the cytoplasm and increased membrane damage to cell walls, which results in cell membrane-resulted to leakage (Zhu et al., 2018). Qian et al. (2018) reported that the fresh and dry weights of the rice seedlings were significantly positively correlated in significant correlation with chlorophyll content. This result indicates indicated that a low Al concentration increases increased the seedlings' fresh and dry weights of rice seedlings by increasing the leaf chlorophyll content and promoting photosynthesis.

Figure 2. The experiment <u>of</u> Al stress on Yoshida nutrient solution (a); <u>showed</u> the <u>appearance</u> <u>of</u> root lengths of <u>susceptible line</u>, tolerant lines, ITA 131 (susceptible check), <u>and</u> DUPA (tolerant check) under 45 <u>ppm Al (b)ppm</u>.

Root shortening is one of the consequences of Al inhibition of root length. The morphology of secondary roots inhibition, therefore, its structure appeared to be shorter, fat, and reduced branching, while its adventitious roots grew more on the root neck-more (Figure 2a). The penetration of roots have hardy penetrating the into hard soil layer so that the absorption of layers also inhibit nutrients and water will be inhibitedabsorption. The level of Al-toxicity level depends on the activity concentration of Al⁺³ ions in the soil mediasolution. The root activity of the seedlings at the concentrations also significantly decreased. Al decreases decreased the fresh weight by inhibiting the absorption of water and mineral substances (Qian et al., 2018).

RRL-The Relative Root Length (RRL) values in the for DH1 lines tested-varied between 0.53-1.03 (Table 4). The RRL value of the Dupa (tolerant check) was 0.74, while ITA131 (susceptible check) was 0.53 (Figure 2b). The 5% LSD test results showed no significant difference between the PAR values for the rather more tolerant genotypes and the PAR values for susceptible checks (Table 4). It is consistent. This test corresponded with the previous experiments carried out by Prasetiyono (2003), Bakhtiar et al. (2007) that Dupa was tolerant had tolerance at RRL value of 0.7, however, for ITA131 (ITA131, it was 0.53), which was an-found to increase from the previous experiment test of 0.41 (Bakhtiar et al., 2007). For this reason, it is was necessary to review using ITA varieties as susceptible checks (Figure 2b). The 5% LSD test on DH1-lines resulted in 8 lines having significantly different and higher RRL values than the Dupa check varieties (PAR = 0.74), namely lines such as line P6-274, P6-314, P3-196, P6-273, P6-311, P6-250, P6-267, and P6-278 (Table 4).

Lines	Al ₀	Al_{45}^{1}	RRL	Criteria ²	Lines	Al_0	Al ₄₅	RRL	Criteria
	(C1	m)				(cı	m)		
P6-274	16.2	16.7	1.03*	HT	P6-319	20.4	16.0	0.78	Т
P6-314	20.3	20.3	1.01*	HT	P6-275	20.3	15.6	0.78	Т
P3-196	17.1	16.8	0.98*	HT	P6-297	25.1	19.3	0.77	Т
P6-273	19.9	19.5	0.97*	HT	P3-210	20.6	15.8	0.76	Т
P6-311	15.3	14.9	0.96*	HT	P3-161	20.2	15.8	0.76	Т
P3-250	16.8	15.9	0.95*	HT	P3-135	23.1	17.2	0.76	Т
P6-267	10.6	10.1	0.95*	HT	P3-175	21.8	16.6	0.76	Т
P6-278	19.4	18.3	0.94*	HT	P3-221	23.8	18.1	0.76	Т
P6-286	23.4	21.6	0.93	HT	P3-190	20.2	15.3	0.75	Т
P6-266	12.5	11.7	0.93	HT	P6-320	19.9	15.2	0.75	Т
P3-191	21.5	19.6	0.90	HT	P3-162	20.9	15.4	0.74	Т
P6-264	14.0	12.6	0.90	HT	P1-108	20.2	15.0	0.74	Т
P3-238	17.9	15.1	0.88	HT	P6-317	16.3	12.2	0.73	Т
P3-204	17.2	15.1	0.88	HT	P3-131	21.3	15.2	0.72	Т
P6-291	14.9	13.1	0.87	HT	P3-248	18.7	13.5	0.72	Т
P6-265	12.4	10.9	0.87	HT	P6-103	20.6	14.7	0.70	RT
P6-261	17.1	14.8	0.87	HT	P3-160	24.2	16.8	0.70	RT
P6-257	20.6	17.8	0.86	HT	P3-31	22.4	13.8	0.63	RT

Table 4. Root lengths in the treatments of 0 Al- and 45 ppm Al and the relative value of with the root length-Relative Root Length (RRL) value of DH1-DH1-lines at 14 days after planting

Lines	Al_0	Al_{45}^{-1}	RRL	Criteria ²	Lines	Al_0	Al_{45}	RRL	Criteria
	(01	m)				(ci	m)		
P6-255	21.0	17.9	0.85	HT	P3-26	23.7	14.6	0.61	RT
P6-276	20.1	16.9	0.85	Т	P4-45	22.1	13.3	0.60	RT
P6-271	21.7	17.8	0.84	Т	P5-50	22.1	12.9	0.59	RT
P3-148	20.9	17.3	0.83	Т	P2-1	18.5	11.1	0.59	RT
P3-120	23.2	19.6	0.83	Т	P3-27	25.7	14.0	0.54*	RT
P6-272	20.5	16.6	0.83	Т	P2-2	18.5	10.1	0.54*	RT
P6-62	20.6	16.8	0.83	Т	P3-28	23.9	12.7	0.53*	RT
P6-105	16.6	13.7	0.83	Т	Dupa	24.7	18.2	0.74	Т
P6-295	21.8	17.8	0.83	Т	ITA131	21.1	11.3	0.53	RT
P3-159	24.5	19.9	0.81	Т	SGJT-28			0.89	HT
P3-134	19.3	15.6	0.80	Т	SGJT-36			0.86	HT
P3-150	21.9	17.6	0.80	Т	W.Rarem			0.52	RT
P6-302	20.3	15.5	0.79	Т	Fatmawati			0.76	Т
P3-158	24.1	19.2	0.79	Т	BNT 0.05			0.2	
P3-249	20.6	16.3	0.78	Т	KK (%)			15.69	2

*Significantly different from Dupa based on LSD 0.05 test; ${}^{1}Al_{0}= 0$ AlCl₃, Al₄₅= 45 ppm AlCl₃; ${}^{2}HT = Highly tolerant, T=tolerant, AT=Rather tolerant$

In tolerance genotypes, Al is-was prevented from passing through the plasma membrane and entering the symplast and sites that are-were sensitive to Al-in the cytoplasm of the-root tip. The ability of the root cell wall to absorb low Al and the permeability of the cell-its membrane is thought to be were involved in the mechanism of external tolerance. Zhu et al. (2018) explained that Hydrogen sulfide (H2S) plays-played an essential role in-on_Al stress resistance in plants. HS reduces-H2S lowered Al toxicity by reducing the Al-its content in the apoplast and symplast rice root. Wang et al. (2017) revealed showed that the activity of cytosolic glucose-6-phosphate dehydrogenase is-was also involved in resistance to Al through mediating with the intervention of_ROS levels in soybean. Result_The result by Qian et al. (2018) indicated that H2O2 accumulation is-was also a key factor contributing to the decrease in-decreased root activity.

In Al tolerance, plants will be able to raise the plant pH around was raised at the root area tip (Kochian et al., 2004; Ma, 2007). Increasing pH around the roots occurs-This was due to the influx of H⁺ at the root tip. It around this area, which resulted in the deposition of Al and a decreasing Al³⁺ ion activity so that it becomes a less toxic form to plants (Samac and Tasfaye, 2003; Zhao et al., 2014). Plants avoid from Al toxicity trough absorb-High NO³⁻ content in large amounts. -plants tend to reduce Al toxicity. It also caused the release of hydroxyl ions (OH) or bicarbonate ions (HCO³⁻) into the rhizosphere, increased pH, and suppressed the solubility of Al Al (Justino et al., 2006; Zhao et al., 2018).

Table 5. The results of the DH1 lines selection-DH1-line selections for a new type of upland rice under Al stress

Criteria	Genotype	Number of lines
Highly	P6: 274, 314, 273, 311, 267, 278, 286, 266, 264, 291,	19

tolerant	265, 261, 257, 255, dan P3: 196, 191, 238, 204, 250	
Tolerant	P6: 276, 271, 272, 62, 105, 295, 302, 319, 275, 297, 320, 108, 317, dan P3: 148, 120, 159, 134, 150, 158, 210, 210, 210, 210, 210, 210, 210, 210	20
Rather	249, 210, 161, 135, 175, 221, 190, 162, 131, 248 P2: 1, 2; P3:160, 31, 26, 27, 28; P4-45, P5-50, P6-103	29
tolerant		10

The RRL values of the genotype-P3-27, P2-2, P3-28 were lower than the tolerant checks, and classified as moderately the moderate tolerant genotypes (low) by 0.53-0.54), which was almost the same as the RRL values of the ITA as susceptible checks by 0.53-(0.53) (Table 4). The grouping was based on the RRL values in 58 DH1-lines_DH1-lines, tested on nutrient cultures at 0 and 45 ppm Al, that is and produced susceptible = PAR ≤ 0.5 , rather tolerant-with low tolerance = 0.5 \leq PAR ≤ 0.70 , tolerant-moderate = 0.70 \leq PAR ≤ 0.85 , and highly tolerant-high = PARPAR > 0.85, so 19 genotypes were highly toleranttherefore, 19 high, 29 tolerant genotypesmoderate, and 10 genotypes rather_low_tolerant genotype were produced (Table 5).

Distribution of Population from Cross of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati)

Aluminum tolerance <u>was</u> based on the <u>relative root length_Relative Root Length</u> (RRL) and <u>root_shoot_the Root Shoot</u> weight <u>ratio_Ratio</u> (RSR) in DH1 <u>populations from the populations. The crossing of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati) and with the two parents <u>are were</u> presented in Table 6. The <u>relative root lengths Relative Root Lengths</u> (RRL) in the P3 population <u>ranges_ranged</u> from 0.53 - 0.98, while the P6 population <u>ranges ranged</u> from 0.70 - 1.03. The Fatmawati elders had an RRL <u>value</u> of 0.77, while <u>the-that of SGJT-36 elders were was</u> 0.87.— There <u>was diversity were diversities</u> in all observed characters. The root shoot weight ratio (RSR), with the RSR of the P3 population <u>that</u> ranged from 0.20 to 0.32, while <u>the-that of P6 population ranged graded</u> from 0.22 to 0.39. The Fatmawati elders had an RSR <u>value values</u> of 0.30, while <u>the-those of SGJT-36 elders had an RRL value of were</u> 0.32 (Table 6).</u>

Table 6. <u>The Relative root length-Root Length (RRL)</u> and <u>root shoot the Root Shoot</u> weight <u>Ratio (RSR) ratio of DH1-DH1-</u>lines in populations of crossing P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati)

	$X \pm SD$	Range of D	H1 population	Mean value	e of parent **
Characters	DH1*	P3	P6***	Fatmawati	SGJT-36
Relative Root Length	0.8 ± 0.11	0.53 - 0.98	0.70 - 1.03	0.77	0.87
Root shoot weight ratio					
(RSR)	0.29 ± 0.04	0.20 - 0.32	0.22 - 0.39	0.30	0.32

 $*X \pm SD DH1$ is mean \pm standard deviate, **Fatmawati and SGJT-36 5 plants each, *** P3 were 26 lines, and P6 were 27 lines

RRL and RSR values observed in DH1 populations varied greatly, some of which were similar to their parents, intermediates, and exceed both of their parents; intermediates. The frequency distribution of P3 and P6 populations based on RRL values is were presented in Table 7. Based on aluminum tolerance criteria, the frequency distribution of the two elders did not

overlap. Fatmawati had <u>tolerant criteriamoderate</u>, while SGJT-36 had <u>highly toleranthigh</u> <u>tolerance</u>. The frequency distribution of DH1 populations of P3 derivatives <u>was highly</u> toleranthad extreme, tolerantmoderate, and <u>rather tolerantlow tolerance</u>, while the frequency <u>distribution those</u> of P6 populations was highly tolerant to tolerant had high and moderate tolerance only (SGJT-36 elders) (Table 7).

). Table 7. Distribution of DH1-<u>DH1</u>-lines in each population of crossing P3 (Fatmawati x SGJT 36) and P6 (SGJT-36 x Fatmawati) based on aluminum tolerance.

Criteria	Pare	ent*	DH1**	
Cintenia	Fatmawati	SGJT-36	P3	P6
Highly-High tolerant	0		5	14
TolerantModerate				
tolerant	\checkmark	0	16	12
Rather Low tolerant	0	0	5	1
Susceptible	0	0	0	0

*The Fatmawati elders and SGJT-36 each with five plants, ** P3 were 26 lines, and P6 were 27 lines, \sqrt{A} l tolerance criteria on elders

It was due to the presence of The frequent transgressive segregation in the combination anther of an anther, which a plant produced lines with different tolerance levels. Many-Few genes were observed to control Al tolerance acceptance levels in rice, therefore, so-not all genotypes will have possessed this gene. Zang et al. (2019) were-found that there were significant differences between the gene expression patterns of Indica Al-tolerant and Japonica Al-tolerant varieties. Therefore, the gene expression patterns of the Al tolerant varieties arrangement in the mixed subgroup, which was inclined to Japonicasubgroups, were similar to the Al tolerant varieties those in JaponicaJaponica species. Each gene-gene, or their combination will have-played a role in regulating the mechanism of Al-Al-tolerance in rice that will be-rice, and expressed in each phase of plant growth (Wu et al. 2000). Thus-Thus, the elders-aged species used in this study produced lines that were tolerant to aluminum stress. The next step will be an Therefore, further research was needed for the evaluation of the-leaf blast disease in the greenhouse.

CONCLUSION

The results of the evaluation of Al tolerance based on RRL in nutrient culture produced 19 genotypes-19, 29, and 10 genotypic tolerance that were highly toleranthigh, 29 genotypes tolerantmoderate, and ten genotypes rather tolerantlow, respectively. The tolerance level of Al in the DH1-DH1-lines of upland rice produced by anther culture varied greatlysignificantly. Root length, shoot length, The root and shoot length with the shoot dry weight had a high coefficient of diversity diversity, heritability, and heritability and significantly correlated with each other. The distribution of DH1 populations of P3 derivatives produced highly toleranthigh, tolerant to tolerant criteria, while the population those of P6 derivatives produced highly tolerant to tolerant criteria.

Acknowledgment

We would like to thank Yenni and Imam (staff at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development) for their assistance in the Laboratorium-laboratory and field works.

REFERENCES

Akinwale MG, Gregorio G, Nwilane F, Akinyele BO, Ogunbayo SA and Odiyi AC, 2011. Heritability and correlation coefficient analysis for yield and its components in rice (O. sativa L.). Afr. J. Plant Sci. 5:207212.

Awasthi JP, Saha B, Regon P, Sahoo S, Chowra U, Pradhan A, Roy A and Panda SK, 2017. Morphophysiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS ONE. 12(4): e0176357. https://doi.org/10.1371/ journal.pone.0176357

Bakhtiar, Purwoko BS, Trikoesoemaningtyas, Chozin MA, Dewi IS and Amir M, 2007. Penapisan galur padi gogo hasil kultur antera untuk ketenggangan aluminium dan ketahanan terhadap penyakit blas (Screening of Doubled Haploid Upland Rice Lines Generated from Anther Culture to Aluminum Tolerance). Bul. Agron. 35(1):8 – 14.

Belachew KY and Stoddard F, 2017. Screening of faba bean (*Vicia faba* L.) accessions to acidity and aluminium. Peer J. 5: e2963; DOI 10.7717/peerj.2963.

Brunner I and Sperisen C, 2013. Aluminum exclusion and aluminum tolerance in woody plants. Frontiers in Plant Science. 4:1-12.

Freitas LB, Fernandes DM, Maia SCM, Moniz A, Mazziero BG and Steiner F, 2019. Sources and doses of aluminum in experiments with rice in nutrient solution. R. Bras. Eng. Agríc. Ambiental. 23(7):511-517.

Herawati R, Purwoko BS and Dewi IS, 2009. Keragaman genetik dan karakter agronomi galur haploid ganda padi gogo dengan sifat-sifat tipe baru hasil kultur antera (Genetic diversity and agronomic traits of double haploid lines with the characteristics of new types upland rice derivated from anther culture). Jurnal Agronomi Indonesia. 37(2):87-93.

Herawati R, Masdar and Alnopri, 2019. Genetic analysis of grain yield of F4 populations for developing new type of upland rice. SABRAO Journal of Breeding and Genetics. 51(1):68-79.

Ismail AM, Heuer S, Thomson MJ and Wissuwa M, 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol. 65:547–570.

Justino GC, Cambraia J, Olivia MA and Oliveira Ja, 2006. Uptake and reduction of nitrate in two rice cultivars in the presence of aluminum. Pesqui. Agropec. Bras. 41:1285-1290. Doi:10.1590/S0100-204X2006000800011

Kochian LV, Hoekenga OA, Pineros MA, 2004. How do crop plants tolerate acid soil? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology 55:459–493.

Kochian LV, Piñeros MA, Liu JP and Magalhaes JV, 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol. 66: 571±598. https://doi.org/10.1146/annurevarplant-043014-114822

Liu J, Luo X, Shaff J, Liang C, Jia X, Li Z, Magalhaes J and Kochian LV, 2012. A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminum resistance and improved carbon-use efficiency for aluminum resistance. Plant J. 71: 327–337.

Lupwayi NZ, Benke MB, Hao XY, O'Donovan JT and Clayton GW, 2014. Relating crop productivity to soil microbial properties in acid soil treated with cattle manure. Agron. J. 106: 612–621.

Ma JF, 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiology. 41:383-390.

Ma JF, 2007. Sindrome of aluminum toxicity and diversity of aluminum resistance in higher plant. Int. Rev. cytol. 264:225-252. Doi:10.1016/S0074-7696(07)64005-4

Ma JF, Chen ZC and Shen RF, 2014. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil. 381:1–12.

Nursyamsi D, 2000. Aluminum tolerance of tropical crops. MS. thesis. Hokkaido University. Hokkaido.

Prasetiyono J, 2003. Identifikasi marka mikrosatelit yang terpaut dengan sifat toleransi terhadap keracunan alumunium pada padi persilangan Dupa x ITA 131 (Identification of microsatellite markers that are linked to the tolerance properties of aluminum toxicity in crossing rice DUPA x ITA 131). MS. thesis. Bogor University, Bogor.

Qian L, Huang P, Hu Q, Qian Y, Xu S and Wang R, 2018. Morpho-Physiological Responses Of An Aluminum-Stressed Rice Variety 'Liangyoupei 9'. Pak. J. Bot. 50(3): 893-899.

Samac DA and Tasfaye M, 2003. Plant improvement for tolerance to aluminum in acid soils. Plant Cell Tissue and Organ Culture. 75:189-207.

Silva S, Pinto-Carnides, Martins-Lopes P, Mato M, Guedes-Pinto H and Santos C, 2010. Differential aluminum changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Evir & Exp Bot. 68:91-98.

Silva S, Pinto G, Dias MC, Correia CM, Moutinho-pereira J, Pinto-carnide O and Santos C, 2012. Aluminium long-term stress differently affects photosynthesis in rye genotypes. Plant Physiol. Biochem. 54:105±112. https://doi.org/10.1016/j.plaphy.2012.02.004

Stanfield WD, 1983. Theory and Problems of Genetics. 2nd edition. Schain.s Outline Series. Mc.Graw Hill Book Co. New Delhi.

Singh RK and Chaudhary BD, 1979. Biometrical Methods in Quantitative Genetics Analysis. Kalyani Publ. New Delhi. 304 hlm.

Wang HH, Hou JJ, Li Y, Zhang YY, Huang JJ and Liang WH, 2017. Nitric oxide-mediated cytosolic glucose-6-phosphate dehydrogenase is involved in aluminum toxicity of soybean under high aluminum concentration. Plant Soil. 416:39–52. doi: 10.1007/s11104-017-3197-x

Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF and Shen RF, 2015. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant Cell Environ. 38:1382–1390. doi: 10.1111/pce.12490

Wan WJ, Tan JD, Wang Y, Qin Y, He HM., Wu HQ, Zuo WL and He DL, 2019. Responses of the rhizosphere bacterial community in acidic crop soil to pH: changes in diversity, composition, interaction, and function. Sci. Total Environ. 697:134418.

Watanabe T and Okada K, 2005. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Annals of Botany. 95:379–385.

Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ and He C, 2000. QTL and epistasis for aluminum tolerances in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet. 100:1295-1303. <u>https://doi.org/10.1007/s001220051438</u>

Yoshida S, Forno DS, Cock JH and Gomez KA. 1976. Laboratory Manual for Physiological Studies of Rice. IRRI 3rd ed.

Yamamoto Y, 2019. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation, Soil Science and Plant Nutrition 65(1):41-55, DOI: 10.1080/00380768.2018.1553484

Zhang P, Ding Z, Zhong Z and Tong H, 2019. Transcriptomic Analysis for Indica and Japonica Rice Varieties under Aluminum Toxicity. Int. J. Mol. Sci. 20:997. doi:10.3390/ijms20040997

Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ, Zhong C, Bai ZG, Sajid H, Cao XC and Jin QY, 2018. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice. Front. Plant Sci. 9:294. doi:10.3389/fpls.2018.00294

Zhao XQ, Chen RF and Shen RF, 2014. Coadaptation of plants to multiple stresses in acidic soils. Soil Sci. 179:503–513. doi:10.1097/SS.000000000000086

Zhao XQ and Shen RF, 2018. Aluminum-Nitrogen Interactions in the Soil-Plant System. Frontiers in plant science, 9:807. https://doi.org/10.3389/fpls.2018.00807

1					
2 3	Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice				
4	New Type of Optand Rice				
4 5 6	Herawati, R. ^{1*} , Ganefianti, D.W. ¹ , Pujiwati, H. ¹ , Purwoko, B.S. ² , Dewi, I.S. ³				
7	¹ Crop Production Department, Faculty of Agriculture, University of Bengkulu, Indonesia;				
8	² Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural				
9	University,Indonesia;				
10	³ Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and				
11	Development, Indonesia.				
12	*Commente and in a Austhemania il annual annuation aite and id				
13 14	*Corresponding Author email: <u>reny.herawati@unib.ac.id</u>				
14 15	ABSTRACT				
16	ADSIKACI				
17	Aluminum can possibly have direct or indirect adverse effects on plant growth; however, this				
18	effect is not the same for all plants, even in the same species. The roots of plants are most				
19	sensitive to Al toxicity accompanied to initial symptoms such as the inhibition of cell extension				
20	and retarded development of root systems. This study was aimed to evaluate doubled-haploid				
21	(DH1) upland rice derived from anther culture to Al stress and to study the genetic diversity and				
22	population distribution of DH lines due to Al stress. Al tolerant test was carried out in a				
23	greenhouse using factorial Randomized Complete Block Design (RCBD) with three replicates.				
24	Yoshida nutrient solution containing Al of 0 and 45 ppm was the first factor, while the second				
25	was the lines obtained from previous experiments (DH1), the four parents (SGJT36, SGJT28,				
26	Fatmawati, and Way Rarem), while Dupa, and ITA131, respectively as an Al tolerant and				
27	susceptible checks The results showed that root length, shoot length, and shoot dry weight had				
28	high heritability values and correlated well with the observed characters. Al tolerant doubled				
29	haploid upland rice lines derived from anther culture varied widely. Based on the Relative Root				
30	Length (RRL), out of 58 lines tested, 19 genotypes were highly tolerant, 29 lines were moderate,				
31	while 10 were low. The DH1 rice derived from P3 showed high, moderate, and low tolerance,				
32	while those from P6 showed high and moderate tolerance only.				
33					
34	Keywords: Aluminum (Al) tolerance, Doubled Haploid (DH), Upland rice lines.				
35					
36					
37	INTRODUCTION				
38					
39	The transition of land into residential areas, the construction of social facilities and				
40	infrastructure has led to a reduction in the field of agricultural land. It also resulted in the shifting				
41	of agricultural land to a marginal (dry land) area, especially on ultisol soils that reacted sourly to				
42	plant cultivation as a result of some symptoms such as lack of Ca, Mg, P, K, and N as well as the				
43	presence of Al toxicity. The high content of Al in acidic soil has shown to inhibit plant growth				
44	(Silva et al., 2010; Brunner and Sperisen, 2013). The utilization of acidic land is faced with				
45	various obstacles, such as low pH, which reduces the availability of nutrients for plant growth.				
46	On the other hand, Al toxicity increases in very acidic soil (pH <4.5), with increasing Al				

solubility, which has detrimental effects on plants. Not only is the growth of rice roots inhibited,
but also damaged by high concentrations of Al in the soil, which leads to significant reductions
in rice yields (Ismail et al., 2007; Liu et al., 2012). The impact of Al is not the same on all
plants, even in the same species.

The initial symptoms of Al toxicity in plants are inhibition of cell extension and the 5 6 retarded development of root systems. Its availability in land solution depends on the level of soil 7 acidity. In very acidic conditions (pH <4.5), Al becomes very soluble, especially in the form of 8 Al3+ ion, which is highly toxic to plants. It also interferes with the uptake, transport, and the 9 utilization of nutrients, and also inhibits enzyme activity and hormonal balance (Lupwayi et al., 2014; Wan et al., 2019; Yamamoto, 2019). The high content of Al solution in the soil causes 10 stunted root growth and decreases the ability of roots to absorb mineral and water nutrients 11 (Silva et al., 2012; Ma et al., 2014; Kochian et al., 2015). The inhibition of root growth by Al 12 occurs, due to cell division and elongation in the root meristem. 13

The accumulation of Al in root tissue determines the tolerance rate of plant genotypes, which correlate with the level of root damage. In tolerant genotype, the Al aggregation root was lower than the sensitive genotype (Ma 2000; Zang et al., 2019). The small number of negative charges on the cell wall in tolerant genotype reduces the interaction of Al with the root layer (Watanabe and Okada 2005; Kochian et al. 2015). This phenomenon has also been reported in previous studies (Nursyamsi 2000; Awasthi et al., 2017; Qian et al., 2018) that rice tolerance has a mechanism of reducing the interaction of Al on the root cell walls.

Currently, many rice varieties have not tolerated acidic soils, and some are still being 21 22 tested. High genetic diversity is one of the main factors used in improving plant traits, both by conventional and biotechnological methods. The previous study of genetic diversity on DH1 had 23 produced 58 double haploid upland rice lines that were ready to be further evaluated (Herawati et 24 al. 2009). Therefore, the proper selection needs to be done to obtain genotypes that tolerate 25 aluminum stress. The differences in root growth character are one indicator that can be used in 26 the tolerance selection, since roots are the main target of damage by Al. In upland rice, a quick 27 method for evaluating genotypes that tolerate Al stress can be done by observing the root length 28 29 in the vegetative phase (Bakhtiar et al., 2007; Belachew et al., 2017; Awasthi et al., 2017; Qian et al., 2018). This study aims to examine DH1 of upland rice derived from anther culture, and 30 also study genetic diversity, as well as the population distribution due to aluminum stress. 31

- 32
- 33 34

35

MATERIALS AND METHODS

The experiment was carried out in the greenhouse of the Indonesian Center for Research and Development on Biotechnology and Agricultural Genetic Resources, Cimanggu, Bogor. The materials used were 58 DH1 rice lines, the four elders (SGJT36, SGJT28, Fatmawati, and Way Rarem), Dupa, and ITA131 susceptible check (Prasetyono, 2003; Bakhtiar et al., 2007).

Experiments using factorial Randomized Complete Block Design (RCBD) were repeated
three times, with the Yoshida nutrient solution (Yoshida et al. 1976). A solution of aluminum at
the concentrations of 0 and 45 ppm were given as the first factor, while the second was 64 rice
line varieties.

The rice seeds were roasted for 3 x 24 hours at 45 °C and sown on husk media. They were allowed to germinate in the dark for five days. After which those that were healthy and uniform with a height of \pm 5 cm were selected for planting. The nutrient used was Yoshida

solution with the final composition as follows: 40 ppm N, ten ppm P, 40 ppm K, 40 ppm Ca, 40 1 2 ppm Mg, 0.5 ppm Mn, 0.05 ppm Mo, 0.2 ppm B, 0.01 ppm Zn, 0.01 ppm Cu, and two ppm Fe (Yoshida et al. 1976). In the Al treatment to reduce the formation of the polymer, the pH of the 3 4 nutrient solution was adjusted to 4.5 by using 0.1 N NaHCO3. After this, 2 ml of Al solution made from 1000 ml of AlCl3.5H2O was added to get a treatment concentration of 45 ppm. The 5 6 pH of the nutrient solution was adjusted to 4.0 ± 0.1 with 0.1 N NaHCO3 or 0.1 N HCl.

7 Five-day-old healthy sprouts from a uniform root were transferred to the media. Sprout 8 stems were then wrapped in soft foam and placed on a nutrient solution in styrofoam holes. Each 9 pothole was planted with five sprouts and maintained for 14 days in a greenhouse. A growth 10 period of 14 days was used due to the composition of the Yoshida nutrient solution (Yoshida et al. 1976). During this phase, water addition and pH adjustment were carried out with 0.1 N 11 NaHCO3 or 0.1 N HCl every two days. Observations were made on plants aged 14 days after 12 planting, by measuring root length, plant height, root and shoot dry weight. The formula used to 13 estimate the Shoot Root weight Ratio (SRR) was as follows: 14

15

$SRR = \frac{root \, dry \, weight}{shoot \, dry \, weight}$

16

The formula used to measure the variable Relative Root Length (RRL) was as follows: 17

18

19

$RRL = \frac{root \ length \ under \ Al \ stress}{root \ length \ without \ Al}$

Data analysis was performed using the Least Significant Difference Test (LSD). 20 Tolerance of rice lines to Al stress were grouped into a susceptible= RRL<0.5, rather tolerance= 21 0.5<RRL<0.70, tolerance=0.70<RRL<0.85, and highly tolerance=RRL>0.85. 22 Analysis of variance and the correlation between variables were performed using Pearson analysis and SAS 23 24 software version 9.1. Genetic parameters were calculated based on the Singh and Chaudhary (1979) method as follows: 25

26

	Source of variance	df	Means Square	expectation value			
	Genotipe	(g-1)	M2	σ_e^2 + $3\sigma_g^2$			
	Error	(r-1)(g-1)	M1	σ_{e}^{2}			
σ_e^2 = environment variance; σ_g^2 = genetic variance							

27

$$\sigma_g^2 = \frac{M2 - M1}{r} \sigma_e^2 = M1 \sigma_p^2 = \sigma_g^2 + \sigma_e^2$$

The standard deviation formula for genetic variance: 28

29

$$\sigma_{\sigma_{g}^{2}} = \sqrt{\left(\frac{2}{r}\right) \left[\left(\frac{M2_{g}^{2}}{df_{g}} + 2\right) + \left(\frac{M1_{e}^{2}}{df_{e}} + 2\right)\right]}$$

30

31 M2 = Means squared genotype

M1 = Means squared error 32

- 1 r = replication
- 2 dfg = degree of freedom genotype
- $3 \quad dfe = degree of freedom error$
- 4

5 Genetic diversity could be estimated from the genetic variance ($\sigma 2g$) and the standard 6 deviation of genetic variance ($\sigma \sigma 2g$). A character had a broad genetic diversity when $\sigma 2g >$ 7 $2\sigma\sigma 2g$. The Coefficient Genotype Diversity (CGD) was estimated using the formula as follows: 8

$$CGD = \frac{\sqrt{\sigma_g^2}}{\bar{x}} \ge 100\% \bar{x}$$
 = average population observed

- 9 When $0 < CGD \le 10.94$ (narrow); $0 < CGD \le 21.88$ (narrower); $0 < CGD \le 32.83$ (broader); $0 < CGD \le 42.77$ (broader); $0 < CGD \le 10.94$ (broader); 0 < CGD
- 10 $CGD \le 43.77$ (broad); 43.77 < CDG (broadest).
- 11

12 The Coefficient Phenotype Diversity (CPD) was estimated using the formula as follows:

13

 $CPD = \frac{\sqrt{\sigma_p^2}}{\bar{x}} x100\%$

14

15 When $0 < \text{CPD} \le 24.94$ (narrow); $0 < \text{CPD} \le 49.71$ (narrower); $0 < \text{CPD} \le 74.71$ (broader); 0 < 0.000

16 CPD ≤ 99.65 (broad); 99.65 < CPD (broadest).
17

18 Heritability in a broad sense (h_{bs}^2) was calculated according to the formula:

$$h_{bs}^2 = \frac{\sigma_g^2}{\sigma_p^2}$$

- 19 The heritability values (h2bs) were grouped according to Stanfield (1983) as follows:
- 20 0.50 < h2bs < 1.00 = high; 0.20 < h2bs < 0.50 = moderate; h2bs < 0.20 = low.
- 21

22 Genotypic correlations were calculated using the formula:

23

$$r_{g(xiji)} = \frac{cov. g(xixj)}{\sqrt{\left(\sigma_{g(xi)}^2, \sigma_{g(xj)}^2\right)}}$$

 $\operatorname{cov.g(xixj)} = \operatorname{genotypic} \operatorname{variation} \operatorname{between} \operatorname{properties} i \text{ and } j$ $\sigma_{g(xi)}^2 = \operatorname{genetic} \operatorname{variability} i$ $\sigma_{g(xj)}^2 = \operatorname{genetic} \operatorname{variability} j$ 27

- 28
- 29
- 30
- 31

32

- 33
- 34

RESULTS AND DISCUSSION

3 Analysis of genetic diversity

5 Analysis of variance of DH1 lines of rice with Al stress in nutrient culture showed 6 significant differences in all observed variables (Table 1). Al stress reduced root length by 21.95 7 percent and shoots dry weight by 22.14 percent, while it decreased shoot length and root dry 8 weight by only 6 percent (Figure 1).

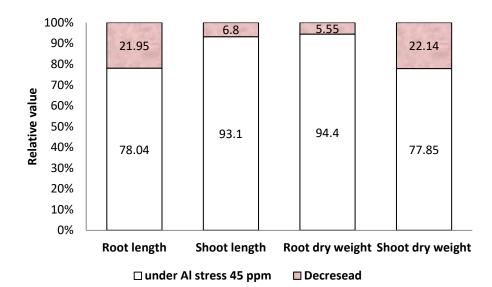
9

1 2

4

10

11


Table 1. Analysis of varia	nce of DH1 lines	s of new type upl	and rice			
under Al stress in nutrient solution						
-1-1-	C		F 1			

Variable	Sum Square	Mean Square	F value
Root length	1159.4	20.3	4.80**
Shoot length	0.35	0.006	2.92**
Root dry weight	0.089	0.0016	1.10*
Shoot dry weight	0.11	0.002	4.46**
Shoot root weight ratio (SRR)	0.35	0.0062	2.92**

*Significant different at level 0.05; ** Significant different at level 0.01

12 13

14

15

- 16
- 17 18

19 20 Figure 1. Effect of Al stress on variables of the length and dry weight of the root and shoot of DH1 lines.

The decrease in root length was caused by the obstruction of primary and lateral roots elongation. The field and laboratory experiments showed mixed responses to Al toxicity in rice (Watanabe and Okada, 2005; Bakhtiar et al., 2007; Qian et al., 2018). Reduction in shoot dry

(Watanabe and Okada, 2005; Bakhtiar et al., 2007; Qian et al., 2018). Reduction in shoot dry
weight was due to the unavailable nutrients for suboptimal growth, as a result of the impaired
mineral absorption and transport in roots (Kochian et al. 2015; Qian et al., 2018). The decrease in
root dry weight was only 5.55 percent, compared to the dry shoot weight (22.14 percent) (Figure

25 1). Since the root length decreased and became shorter, therefore the adventitious roots grew the

26 more. These showed that under Al conditions, more carbohydrates were directed to root growth.

Bakhtiar et al. (2007) and Belachew et al. (2017) also observed that shoot dry weight was more sensitive to Al toxicity than root dry weight. The inhibition of shoot growth was a secondary effect due to nutrient deficiency, especially Mg, Ca, P, and the restriction of water absorption, which caused dwarf rice growth (Ma et al., 2014). Wang et al. (2015) demonstrated that the application of NH4 decreased the Al content in rice roots by reducing the pectin content in their roots. Freitas et al. (2019) showed that aluminum chloride was more important in producing Al toxicity in the upland rice plants, grown in the nutrient solution.

8

9 10

11

Table 2. Genetic diversity of root and shoot length, root and shoot dry weight, and root shoot
weight ratio under Al stress conditions

Variable	Mean	GV*	PV	2xSD	GVC	PVC	h ² bs
				GV			
Root length	15.75	5.37	9.61	5.43	14.71	19.68	0.56
Shoot length	42.14	30.74	38.41	21.41	13.61	14.70	0.80
Root dry weight	0.037	0.00007	0.0015	3.25	22.12	100.0	0.05
Shoot dry weight	0.114	0.00053	0.0009	3.25	20.19	26.75	0.57
Shoot root weight ratio (SRR)	0.29	0.0014	0.0035	3.25	12.92	20.40	0.40

12 *GV =Genotipe Variability, PV=Phenotipe Variability, PVC=Phenotipe Variability Coefficient, GVC= Genotipe

13 Variability Coefficient, SDGV=standar deviate genetic variability, h_{bs}^2 = heritability in a broad sense

14

The estimated genetic parameters were shown in Table 11. Root length had a narrow 15 diversity of genotypes with a broad coefficient of 5.37 and 14.71 percent. Shoot length had a 16 broad genetic diversity that was 30.74 percent but had a narrow coefficient of 13.61 percent. 17 Root dry weights both had a broad of the coefficient of genotypic diversity and coefficient of 18 phenotype diversity (Table 2). The estimated heritability values of root and shoot dry weight 19 were 0.05 and 0.8, respectively (Table 2). The estimate for root length, shoot length, and shoot 20 dry weight were considerably high. Characters that had high heritability values indicated that 21 these genetic factors were more dominant than the environment; therefore, their selections were 22 made in the first generation (Akinwale et al., 2011; Herawati et al., 2019). 23

24

26

25 Correlation and Relative Root Length (RRL)

Positive correlations were observed for all characters, except for shoot length and SRR, which showed negative (Table 3). Features that had significant differences and positive relationships were used as selection criteria. Root length, shoot length, and the shoot dry weight were selected as one of the requirements of Al tolerance for DH1 line. These characters had high genetic diversity, heritability values, and were positively correlated with other features.

32

33

34

Table 3. Correlation of root length, shoot length, root dry weight, shoot dry weight, and shoot
root weight ratio (SRR) under Al stress condition

Characters	Shoot length	Root dry weight	Shoot dry weight	Shoot root weight ratio (SRR)
Root length	0.42**	0.28**	0.53**	0.12*
Shoot length		0.25*	0.65**	-0.25*
Root dry weight			0.43**	0.11 ^{ns}

Shoot dry weight				-0.14*
*- significant at level 005	· **- very signi	ficant at level 001	l ns-no significant	

*= significant at level 005; **= very significant at level 001, ns=no significant

3 Among these characters, root length was more easily observed; therefore, the researchers used relative root length (RRL) to distinguish tolerant and Al-susceptible genotypes. Previous 4 5 research indicated that the main target of Al toxicity was the root tissue of the plant. Root damage was characterized by decreased protein content in the cytoplasm and increased 6 membrane damage to cell walls, which resulted in leakage (Zhu et al., 2018). Qian et al. (2018) 7 reported that the fresh and dry weights of the rice seedlings were in significant correlation with 8 9 chlorophyll content. This result indicated that a low Al concentration increased the seedlings' fresh and dry weights by increasing the leaf chlorophyll content and promoting photosynthesis. 10 11

Figure 2. The experiment of Al stress on Yoshida nutrient solution (a); the root lengths of ITA
131 (susceptible check), and DUPA (tolerant check) under 45 ppm (b)

34

1

2

Root shortening is one of the consequences of Al inhibition; therefore, its structure appeared to be shorter, fat, and reduced branching, while its adventitious roots grew the more (Figure 2a). The roots have hardy penetrating the soil layer also inhibit nutrients and water absorption. The toxicity level depends on the concentration of Al^{+3} ions in the soil solution. Al decreased the fresh weight by inhibiting the absorption of water and mineral substances (Qian et al., 2018).

The Relative Root Length (RRL) values for DH1 lines varied between 0.53-1.03 (Table 42 4). The RRL value of the Dupa (tolerant check) was 0.74, while ITA131 (susceptible check) was 43 0.53 (Figure 2b). The 5% LSD test showed no significant difference between the RRL values for 44 more tolerant genotypes and for susceptible checks (Table 4). This test corresponded with the 45 previous experiments carried out by Prasetiyono (2003), Bakhtiar et al. (2007) that Dupa had 46 tolerance at RRL value of 0.7, however, for ITA131, it was 0.53, which was found to increase from the previous test of 0.41 (Bakhtiar et al., 2007). For this reason, it was necessary to review
using ITA varieties as susceptible checks (Figure 2b). The 5% LSD test on DH1-lines resulted
in 8 lines having significantly different higher RRL values than the Dupa check varieties (RRL =
0.74), such as line P6-274, P6-314, P3-196, P6-273, P6-311, P6-250, P6-267, and P6-278 (Table
4).

Table 4. Root lengths in the treatments of 0 and 45 ppm Al with the Relative Root Length (RRL) value of DH1-lines at 14 days after planting

Lines	Al_0	Al_{45}^{1}	RRL	Criteria ²	Lines	Al_0	Al_{45}	RRL	Criteria
	(c	m)				(01	m)		
P6-274	16.2	16.7	1.03*	HT	P6-319	20.4	16.0	0.78	Т
P6-314	20.3	20.3	1.01*	HT	P6-275	20.3	15.6	0.78	Т
P3-196	17.1	16.8	0.98*	HT	P6-297	25.1	19.3	0.77	Т
P6-273	19.9	19.5	0.97*	HT	P3-210	20.6	15.8	0.76	Т
P6-311	15.3	14.9	0.96*	HT	P3-161	20.2	15.8	0.76	Т
P3-250	16.8	15.9	0.95*	HT	P3-135	23.1	17.2	0.76	Т
P6-267	10.6	10.1	0.95*	HT	P3-175	21.8	16.6	0.76	Т
P6-278	19.4	18.3	0.94*	HT	P3-221	23.8	18.1	0.76	Т
P6-286	23.4	21.6	0.93	HT	P3-190	20.2	15.3	0.75	Т
P6-266	12.5	11.7	0.93	HT	P6-320	19.9	15.2	0.75	Т
P3-191	21.5	19.6	0.90	HT	P3-162	20.9	15.4	0.74	Т
P6-264	14.0	12.6	0.90	HT	P1-108	20.2	15.0	0.74	Т
P3-238	17.9	15.1	0.88	HT	P6-317	16.3	12.2	0.73	Т
P3-204	17.2	15.1	0.88	HT	P3-131	21.3	15.2	0.72	Т
P6-291	14.9	13.1	0.87	HT	P3-248	18.7	13.5	0.72	Т
P6-265	12.4	10.9	0.87	HT	P6-103	20.6	14.7	0.70	RT
P6-261	17.1	14.8	0.87	HT	P3-160	24.2	16.8	0.70	RT
P6-257	20.6	17.8	0.86	HT	P3-31	22.4	13.8	0.63	RT
P6-255	21.0	17.9	0.85	HT	P3-26	23.7	14.6	0.61	RT
P6-276	20.1	16.9	0.85	Т	P4-45	22.1	13.3	0.60	RT
P6-271	21.7	17.8	0.84	Т	P5-50	22.1	12.9	0.59	RT
P3-148	20.9	17.3	0.83	Т	P2-1	18.5	11.1	0.59	RT
P3-120	23.2	19.6	0.83	Т	P3-27	25.7	14.0	0.54*	RT
P6-272	20.5	16.6	0.83	Т	P2-2	18.5	10.1	0.54*	RT
P6-62	20.6	16.8	0.83	Т	P3-28	23.9	12.7	0.53*	RT
P6-105	16.6	13.7	0.83	Т	Dupa	24.7	18.2	0.74	Т
P6-295	21.8	17.8	0.83	Т	ITA131	21.1	11.3	0.53	RT
P3-159	24.5	19.9	0.81	Т	SGJT-28			0.89	HT
P3-134	19.3	15.6	0.80	Т	SGJT-36			0.86	HT
P3-150	21.9	17.6	0.80	Т	W.Rarem			0.52	RT
P6-302	20.3	15.5	0.79	Т	Fatmawati			0.76	Т

Lines	Al_0	Al_{45}^{1}	RRL	Criteria ²	Lines	Al_0	Al ₄₅	RRL	Criteria
	(cm)				(cm)				
P3-158	24.1	19.2	0.79	Т	BNT 0.05			0.2	
P3-249	20.6	16.3	0.78	Т	KK (%)			15.69	

*Significantly different from Dupa based on LSD 0.05 test; ${}^{1}Al_{0}= 0$ AlCl₃, Al₄₅= 45 ppm AlCl₃; ${}^{2}HT = Highly tolerant$, T=tolerant, RT=Rather tolerant

4 In tolerance genotypes, Al was prevented from passing through the plasma membrane 5 and entering the symplast and sites that were sensitive in the cytoplasm root tip. The ability of 6 the root cell wall to absorb low Al and the permeability of its membrane were involved in the mechanism of external tolerance. Zhu et al. (2018) explained that Hydrogen sulfide (H₂S) played 7 an essential role in Al stress resistance in plants. H₂S lowered Al toxicity by reducing its content 8 9 in the apoplast and symplast rice root. Wang et al. (2017) showed that the activity of cytosolic glucose-6-phosphate dehydrogenase was also involved in resistance to Al with the intervention 10 of ROS levels in soybean. The result by Qian et al. (2018) indicated that H₂O₂ accumulation was 11 also a key factor contributing to the decreased root activity. 12

In Al tolerance, plant pH was raised at the root tip (Kochian et al., 2004; Ma, 2007). This was due to the influx of H+ around this area, which resulted in the deposition of Al and a decreasing Al3+ ion activity (Samac and Tasfaye, 2003; Zhao et al., 2014). High NO3- content in plants tend to reduce Al toxicity. It also caused the release of hydroxyl (OH-) or bicarbonate ions (HCO³⁻) into the rhizosphere, increased pH, and suppressed the solubility of Al (Justino et al., 2006; Zhao et al., 2018).

19 20

1

2

3

Criteria	Genotype	Number of lines
Highly tolerant	P6: 274, 314, 273, 311, 267, 278, 286, 266, 264, 291, 265, 261, 257, 255, dan P3: 196, 191, 238, 204, 250	19
Tolerant	P6: 276, 271, 272, 62, 105, 295, 302, 319, 275, 297, 320, 108, 317, dan P3: 148, 120, 159, 134, 150, 158, 249, 210, 161, 135, 175, 221, 190, 162, 131, 248	29
Rather tolerant	P2: 1, 2; P3:160, 31, 26, 27, 28; P4-45, P5-50, P6-103	10

Table 5. The results of the DH1 lines selection for a new type of upland rice under Al stress

21

The RRL values of P3-27, P2-2, P3-28 were lower than the tolerant checks, and classified as the moderate tolerant genotypes (0.53-0.54), which was almost the same as the ITA susceptible checks (0.53) (Table 4). The grouping was based on the RRL values in 58 DH1lines, tested on nutrient cultures at 0 and 45 ppm Al, and produced susceptible = RRL <0.5, rather tolerant = 0.5 < RRL < 0.70, tolerant = 0.70 < RRL < 0.85, and highly tolerant = RRL> 0.85, therefore, 19 highly, 29 tolerant, and 10 rather tolerant genotype were produced (Table 5).

28

Distribution of Population from Cross of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati)

31

Aluminum tolerance was based on the Relative Root Length (RRL) and the Root Shoot weight Ratio (SRR) in DH1 populations from the crossing of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati) with the two parents were presented in Table 6. The Relative Root Lengths (RRL) in the P3 population ranged from 0.53 - 0.98, while the P6 population ranged from 0.70 - 1.03. The Fatmawati elders had an RRL value of 0.77, while that of SGJT-36 was 0.87. There were diversities in all observed characters, with the SRR of the P3 population that ranged from 0.20 to 0.32, while that of P6 graded from 0.22 to 0.39. The Fatmawati elders had SRR values of 0.30, while those of SGJT-36 was 0.32 (Table 6).

6

Table 6. The Relative Root Length (RRL) and the Root Shoot weight Ratio (RSR) of DH1-lines
in populations of crossing P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati)

9

	$X \pm SD$	Range of DH1 population		Mean value of parent **	
Characters	DH1*	P3	P6***	Fatmawati	SGJT-36
Relative Root Length					
(RRL)	0.8 ± 0.11	0.53 - 0.98	0.70 - 1.03	0.77	0.87
Shoot Root weight ratio					
(SRR)	0.29 ± 0.04	0.20 - 0.32	0.22 - 0.39	0.30	0.32

*X ± SD DH1 is mean ± standard deviate, **Fatmawati and SGJT-36 5 plants each, ***P3 were 26 lines, and P6
 were 27 lines

12

13 RRL and RSR values observed in DH1 populations varied greatly, some of which were similar to their parents, intermediates, and exceed both of their parents. The frequency 14 distribution of P3 and P6 populations based on RRL values is presented in Table 7. Based on 15 aluminum tolerance criteria, the frequency distribution of the two elders did not overlap. 16 17 Fatmawati had tolerant criteria, while SGJT-36 had highly tolerant. The frequency distribution of DH1 populations of P3 derivatives was highly tolerant, tolerant, and rather tolerant, while the 18 frequency distribution of P6 populations was highly tolerant to tolerant (SGJT-36 elders) (Table 19 20 7).

- 21
- 22

23

Table 7. Distribution of DH1 lines in each population of crossing P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati) based on aluminum tolerance

Criteria	Pare	ent*	DH1**		
Cintena	Fatmawati SGJT-36		P3	P6	
Highly tolerant	0		5	14	
Tolerant	\checkmark	0	16	12	
Rather tolerant	0	0	5	1	
Susceptible	0	0	0	0	

24 25 *The Fatmawati elders and SGJT-36 each with five plants, ** P3 were 26 lines, and P6 were 27

- lines, \sqrt{Al} tolerance criteria on elders
- 26

27 The frequent transgressive segregation in the anther of a plant produced lines with different tolerance levels. Few genes were observed to control Al acceptance levels in rice; 28 therefore, not all genotypes possessed this gene. Zang et al. (2019) found that there were 29 significant differences between the gene expression patterns of Indica and Japonica Al-tolerant 30 varieties. Therefore, the gene arrangement in the subgroups was similar to those in Japonica 31 species. Each gene, or their combination, played a role in regulating the mechanism of Al-32 33 tolerance in rice and expressed in each phase of plant growth (Wu et al. 2000). Thus, the parent used in this study produced lines that were tolerant to aluminum stress. Therefore, further 34

research was needed for the evaluation of leaf blast disease in the greenhouse to obtain thesuperior upland rice line.

CONCLUSION

7 The results of the evaluation of Al tolerance based on RRL in nutrient culture produced 8 19, 29, and 10 genotypic that was highly tolerance, tolerance, and rather tolerance, respectively. 9 The tolerance level of Al in the DH1-lines of upland rice produced by anther culture varied 10 significantly. The root length, shoot length, and the shoot dry weight had a high coefficient of 11 diversity, heritability, and significantly correlated with each other. The distribution of DH1 12 populations of P3 derivatives produced highly tolerant, tolerant, and rather tolerant criteria, while 13 those of P6 derivatives produced highly tolerant to tolerant only.

15 Acknowledgment

We would like to thank Yenni and Imam (staff at the Indonesian Center for Agricultural
Biotechnology and Genetic Resources Research and Development)for their assistance in the
Laboratorium and field works.

19

14

3 4 5

6

20

21

22

REFERENCES

Akinwale MG, Gregorio G, Nwilane F, Akinyele BO, Ogunbayo SA and Odiyi AC, 2011.
Heritability and correlation coefficient analysis for yield and its components in rice (O.sativa L.).
Afr. J. Plant Sci. 5:207-212.

26

Awasthi JP, Saha B, Regon P, Sahoo S,Chowra U, Pradhan A, Roy A and Panda SK, 2017.
Morphophysiological analysis of tolerance to aluminum toxicity in rice varieties of North East
India. PLoSONE. 12(4):1-23 (e0176357). <u>https://doi.org/10.1371/journal.pone.0176357</u>

30

Bakhtiar, Purwoko BS, Trikoesoemaningtyas, Chozin MA, Dewi IS and Amir M, 2007.

Penapisangalurpadigogohasilkulturanterauntukketengganganaluminiumdanketahananterhadappe
 nyakitblas (Screening of Doubled Haploid Upland Rice Lines Generated from Anther Culture to

- 34 Aluminum Tolerance).Bul. Agron. 35(1):8 14.
- 35

Belachew KY and Stoddard F, 2017. Screening of faba bean (*Viciafaba* L.) accessions to acidity
and aluminium. PeerJ. 5:1-19 (e2963); DOI 10.7717/peerj.2963.

38

BrunnerI and Sperisen C, 2013. Aluminum exclusion and aluminum tolerance in woodyplants.
Frontiers in Plant Science, 4:1-12.

41

42 Freitas LB, Fernandes DM, Maia SCM, Moniz A, Mazziero BG and Steiner F, 2019. Sources

43 and doses of aluminum in experiments with rice in nutrient solution. R. Bras. Eng.

44 Agríc.Ambiental. 23(7):511-517.

45

2 galur haploid ganda padi gogo dengan sifat-sifat tipe baru hasil kultur antera (Genetic diversity and agronomic traits of double haploid lines with the characteristics of new types 3 4 upland rice derivated from anther culture). JurnalAgronomi Indonesia. 37(2):87-93. 5 6 Herawati R, Masdar and Alnopri, 2019. Genetic analysis of grain yield of F4populations for 7 developing new type of upland rice. SABRAO Journal of Breeding and Genetics.51(1):68-79. 8 9 Ismail AM, Heuer S, Thomson MJ and Wissuwa M, 2007.Genetic and genomic approaches to 10 develop rice germplasm for problem soils. Plant Mol. Biol. 65:547–570. 11 Justino GC, Cambraia J, Olivia MA and Oliveira Ja, 2006. Uptake and reduction of nitrate in 12 13 two rice cultivars in the presence of aluminum.Pesqui.Agropec.Bras. 41:1285-1290. 14 Doi:10.1590/S0100-204X2006000800011 15 Kochian LV, Hoekenga OA, Pineros MA, 2004. How do crop plants tolerate acid soil? 16 Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Reviewof Plant 17 Biology 55:459-493. 18 19 Kochian LV, Piñeros MA, Liu JP and Magalhaes JV, 2015. Plant adaptation to acid soils: the 20 molecular basis for crop aluminum resistance. Annu Rev Plant Biol. 66:571-598. 21 https://doi.org/10.1146/annurevarplant-043014-114822 22 23 Liu J, Luo X, Shaff J, Liang C, Jia X, Li Z, Magalhaes J and Kochian LV, 2012. A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis 24 aluminum resistance and improved carbon-use efficiency for aluminum resistance. Plant J. 71: 25 26 327-337. 27 28 Lupwayi NZ, Benke MB, Hao XY, O'Donovan JT and Clayton GW, 2014. Relating crop productivity to soil microbial properties in acid soil treated with cattle manure. Agron. J. 106: 29 30 612–621. 31 32 Ma JF, 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiology. 41:383-390. 33 Ma JF, 2007. Sindrome of aluminum toxicity and diversity of aluminum resistance in higher 34 plant. Int. Rev. cytol. 264:225-252. Doi:10.1016/S0074-7696(07)64005-4 35 36 Ma JF, Chen ZC and Shen RF, 2014. Molecular mechanisms of Al tolerance in gramineous 37 plants.Plant Soil. 381:1-12.

Herawati R, Purwoko BS and Dewi IS, 2009. Keragaman genetik dan karakter agronomi

38

1

- Nursyamsi D, 2000. Aluminum tolerance of tropical crops. MS. thesis. Hokkaido University.Hokkaido.
- Prasetiyono J, 2003. Identification of microsatellite markers that are linked to the tolerance
 properties of aluminum toxicity in crossing rice DUPA x ITA 131 (Identifikasi marka)

- mikrosatelit yang terpaut dengan sifat toleransi terhadap keracunan alumunium pada padi
 persilangan Dupa x ITA 131). MS. thesis. IPB (Bogor University), Bogor.
- 3
- 4 Qian L, Huang P, Hu Q, Qian Y, Xu S and Wang R, 2018. Morpho-Physiological Responses Of
- 5 An Aluminum-Stressed Rice Variety 'Liangyoupei 9'. Pak. J. Bot. 50(3): 893-899.
- 6
- 7 Samac DA and Tasfaye M, 2003. Plant improvement for tolerance to aluminum in acid soils.
 8 Plant Cell Tissue and Organ Culture. 75:189-207.
- 9 Silva S, Pinto-Carnides, Martins-Lopes P, Mato M, Guedes-Pinto H and Santos C,2010.
 10 Differential aluminum changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Evir&Exp Bot. 68:91-98.
- 12
- Silva S, Pinto G, Dias MC, Correia CM, Moutinho-pereira J, Pinto-carnide O and Santos C,
 2012. Aluminiumlong-term stress differently affects photosynthesis in rye genotypes. Plant
 Physiol. Biochem.54:105-112. https://doi.org/10.1016/j.plaphy.2012.02.004
- 16
- Stanfield WD, 1983. Theory and Problems of Genetics. 2nd edition. Schain.s OutlineSeries. Mc.Graw Hill Book Co. New Delhi.
- 19 Singh RK and Chaudhary BD, 1979. Biometrical Methods in Quantitative Genetics20 Analysis.Kalyani Publ. New Delhi. p304.
- Wang HH, Hou JJ, Li Y, Zhang YY, Huang JJ and Liang WH, 2017. Nitric oxide-mediated
 cytosolic glucose-6-phosphate dehydrogenase isinvolved in aluminum toxicity of soybean under
 high aluminum concentration.Plant Soil.416:39–52. doi: 10.1007/s11104-017-3197-x
- 24
- Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF and Shen RF, 2015. Altered cell wall
 properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant
 Cell Environ. 38:1382–1390.doi: 10.1111/pce.12490
- 28
- Wan WJ, Tan JD, Wang Y, Qin Y, He HM., Wu HQ, Zuo WL and He DL, 2020. Responses of the rhizosphere bacterial community in acidic crop soil to pH: changes in diversity, composition,
- interaction, and function. Sci. Total Environ.700:134418. DOI: 10.1016/j.scitotenv.2019.134418
- 32
- Watanabe T and Okada K, 2005. Interactive effects of Al, Ca and other cations on root
 elongation of rice cultivars under low pH.Annals of Botany. 95:379–385.
- Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ and He C, 2000. QTL and epistasis for
 aluminum tolerances in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet.
 100:1295-1303. <u>https://doi.org/10.1007/s001220051438</u>
- 38
- Yoshida S, Forno DS, Cock JH and Gomez KA. 1976. Laboratory Manual for Physiological
 Studies of Rice. IRRI 3rded.
- 41
- Yamamoto Y, 2019. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition
 of cell elongation, Soil Science and Plant Nutrition 65(1):41-55, DOI:
 10.1080/00380768.2018.1553484

- 1
 - Zhang P, Ding Z, Zhong Zand Tong H, 2019. Transcriptomic Analysis for Indica and Japonica
 RiceVarieties under Aluminum Toxicity. Int. J. Mol. Sci. 20(4):997.doi:10.3390/ijms20040997
- 4
- 5 Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ, Zhong C, Bai ZG, Sajid H, Cao XC and
- 6 Jin QY, 2018. Hydrogen Sulfide Alleviates AluminumToxicity via Decreasing Apoplastand
- 7 Symplast Al Contents in Rice.Front. Plant Sci. 9:294.doi:10.3389/fpls.2018.00294
- 8
- 9 Zhao XQ, Chen RF and Shen RF, 2014. Coadaptation of plants to multiple stresses in acidic
- 10 soils. Soil Sci. 179:503–513. doi:10.1097/SS.000000000000086
- 11
- 12 Zhao XQ and Shen RF, 2018. Aluminum-Nitrogen Interactions in the Soil-Plant
- 13 System. Frontiers in plant science, 9:807. https://doi.org/10.3389/fpls.2018.00807

Reny Herawati <reny.herawati@unib.ac.id>

Revised Article Submission

1 pesan

noreply@ejmanager.com <noreply@ejmanager.com> Balas Ke: "noreply@ejmanager.com" <noreply@ejmanager.com> Kepada: reny.herawati@unib.ac.id 29 Oktober 2020 15.39

Dear Reny Herawati,

Your REVISED ARTICLE entitled Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice (Mns No:AJAB-2020-05-295) has been received by Asian Journal of Agriculture and Biology.

You could follow status of your manuscript by login to your author account at www.ejmanager.com.

Thank you for submitting your REVISED version of your article.

Best regards,

Editor Asian Journal of Agriculture and Biology http://www.asianjab.com/

IMPORTANT: USE JOURNAL CONTACT EMAIL for your messages. Do not answer to this email. It is not checked for messages

http://www.ejmanager.com

Reny Herawati <reny.herawati@unib.ac.id>

28 November 2020 22.00

Revised manuscript AJAB-2020-05-295, turnitine check, and proofreading certificate

4 pesan

Reny Herawati <reny.herawati@unib.ac.id> Kepada: Asian Journal of Agriculture and Biology <asian.jab@gmail.com>

Dear Ediror Team AJAB,

We have been sending you manuscript revisions (AJAB-2020-050-295) since October 29, 2020 by e-JManager. Here we attach the results of the turnitine check, certificate proofreading, and tracking proofreading.

We are look forward hearing the progress of the manuscript from you soon, Thank you for your kindly attention

Best regards, Reny Herawati et al.

4 lampiran

- Copy of Certificate of Proofreading (2).pdf
- Manuscript_Reny_TRACKING.docx 266K
- Manuscript_Reny_FINAL.docx 248K
- turnitin cek.pdf

Dr. Rashid Mehmood <rashid.pbg@uaar.edu.pk>

Kepada: Asian Journal of Agriculture and Biology <asian.jab@gmail.com>, reny.herawati@unib.ac.id Cc: Abdul Manan <abdulmanan_uaf@yahoo.com>, Dr Sabir Hussain <sabir.hussain@gcuf.edu.pk>

1 Desember 2020 23.37

Dear Author,

We are unable to locate your manuscript on our online submission system. Please check whether you have submitted the manuscript online or not.

Best Regards

Dr. Rashid Mehmood (PhD) Assistant Professor Department of Plant Breeding & Genetics, PMAS-Arid Agriculture University, Rawalpindi, Pakistan Managing Editor Asian Journal of Agriculture and Biology HEC recognized Journal

On Sun, 29 Nov 2020, 11:13 AM Asian Journal of Agriculture and Biology, <asian.jab@gmail.com> wrote:

Dear Editors Please look at which stage this article is and the relevant editor may consider this email n attached files. [Kutipan teks disembunyikan]

Sincerely,

Editorial Office Asian Journal of Agriculture and Biology (AJAB) Islamabad, Pakistan URL: http://www.asianjab.com

 Reny Herawati
 2 Desember 2020 22.21

 Kepada: "Dr. Rashid Mehmood"
 2 Desember 2020 22.21

 Cc: Asian Journal of Agriculture and Biology
 2 Desember 2020 22.21

 Sabir Hussain
 2 Desember 2020 22.21

Dear editor team AJAB,

We have been sending you manuscript revisions (AJAB-2020-050-295) since October 29, 2020 by e-JManager, but We cannot submit the supplement file because the system has closed

If you don't mind, please accept the file attached below. Thank you for your kindly attention

Best regards, Reny Herawati et al.

[Kutipan teks disembunyikan]

6 lampiran Image: Manuscript_Reny_FINAL.docx Manuscript_Reny_FINAL.docx 248K Image: Manuscript_Reny_FINAL.pdf Manuscript_Reny_FINAL.pdf

turnitin cek.pdf 3118K

Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Kepada: "reny.herawati@unib.ac.id" <reny.herawati@unib.ac.id> Cc: Laig Khan <laig.khan2011@gmail.com>

4 Desember 2020 01.17

Here is your article number. Please submit revisions online. If still there is problem, please contact Mr. Laiq (technical editor) for help. Laiq is copied in this email.

------ Forwarded message ------From: **Muhammad Laiq Khan** <laiq.khan2011@gmail.com> Date: Thu, 3 Dec 2020 at 4:44 PM Subject: Re: Revised manuscript AJAB-2020-05-295, turnitine check, and proofreading certificate To: Asian Journal of Agriculture and Biology <asian.jab@gmail.com>

Sir correct article number is AJAB-2020-05-295, and this article is "under review"

Home Manu	Home Manuscripts under Review (52) We add 25 credits to your account if a new journal joins ejmanager by your invitation.							
AJAB- 2020-05- 295	Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice	Reny Herawati, Bambang Sapta Purwoko, Iswari Saraswati Dewi,	2 Reviewer(s)	Manage Manuscript				

Thank you,

M. Laiq Khan Secretary Publication | Isra Medical Journal (IMJ) Secretary | Clinical Skills Lab, Al-Nafees Medical College & Hospital Isra University, Islamabad Campus, Pakistan Technical Editor | Asian Journal of Agriculture & Biology (AJAB) Save paper and consider the environment before printing this email.

On Thu, Dec 3, 2020 at 10:02 AM Asian Journal of Agriculture and Biology <asian.jab@gmail.com> wrote: Please help author [Kutipan teks disembunyikan] [Kutipan teks disembunyikan]

Reny Herawati <reny.herawati@unib.ac.id>

Revised Article Submission

1 pesan

noreply@ejmanager.com <noreply@ejmanager.com> Balas Ke: "noreply@ejmanager.com" <noreply@ejmanager.com> Kepada: reny.herawati@unib.ac.id 5 Maret 2021 15.32

Dear Reny Herawati,

Your REVISED ARTICLE entitled Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice (Mns No:AJAB-2020-05-295) has been received by Asian Journal of Agriculture and Biology.

You could follow status of your manuscript by login to your author account at www.ejmanager.com.

Thank you for submitting your REVISED version of your article.

Best regards,

Editor Asian Journal of Agriculture and Biology http://www.asianjab.com/

IMPORTANT: USE JOURNAL CONTACT EMAIL for your messages. Do not answer to this email. It is not checked for messages

http://www.ejmanager.com

Reny Herawati <reny.herawati@unib.ac.id>

Article Revision Letter for Authors - (AJAB-2020-05-295)

1 pesan

noreply@ejmanager.com <noreply@ejmanager.com> Balas Ke: "noreply@ejmanager.com" <noreply@ejmanager.com> Kepada: reny.herawati@unib.ac.id 28 Februari 2021 18.46

Dear Reny Herawati,

The revisions for your manuscript titled -Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice- and manuscript number (AJAB-2020-05-295) were reviewed by Editorial Board of Asian Journal of Agriculture and Biology and it was decided that the following revisions should be done before this article is further processed.

It was found that English-Write-Up quality of the manuscript is not satisfactory because it contains a number of grammatical and punctuation mistakes. The authors are required to improve the English-Write-Up quality by removing the grammatical and punctuation mistakes. The changes made in the revised manuscript should be highlighted in red.

You should send your revised manuscript by journal Submit Article page within 10 days.

Sincerely yours,

Sabir Hussain, Dr. Managing Editor Asian Journal of Agriculture and Biology sabirghani@gmail.com http://my.ejmanager.com/ajab http://www.asianjab.com/

COMMENTS for Authors:

=> Reviewer # 1 --- 2. Review

Ready to published

IMPORTANT: USE JOURNAL CONTACT EMAIL for your messages. Do not answer to this email. It is not checked for messages

http://www.ejmanager.com

Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice

Herawati, R.^{1*}, Ganefianti, D.W.¹, Pujiwati, H.¹, Purwoko, B.S.², Dewi, I.S.³

¹Crop Production Department, Faculty of Agriculture, University of Bengkulu, Indonesia; ²Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural

University, Indonesia; ³Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Indonesia.

*Corresponding Author email: reny.herawati@unib.ac.id

ABSTRACT

Aluminum has a can possibly have direct direct or indirect adverse effect on plant growth-The, however, this effect of Al stress-is not the same for all plants, even in the same species. The roots of plants are most sensitive to Al toxicity. The toxicity accompanied to initial symptoms of Al toxicity in plants are such as the inhibition of cell extension and the retarded development of root systems.-. This study aimed aims to evaluate doubled haploid (DH1) upland rice lines derived from anther culture to aluminum stress-culture, and studying also examine the genetic diversity and population-the distribution of doubled haploid lines due to aluminum stress. Al tolerant testing_test was carried out in a greenhouse using factorial randomized complete block design Randomized Complete Block Design (RCBD) with three replicates. Yoshida nutrient solution containing Al of 0 and 45 ppm was the first factor. The, while the second factor was the lines obtained from previous experiments (DH1), the four parents (SGJT36, SGJT28, Fatmawati, and Way Rarem), Dupa, and ITA131, respectively as Al tolerant and the ITA131 susceptible checks. The results showed that the shoot and root length, shoot length, and shoot with their dry weight values had high heritability values coefficient of diversity, heritability, and significantly correlated well-with the observed characterseach other. The tolerance level of Al tolerant doubled haploid-in DH1- lines of upland rice lines derived from anther-produced by another culture varied widelysignificantly. Based on relative root length the Relative Root Length (RRL), out of 58 lines tested, 19 genotypes were highly tolerant, 29 lines tolerantwere moderate, and ten moderate tolerantwhile 10 were low. The DH1 rice derived from P3 showed highly toleranthigh, tolerantmoderate, and moderate tolerantlow tolerance, while those from P6 showed highly tolerant high and tolerant. moderate tolerance only.

Keywords: Aluminum tolerance, Doubled haploid, Upland rice

INTRODUCTION

The transition of land functions-into residential areas, the construction of social facilities and infrastructure has led to a reduction in the field of land for agricultureagricultural land. It also resulted in the expansion shifting of agricultural land directed to areas of a marginal land (dry land)) area, especially on ultisol soils that reacted sourly. It was often found sourly to plant cultivation as a result of some symptoms of such as lack of Ca, Mg, P, K, and N as well as the presence of Al toxicity. Al content The high content of Al in acid soils acidic soil has been shown to inhibit plant growth (Silva et al., 2010; Brunner and Sperisen, 2013). The utilization of acidic land is faced with various obstacles, including such as low pH, pH which will reduce reduces the availability of nutrients for plant growth. On the other hand, Al toxicity is increasing. In-increases in very acid soils-acidic soil (pH <4.5), with increasing Al solubility can increase Al saturation. Aluminum solubility, which has detrimental effects on plant, not plants. Not only is the growth of rice roots inhibited, but rice root systems can also be damaged by high concentrations of Al in the soil, which can both-lead to significant reductions in rice yields (Ismail et al., 2007; Liu et al., 2012). The impact of Al stress-is not the same on all plants, even in the same species. The root is the part of the plant, which is most sensitive to Al toxicity.

The initial symptoms of Al toxicity in plants are inhibition of cell extension and the retarded development of root systems. The Its availability of Al-in soil land solution depends on the level of soil acidity. In very acidic soil reaction conditions (pH <4.5), Al becomes very soluble, especially in the form of Al^{3++} ion, which is toxicity highly toxic to plants. Aluminum It also interferes with the uptake, transport, and the utilization of nutrients, and also inhibits enzyme activity and hormonal balance (Lupwayi et al., 2014; Wan et al., 2019; Yamamoto, 2019). The presence of high content of Al solubility solution in the soil causes stunded root growth and ultimately decreases the ability of roots to absorb mineral and water nutrients (Silva et al., 2012; Ma et al., 2014; Kochian et al., 2015). Inhibition The inhibition of root growth by Al stress occurs occurs, due to cell division and elongation in the root meristem.

Al-<u>The</u> accumulation <u>of Al</u> in root tissue <u>will determine</u> <u>determines</u> the <u>level</u> tolerance <u>rate</u> of plant <u>genotypes</u> and <u>correlated</u> <u>genotypes</u>, which <u>correlate</u> with the level of root damage. <u>In genotypes tolerantIn</u> <u>tolerant genotype</u>, the Al <u>accumulation in the aggregation</u> root tissue was <u>generally</u> lower than the sensitive genotype (Ma 2000; Zang et al., 2019). The small number of negative charges on the cell wall <u>in genotype in</u> tolerant <u>caused</u> <u>genotype</u> reduces the <u>interaction of Al with</u> the <u>lower interaction</u>.<u>root layer</u> (Watanabe and Okada 2005; Kochian et al. 2015). This phenomenon has also been reported <u>by some in</u> previous <u>researchers studies</u> (Nursyamsi 2000; Awasthi et al., 2017; Qian et al., 2018) that <u>tolerant</u> rice <u>had-tolerance has</u> a mechanism <u>by of</u> reducing the interaction of Al on the root cell walls.

Until now<u>Currently</u>, not many rice varieties have <u>not</u> tolerated <u>acid_acidic</u> soils, and some lines_are still in the testing stage. _being tested. High genetic diversity is one of the main factors used_in improving plant traits, both <u>conventionally_by conventional</u> and <u>biotechnology methods</u>. <u>biotechnological method</u>. Previous <u>study of</u> genetic diversity <u>studied</u> on DH1 had produced 58 double haploid upland rice lines that <u>are-were</u> ready to be further evaluated (Herawati et al. 2009). Therefore, <u>the-proper</u> selection <u>of</u> <u>available</u> <u>genotypes</u> needs to be done to obtain genotypes that <u>are tolerant to-tolerate</u> aluminum stress. <u>Identification of <u>Al</u> stress because selection, since roots are the main target of damage by Al. In <u>upland</u> rice, a quick method for evaluating genotypes that tolerate Al stress can be done by observing the root length in the vegetative phase (Bakhtiar et al., 2007; Belachew et al., 2017; Awasthi et al., 2017; Qian et al., 2018). This study <u>aimed_aims</u> to <u>evaluate the cxamine</u> DH1 of upland rice from-derived anther</u> from another culture, and also study genetic diversity, and as well as the population distribution due to aluminum stress.

MATERIALS AND METHODS

The experiment was carried out in the greenhouse of the Indonesian Center for Research and Development on Biotechnology and Agricultural Genetic Resources, Cimanggu, Bogor. The materials used were 58 DH1 rice lines, <u>the</u> four elders (SGJT36, SGJT28, Fatmawati, and Way Rarem), and two varieties checkedDupa, namely Dupa and ITA131 respectively as tolerant and sensitive Al-susceptible check (Prasetyono, 2003; Bakhtiar et al., 2007). The nutrient solution used was Yoshida nutrient solution (Yoshida et al., 1976).

Experiments using factorial randomized complete block design Randomized Complete Block Design (RCBD) were repeated three times. Experiments using, with the Yoshida nutrient solution (Yoshida et al. 1976) were given a). A solution of Al as much as aluminum at the concentrations of 0 ppm and 45 ppm were given as the first factor, while the second factor was 64 rice lines/line varieties.

The <u>rice</u> seeds were roasted for 3 x 24 hours at 45 ° C, C and then the seeds were sown in a nursery on husk media. Seed germination They were allowed to germinate in the dark for five days. <u>Rice seeds After which those</u> that were healthy, uniform, healthy and have uniform with a height of \pm 5 cm were selected for planting. The nutrient solution used was Yoshida method solution with the final composition as follows: 40 ppm N, ten-10 ppm P, 40 ppm K, 40 ppm Ca, 40 ppm Mg, 0.5 ppm Mn, 0.05 ppm Mo, 0.2 ppm B, 0.01 ppm Zn, 0.01 ppm <u>Cu-Cu</u>, and two-2 ppm Fe (Yoshida et al. 1976). In the Al treatment, treatment to reduce the formation of Al polymer, the pH of the nutrient solution was adjusted to 4.5 by using 0.1 N NaHCO3 to pH 4.5 before the addition of AlNaHCO3. The addition of Al by adding 0 and <u>After this</u>, 2 ml of Al stock solution that had been made for 1000 ml from 1000ml of Al (source AlCl3.5H2O)-5H2O was added to get the a treatment concentration of 45 ppm Alppm. The pH of the nutrient solution was adjusted to pH 4.0 ± 0.1 with 0.1 N NaHCO3 or 0.1 N HCl.

Five-day-old healthy sprouts on-from a uniform root length-were transferred to the media. Sprout stems were then wrapped in soft foam and then put into styrofoam holes that had been prepared and floated-placed on a nutrient solution in a potstyrofoam holes. Each pot-pothole was planted with five sprouts and maintained for 14 days in a greenhouse. A growth period of 14 days was used because due to the composition of the Yoshida nutrient solution was designed for 14 days (Yoshida et al. 1976). During this periodphase, the-water addition of water and pH adjustment was were carried out with 0.1 N NaHCO3 or 0.1 N HCl every two days. Observations were made on plants aged 14 days after planting-planting, by measuring root length, plant height, root dry weight, and shoot dry weight. The formula estimated shoot root used to estimate the Shoot Root weight ratio Ratio (SRR)) was as follows:

$$SRR = \frac{root \, dry \, weight}{shoot \, dry \, weight} SRR = \frac{root \, dry \, weight}{shoot \, dry \, weight}$$

The formula <u>measures</u> <u>used to measure the</u> variable <u>relative root length</u>.<u>Relative Root Length</u> (RRL)) was as follows:

$$RRL = \frac{root \ length \ under \ Al \ stress}{root \ length \ under \ Al \ stress} RRL = \frac{root \ length \ under \ Al \ stress}{root \ length \ without \ Al}$$

Data analysis was performed using the Least Significant Difference Test (LSD). Tolerance of rice lines to Al stress <u>was-were</u> grouped into a susceptible = RRL <0.5, <u>rather tolerant-low</u> = 0.5 <RRL <0.70, <u>tolerant-moderate</u> = 0.70 <RRL <0.85, and <u>highly tolerant-high tolerance</u> = RRL> 0.85. Analysis of variance and <u>the</u> correlation between variables <u>were performed</u> using Pearson analysis <u>of-and</u> SAS software version 9.1. Genetic parameters were calculated based on the method used by Singh and Chaudhary (1979) <u>method</u> as follows:

Source of variance	df	Means Square	expectation value	
GenotipeGenotype	(g-1)	M2	$\sigma_e^2 \sigma_e^2 + 3 \sigma_a^2$	
			2	
			σ_{g}^{2}	
Error	(r-1)(g-1)	M1	$\sigma^2 \sigma^2$	
			e e e	

 $\sigma_e^2 \sigma_e^2$ = environment variance; $\sigma_g^2 \sigma_g^2$ = genetic variance

$$\sigma_g^2 = \frac{M2-M1}{r} \sigma_g^2 = \frac{M2-M1}{r} \qquad \sigma_e^2 = M1 \sigma_e^2 = M1 \qquad \sigma_p^2 = \sigma_g^2 + \sigma_e^2 \sigma_p^2 = \sigma_g^2 + \sigma_e^2$$

The standard deviation of formula for genetic variance using the formula variance:

$$\sigma_{\sigma_g^2} = \sqrt{\left(\frac{2}{r}\right) \left[\left(\frac{M2_g^2}{df_g} + 2\right) + \left(\frac{M1_e^2}{df_e} + 2\right)\right]} \quad \sigma_{\sigma_g^2} = \sqrt{\left(\frac{2}{r}\right) \left[\left(\frac{M2_g^2}{df_g} + 2\right) + \left(\frac{M1_e^2}{df_e} + 2\right)\right]}$$

M2 = Means squared genotype

M1 = Means squared error

r = replication

dfg = degree of freedom genotype

dfe = degree of freedom error

Genetic diversity could be estimated from <u>the</u> genetic variance ($\sigma 2g$) and <u>the</u> standard deviation of genetic variance ($\sigma \sigma 2g$). A character <u>has-had</u> a broad genetic diversity <u>if $\sigma 2g$ >when</u> $\sigma 2g > 2\sigma\sigma^2_g$. The <u>estimates of</u> Coefficient Genotype Diversity (CGD) <u>was estimated</u> using the <u>formula formula as follows</u>:

average population observed

if <u>When</u> $0 \ll CGD \leq 10.94$ (narrow); $0 \ll CGD \leq 21.88$ (rather narrownarrower); $0 \ll CGD \leq 32.83$ (rather broadbroader); $0 \ll CGD \leq CGD \leq 43.77$ (broad); $43.77 \ll CDG$ (very broadbroadest).

The formula estimated of coefficient phenotype diversity Coefficient Phenotype Diversity (CPD) was estimated using the formula as follows:

Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 6 pt Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 7 pt Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 6 pt Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 6 pt Formatted: Font: (Default) Times New Roman, 12 pt, Lowered by 7 pt

$$CPD = \frac{\sqrt{\sigma_p^2}}{\bar{x}} x 100\% CPD = \frac{\sqrt{\sigma_p^2}}{\bar{x}} x 100\%$$

if <u>When</u> $0 < CPD \leq 24.94$ (narrow); $0 < CPD \leq 49.71$ (rather narrow<u>narrower</u>); $0 < CPD \leq 249.71$ 74.71 (rather broadbroader); 0 < CPD <u><<</u>99.65 (broad); 99.65 < CPD (very broadbroadest).

Heritability in a broad sense (h^2_{bs}) was calculated according to the formula:

$$h_{bs}^2 = \frac{\sigma_g^2}{\sigma_p^2} h_{bs}^2 = \frac{\sigma_g^2}{\sigma_p^2}$$

Heritability The heritability values (h²_{bs}) are were grouped according to Stanfield (1983) as follows:

 $0.50 < h^2_{bs} \leq 1.00 = \frac{\text{heighthigh}}{1.00}; 0.20 < h^2_{bs} \leq 0.50 = \text{moderate}; h^2_{bs} \leq 0.20 = \text{low}.$

Genotypic correlations can be were calculated using the formula:

$$r_{g(xiji)} = \frac{cov.g(xixj)}{\sqrt{\left(\sigma_{g(xi)}^2,\sigma_{g(xj)}^2\right)}} r_{g(xiji)} = \frac{cov.g(xixj)}{\sqrt{\left(\sigma_{g(xi)}^2,\sigma_{g(xj)}^2\right)}}$$

cov.g(xixj) = genotypic variation between properties i and j
 $\sigma_{g(xi)}^2 \sigma_{g(xj)}^2 =$ genetic variability i
 $\sigma_{g(xj)}^2 \sigma_{g(xj)}^2 =$ genetic variability j

RESULTS AND DISCUSSION

Analysis of <u>of</u> genetic diversity

Analysis of variance of DH1 lines in-of rice with Al stress on-in nutrient culture showed significant differences in all observed variables (Table 1). The response of each variable was different from Al stress. Al stress reduced root length by 21.95 percent and shoots dry weight by 22.14 percent, while it decreased shoot length and root dry weight by only 6 percent (Figure 1).

Table 1. Analysis of	variance of DH1 l	lines of new type upland rice

under Al stress in nutrient solution

Variable	Sum Sum	Mean Square	F value				
	Square						
Root length	1159.4	20.3	4.80**				
Shoot length	0.35	0.006	2.92**				
Root dry weight	0.089	0.0016	1.10*				
Shoot dry weight	0.11	0.002	4.46**				
Root shoot weight Ratio (RSR)	0.35	0.0062	2.92**				

*Significant different at level 0.05; ** Significant different at level 0.01

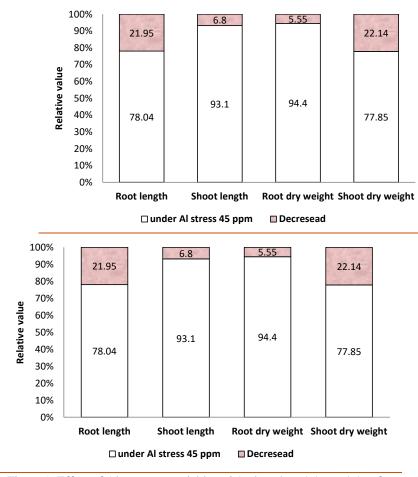


Figure 1. Effect of Al stress on variables <u>of the</u> length <u>and dry weight</u> of root, shoot length, <u>the</u> root <u>dry weight</u>, and shoot <u>dry weight</u> of DH1 lines.

Decreasing The decrease in root length is was caused by obstruction of the elongation obstruction of the primary and lateral rootsroots elongation. Field The field and laboratory experiments showed that there were the mixed responses to Al toxicity in rice (Watanabe and Okada 2005; Bakhtiar et al., 2007; Qian et al., 2018). Reduction in shoot dry weight was due to the unavailable nutrients available for suboptimal growth because growth, as a result of the impaired nutrient absorption and transport in roots (Kochian et al. 2015; Qian et al., 2018). The decreased decrease in root dry weight was only 5.55 percent, not as much as in compared to the dry shoot weight (22.14 percent) (Figure 1) because although.). Since the root length decreased, the roots were decreased and became shorter, and therefore the adventitious roots grew the more. It These showed that under stress Al conditions, more carbohydrates were directed to root growth. Bakhtiar et al. (2007) and Belachew et al. (2017)-). It was also found observed that shoot dry weight was more sensitive to Al toxicity than root dry weight.

. The inhibition of shoot growth is-was a secondary effect due to nutrient deficiency, especially Mg, Ca, and-P, and the inhibition-restriction of water absorption causes-which caused dwarf rice growth (Ma et al., 2014). Wang et al. (2015) demonstrated that the application of NH4 decreased the Al content in rice roots by reducing the pectin content in rice-their roots. Freitas et al. (2019) reveal-showed that aluminum chloride was more useful-important in producing aluminum-Al toxicity in the upland rice plants-plants, grown in the nutrient solution.

Table 2. Genetic diversity of root <u>length</u>, <u>and</u> shoot length, root <u>dry weight</u>, <u>and</u> shoot dry weight, and root shoot weight ratio under <u>Al</u> stress <u>conditions</u> <u>Al</u><u>conditions</u>

Variable	Mean	GV*	PV	2xSD	GVC	PVC	h ² bs
				GV			
Root length	15.75	5.37	9.61	5.43	14.71	19.68	0.56
Shoot length	42.14	30.74	38.41	21.41	13.61	14.70	0.80
Root dry weight	0.037	0.00007	0.0015	3.25	22.12	100.0	0.05
Shoot dry weight	0.114	0.00053	0.0009	3.25	20.19	26.75	0.57
Root shoot weight Ratio	0.29	0.0014	0.0035	3.25	12.92	20.40	0.40
(RSR)							

*GV =Genotipe Variability,-__PV=PhenotipeVariability, PVC=Phenotipe Variability Coefficient, GVC= Genotipe Variability Coefficient, SDRG=standar deviate genetic variability, h²_{bs}= heritability in a broad sense

The estimates of estimated genetic parameters are were shown in Table 11. Root length eharacters-had a narrow diversity of genotypes but had with a broad coefficient of the diversity of genotypes, respectively, 5.37 and 14.71 percent. Shoot length had a broad genotype genetic diversity that was 30.74 percent but had a narrow coefficient of genotype diversity by 13.61 percent. Root dry weights both had a broad of the coefficient of genotype diversity and coefficient of phenotype diversity percent (Table 2). The estimated heritability values for dry weight of root and shoot length, dry weight were 0.05 and 0.8, respectively (Table 2). Heritability value of root length, shoot length, and shoot dry weight. The estimate for their lengths were elassified as considerably high. Characters that have had high heritability values indicate indicated that these genetic factors are were more dominant than the environment so that the selection of these characters can be others, therefore, their selections were made in the first generations generation (Akinwale et al., 2011; Herawati et al., 2019).

Correlation and Relative Root Length (RRL)

Correlation analysis of all <u>Positive correlations were</u> observed eharacters showed a positive for all characters, except for shoot length and RSR, while shoot dry weight and RSR were negatively which showed negative (Table 3). Characters Features that have significantly different had significant differences and positive correlations can be relationships were used as selection criteria. Root length, and shoot length, and the shoot dry weight can be were selected as one of the criteria for requirements of Al tolerance for DH1 line. These characters had high genetic diversity and diversity, heritability values values, and have were positively correlated with other charactersfeatures.

Characters	Shoot length	Root dry weight	Shoot dry weight	Root shoot weight ratio (RSR)
Root length	0.42**	0.28**	0.53**	0.12*
Shoot length		0.25*	0.65**	-0.25*
Root dry weight			0.43**	0.11 ^{ns}
Shoot dry weight				-0.14*

Table 3. Correlation of root <u>length, and</u> shoot length, <u>root dry weight, shoot their</u> dry <u>weightweights</u>, and <u>root shoot the Root Shoot</u> weight <u>ratio-Ratio</u> (RSR) under Al stress

*= significant at level_level_005; **= very significant at level_001, ns=no significant

Among these characters, root length was more easily and quickly-observed, so-therefore, the researchers used relative root length (RRL) to distinguish tolerant and Al-susceptible genotypes. Previous research indicated that the main target of Al toxicity toxicity was the root tissue of the plant. Root damage occurs in sensitive genotypes due to Al toxicity, was characterized by a decrease in decreased protein content in the cytoplasm and increased membrane damage to cell walls, which results in cell membrane resulted to leakage (Zhu et al., 2018). Qian et al. (2018) reported that the fresh and dry weights of the rice seedlings were significantly positively correlated in significant correlation with chlorophyll content. This result indicates indicated that a low Al concentration increases increased the seedlings' fresh and dry weights of rice seedlings by increasing the leaf chlorophyll content and promoting photosynthesis.

Figure 2. The experiment <u>of</u> Al stress on Yoshida nutrient solution (a); <u>showed</u> the <u>appearance</u> <u>of</u> root lengths of <u>susceptible line</u>, tolerant lines, ITA 131 (susceptible check), <u>and</u> DUPA (tolerant check) under 45 <u>ppm Al (b)ppm</u>.

Root shortening is one of the consequences of Al inhibition of root length. The morphology of secondary roots-inhibition, therefore, its structure appeared to be shorter, fat, and reduced branching, while its adventitious roots grew more on the root neck-more (Figure 2a). The penetration of roots have hardy penetrating the into hard soil layer so that the absorption of layers also inhibit nutrients and water will be inhibited absorption. The level of Al-toxicity level depends on the activity concentration of Al⁺³ ions in the soil mediasolution. The root activity of the seedlings at the concentrations also significantly decreased. Al decreases decreased the fresh weight by inhibiting the absorption of water and mineral substances (Qian et al., 2018).

RRL-The Relative Root Length (RRL) values in the for DH1 lines tested-varied between 0.53-1.03 (Table 4). The RRL value of the Dupa (tolerant check) was 0.74, while ITA131 (susceptible check) was 0.53 (Figure 2b). The 5% LSD test results showed no significant difference between the PAR values for the rather-more tolerant genotypes and the PAR values for susceptible checks (Table 4). It is consistent. This test corresponded with the previous experiments carried out by Prasetiyono (2003), Bakhtiar et al. (2007) that Dupa was tolerant had tolerance at RRL value of 0.7, however, for ITA131 (ITA131, it was 0.53), which was an-found to increase from the previous experiment test of 0.41 (Bakhtiar et al., 2007). For this reason, it is was necessary to review using ITA varieties as susceptible checks (Figure 2b). The 5% LSD test on DH1-lines resulted in 8 lines having significantly different and higher RRL values than the Dupa check varieties (PAR = 0.74), namely lines such as line_P6-274, P6-314, P3-196, P6-273, P6-311, P6-250, P6-267, and P6-278 (Table 4).

Lines	Al ₀	Al_{45}^{1}	RRL	Criteria ²	Lines	Al_0	Al ₄₅	RRL	Criteria
	(01	m)				(ci	m)		
P6-274	16.2	16.7	1.03*	HT	P6-319	20.4	16.0	0.78	Т
P6-314	20.3	20.3	1.01*	HT	P6-275	20.3	15.6	0.78	Т
P3-196	17.1	16.8	0.98*	HT	P6-297	25.1	19.3	0.77	Т
P6-273	19.9	19.5	0.97*	HT	P3-210	20.6	15.8	0.76	Т
P6-311	15.3	14.9	0.96*	HT	P3-161	20.2	15.8	0.76	Т
P3-250	16.8	15.9	0.95*	HT	P3-135	23.1	17.2	0.76	Т
P6-267	10.6	10.1	0.95*	HT	P3-175	21.8	16.6	0.76	Т
P6-278	19.4	18.3	0.94*	HT	P3-221	23.8	18.1	0.76	Т
P6-286	23.4	21.6	0.93	HT	P3-190	20.2	15.3	0.75	Т
P6-266	12.5	11.7	0.93	HT	P6-320	19.9	15.2	0.75	Т
P3-191	21.5	19.6	0.90	HT	P3-162	20.9	15.4	0.74	Т
P6-264	14.0	12.6	0.90	HT	P1-108	20.2	15.0	0.74	Т
P3-238	17.9	15.1	0.88	HT	P6-317	16.3	12.2	0.73	Т
P3-204	17.2	15.1	0.88	HT	P3-131	21.3	15.2	0.72	Т
P6-291	14.9	13.1	0.87	HT	P3-248	18.7	13.5	0.72	Т
P6-265	12.4	10.9	0.87	HT	P6-103	20.6	14.7	0.70	RT
P6-261	17.1	14.8	0.87	HT	P3-160	24.2	16.8	0.70	RT
P6-257	20.6	17.8	0.86	HT	P3-31	22.4	13.8	0.63	RT

Table 4. Root lengths in the treatments of 0 Al-and 45 ppm Al and the relative value of with the root length-Relative Root Length (RRL) value of DH1-DH1-lines at 14 days after planting

Lines	Al_0	Al_{45}^{-1}	RRL	Criteria ²	Lines	Al_0	Al ₄₅	RRL	Criteria
	(C1	n)				(01	m)		
P6-255	21.0	17.9	0.85	HT	P3-26	23.7	14.6	0.61	RT
P6-276	20.1	16.9	0.85	Т	P4-45	22.1	13.3	0.60	RT
P6-271	21.7	17.8	0.84	Т	P5-50	22.1	12.9	0.59	RT
P3-148	20.9	17.3	0.83	Т	P2-1	18.5	11.1	0.59	RT
P3-120	23.2	19.6	0.83	Т	P3-27	25.7	14.0	0.54*	RT
P6-272	20.5	16.6	0.83	Т	P2-2	18.5	10.1	0.54*	RT
P6-62	20.6	16.8	0.83	Т	P3-28	23.9	12.7	0.53*	RT
P6-105	16.6	13.7	0.83	Т	Dupa	24.7	18.2	0.74	Т
P6-295	21.8	17.8	0.83	Т	ITA131	21.1	11.3	0.53	RT
P3-159	24.5	19.9	0.81	Т	SGJT-28			0.89	HT
P3-134	19.3	15.6	0.80	Т	SGJT-36			0.86	HT
P3-150	21.9	17.6	0.80	Т	W.Rarem			0.52	RT
P6-302	20.3	15.5	0.79	Т	Fatmawati			0.76	Т
P3-158	24.1	19.2	0.79	Т	BNT 0.05			0.2	
P3-249	20.6	16.3	0.78	Т	KK (%)			15.69	2

*Significantly different from Dupa based on LSD 0.05 test; ${}^{1}Al_{0}= 0$ AlCl₃, Al₄₅= 45 ppm AlCl₃; ${}^{2}HT = Highly tolerant, T=tolerant, AT=Rather tolerant$

In tolerance genotypes, Al is-was prevented from passing through the plasma membrane and entering the symplast and sites that are-were sensitive to Al-in the cytoplasm of the-root tip. The ability of the root cell wall to absorb low Al and the permeability of the cell-its membrane is thought to be were involved in the mechanism of external tolerance. Zhu et al. (2018) explained that Hydrogen sulfide (H2S) plays-played an essential role in-on_Al stress resistance in plants. HS reduces-H2S lowered Al toxicity by reducing the Al-its content in the apoplast and symplast rice root. Wang et al. (2017) revealed showed that the activity of cytosolic glucose-6-phosphate dehydrogenase is-was also involved in resistance to Al through mediating with the intervention of_ROS levels in soybean. Result_The result by Qian et al. (2018) indicated that H2O2 accumulation is-was also a key factor contributing to the decrease in-decreased root activity.

In Al tolerance, plants will be able to raise the plant pH around was raised at the root area tip (Kochian et al., 2004; Ma, 2007). Increasing pH around the roots occurs This was due to the influx of H⁺ at the root tip. It around this area, which resulted in the deposition of Al and a decreasing Al³⁺ ion activity so that it becomes a less toxic form to plants (Samac and Tasfaye, 2003; Zhao et al., 2014). Plants avoid from Al toxicity trough absorb-High NO³⁻ content in large amounts. plants tend to reduce Al toxicity. It also caused the release of hydroxyl ions (OH) or bicarbonate ions (HCO³⁻) into the rhizosphere, increased pH, and suppressed the solubility of Al Al (Justino et al., 2006; Zhao et al., 2018).

Table 5. The results of the <u>DH1 lines selection-DH1-line selections</u> for a new type of upland rice under Al stress

Criteria	Genotype	Number of lines
Highly	P6: 274, 314, 273, 311, 267, 278, 286, 266, 264, 291,	19

tolerant	265, 261, 257, 255, dan P3: 196, 191, 238, 204, 250	
Tolerant	P6: 276, 271, 272, 62, 105, 295, 302, 319, 275, 297, 320, 108, 317, dan P3: 148, 120, 159, 134, 150, 158, 240, 240, 240, 240, 240, 240, 240, 240	20
Rather	249, 210, 161, 135, 175, 221, 190, 162, 131, 248 P2: 1, 2; P3:160, 31, 26, 27, 28; P4-45, P5-50, P6-103	29
tolerant		10

The RRL values of the genotype-P3-27, P2-2, P3-28 were lower than the tolerant checks, and classified as moderately the moderate tolerant genotypes (low) by 0.53-0.54), which was almost the same as the RRL values of the ITA as susceptible checks by 0.53-(0.53) (Table 4). The grouping was based on the RRL values in 58 DH1 lines DH1-lines, tested on nutrient cultures at 0 and 45 ppm Al, that is and produced susceptible = PAR ≤ 0.5 , rather tolerant-with low tolerance = 0.5 \leq PAR ≤ 0.70 , tolerant-moderate = 0.70 \leq PAR ≤ 0.85 , and highly tolerant-high = PARPAR > 0.85, so 19 genotypes were highly toleranttherefore, 19 high, 29 tolerant genotypesmoderate, and 10 genotypes rather low tolerant genotype were produced (Table 5).

Distribution of Population from Cross of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati)

Aluminum tolerance was based on the relative root length-Relative Root Length (RRL) and root_shoot_the Root Shoot weight ratio_Ratio (RSR) in DH1 populations from the populations. The crossing of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati) and-with the two parents are-were presented in Table 6. The relative root lengths Relative Root Lengths (RRL) in the P3 population ranges_ranged_from 0.53 - 0.98, while the P6 population ranges ranged from 0.70 - 1.03. The Fatmawati elders had an RRL value of 0.77, while the-that of SGJT-36 elders were was 0.87.— There was diversity-were diversities in all observed characters. The root shoot weight ratio (RSR), with the RSR of the P3 population that ranged from 0.20 to 0.32, while the-that of P6 population ranged-graded from 0.22 to 0.39. The Fatmawati elders had an RSR value-values of 0.30, while the-those of SGJT-36 elders had an RRL value of were 0.32 (Table 6).

Table 6. <u>The Relative root length-Root Length (RRL)</u> and <u>root shoot the Root Shoot</u> weight <u>Ratio (RSR) ratio of DH1-DH1</u>-lines in populations of crossing P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati)

	$X \pm SD$	Range of DH1 population		Mean value of parent **	
Characters	DH1*	P3	P6***	Fatmawati	SGJT-36
Relative Root Length	0.8 ± 0.11	0.53 - 0.98	0.70 - 1.03	0.77	0.87
Root shoot weight ratio					
(RSR)	0.29 ± 0.04	0.20 - 0.32	0.22 - 0.39	0.30	0.32

 $*X \pm SD DH1$ is mean \pm standard deviate, **Fatmawati and SGJT-36 5 plants each, *** P3 were 26 lines, and P6 were 27 lines

RRL and RSR values observed in DH1 populations varied greatly, some of which were similar to their parents, intermediates, and exceed both of their parentssignificantly. The frequency distribution of P3 and P6 populations based on RRL values is were presented in Table 7. Based on aluminum tolerance criteria, the frequency distribution of the two elders did not

overlap. Fatmawati had tolerant criteriamoderate, while SGJT-36 had highly toleranthigh tolerance. The frequency distribution of DH1 populations of P3 derivatives was highly toleranthad extreme, tolerantmoderate, and rather tolerantlow tolerance, while the frequency distribution those of P6 populations was highly tolerant to tolerant had high and moderate tolerance only (SGJT-36 elders) (Table 7).

). Table 7. Distribution of DH1-DH1-lines in each population of crossing P3 (Fatmawati x SGJT 36) and P6 (SGJT-36 x Fatmawati) based on aluminum tolerance.

Criteria	Pare	ent*	DH1**		
Cinteria	Fatmawati	SGJT-36	P3	P6	
Highly High tolerant	0	\checkmark	5	14	
TolerantModerate					
tolerant		0	16	12	
Rather Low tolerant	0	0	5	1	
Susceptible	0	0	0	0	

*The Fatmawati elders and SGJT-36 each with five plants, ** P3 were 26 lines, and P6 were 27 lines, \sqrt{A} l tolerance criteria on elders

It was due to the presence of The frequent transgressive segregation in the combination anther_of an anther, which a plant produced lines with different tolerance levels. Many-Few genes were observed to control Al tolerance acceptance levels in rice, therefore, so not all genotypes will have possessed this gene. Zang et al. (2019) were found that there were significant differences between the gene expression patterns of Indica Al-tolerant and Japonica Al-tolerant varieties. Therefore, the gene expression patterns of the Al-tolerant varieties arrangement in the mixed subgroup, which was inclined to Japonicasubgroups, were similar to the Al-tolerant varieties those in JaponicaJaponica species. Each gene-gene, or their combination will have played a role in regulating the mechanism of Al-Al-tolerance in rice that will be-rice, and expressed in each phase of plant growth (Wu et al. 2000). Thus Thus, the elders-aged species used in this study produced lines that were tolerant to aluminum stress. The next step will be an Therefore, further research was needed for the evaluation of the leaf blast disease in the greenhouse.

CONCLUSION

The results of the evaluation of Al tolerance based on RRL in nutrient culture produced 19 genotypes-19, 29, and 10 genotypic tolerance that were highly toleranthigh, 29 genotypes tolerantmoderate, and ten genotypes rather tolerantlow, respectively. The tolerance level of Al in the DH1-DH1-lines of upland rice produced by anther culture varied greatlysignificantly. Root length, shoot length, The root and shoot length with the shoot dry weight had a high coefficient of diversity diversity, heritability, and heritability and significantly correlated with each other. The distribution of DH1 populations of P3 derivatives produced highly toleranthigh, tolerant_of P6 derivatives produced highly tolerant to tolerant criteria. yielded high and moderate only.

Acknowledgment

We would like to thank Yenni and Imam (staff at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development) for their assistance in the <u>Laboratorium laboratory</u> and field works.

REFERENCES

Akinwale MG, Gregorio G, Nwilane F, Akinyele BO, Ogunbayo SA and Odiyi AC, 2011. Heritability and correlation coefficient analysis for yield and its components in rice (O. sativa L.). Afr. J. Plant Sci. 5:207212.

Awasthi JP, Saha B, Regon P, Sahoo S, Chowra U, Pradhan A, Roy A and Panda SK, 2017. Morphophysiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS ONE. 12(4): e0176357. https://doi.org/10.1371/ journal.pone.0176357

Bakhtiar, Purwoko BS, Trikoesoemaningtyas, Chozin MA, Dewi IS and Amir M, 2007. Penapisan galur padi gogo hasil kultur antera untuk ketenggangan aluminium dan ketahanan terhadap penyakit blas (Screening of Doubled Haploid Upland Rice Lines Generated from Anther Culture to Aluminum Tolerance). Bul. Agron. 35(1):8 – 14.

Belachew KY and Stoddard F, 2017. Screening of faba bean (*Vicia faba* L.) accessions to acidity and aluminium. Peer J. 5: e2963; DOI 10.7717/peerj.2963.

Brunner I and Sperisen C, 2013. Aluminum exclusion and aluminum tolerance in woody plants. Frontiers in Plant Science. 4:1-12.

Freitas LB, Fernandes DM, Maia SCM, Moniz A, Mazziero BG and Steiner F, 2019. Sources and doses of aluminum in experiments with rice in nutrient solution. R. Bras. Eng. Agríc. Ambiental. 23(7):511-517.

Herawati R, Purwoko BS and Dewi IS, 2009. Keragaman genetik dan karakter agronomi galur haploid ganda padi gogo dengan sifat-sifat tipe baru hasil kultur antera (Genetic diversity and agronomic traits of double haploid lines with the characteristics of new types upland rice derivated from anther culture). Jurnal Agronomi Indonesia. 37(2):87-93.

Herawati R, Masdar and Alnopri, 2019. Genetic analysis of grain yield of F4 populations for developing new type of upland rice. SABRAO Journal of Breeding and Genetics. 51(1):68-79.

Ismail AM, Heuer S, Thomson MJ and Wissuwa M, 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol. 65:547–570.

Justino GC, Cambraia J, Olivia MA and Oliveira Ja, 2006. Uptake and reduction of nitrate in two rice cultivars in the presence of aluminum. Pesqui. Agropec. Bras. 41:1285-1290. Doi:10.1590/S0100-204X2006000800011

Kochian LV, Hoekenga OA, Pineros MA, 2004. How do crop plants tolerate acid soil? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology 55:459–493.

Kochian LV, Piñeros MA, Liu JP and Magalhaes JV, 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol. 66: 571±598. https://doi.org/10.1146/annurevarplant-043014-114822

Liu J, Luo X, Shaff J, Liang C, Jia X, Li Z, Magalhaes J and Kochian LV, 2012. A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminum resistance and improved carbon-use efficiency for aluminum resistance. Plant J. 71: 327–337.

Lupwayi NZ, Benke MB, Hao XY, O'Donovan JT and Clayton GW, 2014. Relating crop productivity to soil microbial properties in acid soil treated with cattle manure. Agron. J. 106: 612–621.

Ma JF, 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiology. 41:383-390.

Ma JF, 2007. Sindrome of aluminum toxicity and diversity of aluminum resistance in higher plant. Int. Rev. cytol. 264:225-252. Doi:10.1016/S0074-7696(07)64005-4

Ma JF, Chen ZC and Shen RF, 2014. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil. 381:1–12.

Nursyamsi D, 2000. Aluminum tolerance of tropical crops. MS. thesis. Hokkaido University. Hokkaido.

Prasetiyono J, 2003. Identifikasi marka mikrosatelit yang terpaut dengan sifat toleransi terhadap keracunan alumunium pada padi persilangan Dupa x ITA 131 (Identification of microsatellite markers that are linked to the tolerance properties of aluminum toxicity in crossing rice DUPA x ITA 131). MS. thesis. Bogor University, Bogor.

Qian L, Huang P, Hu Q, Qian Y, Xu S and Wang R, 2018. Morpho-Physiological Responses Of An Aluminum-Stressed Rice Variety 'Liangyoupei 9'. Pak. J. Bot. 50(3): 893-899.

Samac DA and Tasfaye M, 2003. Plant improvement for tolerance to aluminum in acid soils. Plant Cell Tissue and Organ Culture. 75:189-207.

Silva S, Pinto-Carnides, Martins-Lopes P, Mato M, Guedes-Pinto H and Santos C, 2010. Differential aluminum changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Evir & Exp Bot. 68:91-98.

Silva S, Pinto G, Dias MC, Correia CM, Moutinho-pereira J, Pinto-carnide O and Santos C, 2012. Aluminium long-term stress differently affects photosynthesis in rye genotypes. Plant Physiol. Biochem. 54:105±112. https://doi.org/10.1016/j.plaphy.2012.02.004

Assessment of Aluminum Tolerant of Double Haploid Lines for Developing New Type of Upland Rice

Herawati, R.^{1*}, Purwoko, B.S.², Dewi, I.S.³

 ¹Crop Production Department, Faculty of Agriculture, University of Bengkulu, Indonesia;
 ²Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Indonesia;
 ³Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and

Development, Indonesia.

*Corresponding Author email: reny.herawati@unib.ac.id

ABSTRACT

Aluminum can possibly have direct or indirect adverse effects on plant growth; however, this effect is not the same for all plants, even in the same species. The roots of plants are most sensitive to Al toxicity accompanied to initial symptoms such as the inhibition of cell extension and retarded development of root systems. This study aims to evaluate doubled haploid (DH1) upland rice lines derived from anther aluminum culture, and also examine the genetic diversity and the distribution of doubled haploid lines due to aluminum stress. Al tolerant test was carried out in a greenhouse using factorial Randomized Complete Block Design (RCBD) with three replicates. Yoshida nutrient solution containing Al of 0 and 45 ppm was the first factor, while the second was the lines obtained from previous experiments (DH1), the four parents (SGJT36, SGJT28, Fatmawati, and Way Rarem), Dupa, and the ITA131 susceptible checks. The results showed that the shoot and root length, with their dry weight values had a high coefficient of diversity, heritability, and significantly correlated with each other. The tolerance level of Al in DH1- lines of upland rice produced by another culture varied significantly. Based on the Relative Root Length (RRL), out of 58 lines tested, 19 genotypes were highly tolerant, 29 lines were moderate, while 10 were low. The DH1 rice derived from P3 showed high, moderate, and low tolerance, while those from P6 showed high and moderate tolerance only.

Keywords: Aluminum tolerance, Doubled haploid, Upland rice

INTRODUCTION

The transition of land into residential areas, the construction of social facilities and infrastructure has led to a reduction in the field of agricultural land. It also resulted in the shifting of agricultural land to a marginal (dry land) area, especially on ultisol soils that reacted sourly to plant cultivation as a result of some symptoms such as lack of Ca, Mg, P, K, and N as well as the presence of Al toxicity. The high content of Al in acidic soil has shown to inhibit plant growth (Silva et al., 2010; Brunner and Sperisen, 2013). The utilization of acidic land is faced with

various obstacles, such as low pH, which reduces the availability of nutrients for plant growth. On the other hand, Al toxicity increases in very acidic soil (pH <4.5), with increasing Al solubility, which has detrimental effects on plants. Not only is the growth of rice roots inhibited, but also damaged by high concentrations of Al in the soil, which leads to significant reductions in rice yields (Ismail et al., 2007; Liu et al., 2012). The impact of Al is not the same on all plants, even in the same species.

The initial symptoms of Al toxicity in plants are inhibition of cell extension and the retarded development of root systems. Its availability in land solution depends on the level of soil acidity. In very acidic conditions (pH <4.5), Al becomes very soluble, especially in the form of Al^{3+} ion, which is highly toxic to plants. It also interferes with the uptake, transport, and the utilization of nutrients, and also inhibits enzyme activity and hormonal balance (Lupwayi et al., 2014; Wan et al., 2019; Yamamoto, 2019). The high content of Al solution in the soil causes stunted root growth and decreases the ability of roots to absorb mineral and water nutrients (Silva et al., 2012; Ma et al., 2014; Kochian et al., 2015). The inhibition of root growth by Al occurs due to cell division and elongation in the root meristem.

The accumulation of Al in root tissue determines the tolerance rate of plant genotypes, which correlate with the level of root damage. In tolerant genotype, the Al aggregation root was lower than the sensitive genotype (Ma 2000; Zang et al., 2019). The small number of negative charges on the cell wall in tolerant genotype reduces the interaction of Al with the root layer (Watanabe and Okada 2005; Kochian et al. 2015). This phenomenon has also been reported in previous studies (Nursyamsi 2000; Awasthi et al., 2017; Qian et al., 2018) that rice tolerance has a mechanism of reducing the interaction of Al on the root cell walls.

Currently, many rice varieties have not tolerated acidic soils, and some are still being tested. High genetic diversity is one of the main factors used in improving plant traits, both by conventional and biotechnological methods. The previous study of genetic diversity on DH1 had produced 58 double haploid upland rice lines that were ready to be further evaluated (Herawati et al. 2009). Therefore, the proper selection needs to be done to obtain genotypes that tolerate aluminum stress. The differences in root growth character are one indicator that can be used in the tolerance selection since roots are the main target of damage by Al. In upland rice, a quick method for evaluating genotypes that tolerate Al stress can be done by observing the root length in the vegetative phase (Bakhtiar et al., 2007; Belachew et al., 2017; Awasthi et al., 2017; Qian et al., 2018). This study aims to examine DH1 of upland rice derived from another culture, and also study genetic diversity, as well as the population distribution due to aluminum stress.

MATERIALS AND METHODS

The experiment was carried out in the greenhouse of the Indonesian Center for Research and Development on Biotechnology and Agricultural Genetic Resources, Cimanggu, Bogor. The materials used were 58 DH1 rice lines, the four elders (SGJT36, SGJT28, Fatmawati, and Way Rarem), Dupa, and ITA131 susceptible check (Prasetyono, 2003; Bakhtiar et al., 2007).

Experiments using factorial Randomized Complete Block Design (RCBD) were repeated three times, with the Yoshida nutrient solution (Yoshida et al. 1976). A solution of aluminum at the concentrations of 0 and 45 ppm were given as the first factor, while the second was 64 rice line varieties.

The rice seeds were roasted for 3 x 24 hours at 45 ° C and sown on husk media. They were allowed to germinate in the dark for five days. After which those that were healthy and uniform with a height of \pm 5 cm were selected for planting. The nutrient used was Yoshida solution with the final composition as follows: 40 ppm N, ten ppm P, 40 ppm K, 40 ppm Ca, 40 ppm Mg, 0.5 ppm Mn, 0.05 ppm Mo, 0.2 ppm B, 0.01 ppm Zn, 0.01 ppm Cu, and two ppm Fe (Yoshida et al. 1976). In the Al treatment to reduce the formation of the polymer, the pH of the nutrient solution was adjusted to 4.5 by using 0.1 N NaHCO3. After this, 2 ml of Al solution made from 1000ml of AlCl3.5H2O was added to get a treatment concentration of 45 ppm. The pH of the nutrient solution was adjusted to 4.0 \pm 0.1 with 0.1 N NaHCO3 or 0.1 N HCl.

Five-day-old healthy sprouts from a uniform root were transferred to the media. Sprout stems were then wrapped in soft foam and placed on a nutrient solution in styrofoam holes. Each pothole was planted with five sprouts and maintained for 14 days in a greenhouse. A growth period of 14 days was used due to the composition of the Yoshida nutrient solution (Yoshida et al. 1976). During this phase, water addition and pH adjustment were carried out with 0.1 N NaHCO3 or 0.1 N HCl every two days. Observations were made on plants aged 14 days after planting, by measuring root length, plant height, root and shoot dry weight. The formula used to estimate the Shoot Root weight Ratio (SRR) was as follows:

 $SRR = \frac{root \, dry \, weight}{shoot \, dry \, weight}$

The formula used to measure the variable Relative Root Length (RRL) was as follows:

$$RRL = \frac{root \ length \ under \ Al \ stress}{root \ length \ without \ Al}$$

Data analysis was performed using the Least Significant Difference Test (LSD). Tolerance of rice lines to Al stress were grouped into a susceptible = RRL <0.5, low = 0.5 < RRL <0.70, moderate = 0.70 < RRL <0.85, and high tolerance = RRL> 0.85. Analysis of variance and the correlation between variables were performed using Pearson analysis and SAS software version 9.1. Genetic parameters were calculated based on the Singh and Chaudhary (1979) method as follows:

Source of variance	df	Means Square	expectation value
Genotype	(g-1)	M2	σ_e^2 + $3\sigma_g^2$
Error	(r-1)(g-1)	M1	$\sigma_{_e}^2$

 σ_e^2 = environment variance; σ_g^2 = genetic variance

$$\sigma_g^2 = \frac{M2-M1}{r} \qquad \sigma_e^2 = M1 \qquad \sigma_p^2 = \sigma_g^2 + \sigma_e^2$$

The standard deviation formula for genetic variance:

$$\sigma_{\sigma_{g}^{2}} = \sqrt{\left(\frac{2}{r}\right) \left[\left(\frac{M2_{g}^{2}}{df_{g}} + 2\right) + \left(\frac{M1_{e}^{2}}{df_{e}} + 2\right)\right]}$$

M2 = Means squared genotype M1 = Means squared error r = replication dfg = degree of freedom genotype dfe = degree of freedom error

Genetic diversity could be estimated from the genetic variance ($\sigma 2g$) and the standard deviation of genetic variance ($\sigma \sigma 2g$). A character had a broad genetic diversity when $\sigma 2g > 2\sigma \sigma^2_{g}$. The Coefficient Genotype Diversity (CGD) was estimated using the formula as follows:

$$CGD = \frac{\sqrt{\sigma_g^2}}{\bar{x}} \ge 100\%$$
 $\bar{x} = \text{average population observed}$

When $0 < CGD \le 10.94$ (narrow); $0 < CGD \le 21.88$ (narrower); $0 < CGD \le 32.83$ (broader); $0 < CGD \le 43.77$ (broad); 43.77 < CDG (broadest).

The Coefficient Phenotype Diversity (CPD) was estimated using the formula as follows:

$$CPD = \frac{\sqrt{\sigma_p^2}}{\bar{x}} x 100\%$$

When $0 < CPD \le 24.94$ (narrow); $0 < CPD \le 49.71$ (narrower); $0 < CPD \le 74.71$ (broader); $0 < CPD \le 99.65$ (broad); 99.65 < CPD (broadest).

Heritability in a broad sense (h_{bs}^2) was calculated according to the formula:

$$h_{bs}^2 = \frac{\sigma_g^2}{\sigma_n^2}$$

The heritability values (h_{bs}^2) were grouped according to Stanfield (1983) as follows: $0.50 < h_{bs}^2 < 1.00 = high; 0.20 < h_{bs}^2 < 0.50 = moderate; h_{bs}^2 < 0.20 = low.$

Genotypic correlations were calculated using the formula:

$$r_{g(xiji)} = \frac{cov.g(xixj)}{\sqrt{\left(\sigma_{g(xi)}^2,\sigma_{g(xj)}^2\right)}}$$

cov.g(xixj) = genotypic variation between properties i and j
 $\sigma_{g(xi)}^2$ = genetic variability i
 $\sigma_{g(xj)}^2$ = genetic variability j

RESULTS AND DISCUSSION

Analysis of genetic diversity

Analysis of variance of DH1 lines of rice with Al stress in nutrient culture showed significant differences in all observed variables (Table 1). Al stress reduced root length by 21.95 percent and shoots dry weight by 22.14 percent, while it decreased shoot length and root dry weight by only 6 percent (Figure 1).

Variable	Sum Square	Mean Square	F value	
Root length	1159.4	20.3	4.80**	
Shoot length	0.35	0.006	2.92**	
Root dry weight	0.089	0.0016	1.10*	
Shoot dry weight	0.11	0.002	4.46**	
Root shoot weight Ratio (RSR)	0.35	0.0062	2.92**	

Table 1. Analysis of variance of DH1 lines of new type upland rice under Al stress in nutrient solution

*Significant different at level 0.05; ** Significant different at level 0.01

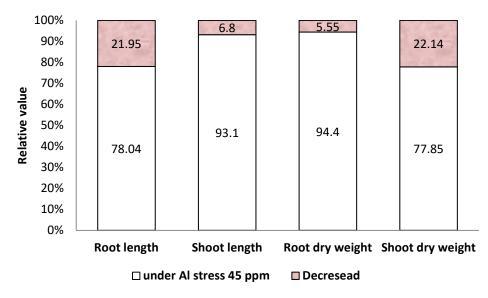


Figure 1. Effect of Al stress on variables of the length and dry weight of the root and shoot of DH1 lines.

The decrease in root length was caused by the obstruction of primary and lateral roots elongation. The field and laboratory experiments showed mixed responses to Al toxicity in rice (Watanabe and Okada, 2005; Bakhtiar et al., 2007; Qian et al., 2018). Reduction in shoot dry weight was due to the unavailable nutrients for suboptimal growth, as a result of the impaired mineral absorption and transport in roots (Kochian et al. 2015; Qian et al., 2018). The decrease in root dry weight was only 5.55 percent, compared to the dry shoot weight (22.14 percent) (Figure 1). Since the root length decreased and became shorter, therefore the adventitious roots grew the more. These showed that under Al conditions, more carbohydrates were directed to root growth. Bakhtiar et al. (2007) and Belachew et al. (2017). It was also observed that shoot dry weight was more sensitive to Al toxicity than root dry weight. The inhibition of shoot growth was a secondary effect due to nutrient deficiency, especially Mg, Ca, P, and the restriction of water absorption, which caused dwarf rice growth (Ma et al., 2014). Wang et al. (2015) demonstrated that the application of NH4 decreased the Al content in rice roots by reducing the pectin content in their roots. Freitas et al. (2019) showed that aluminum chloride was more important in producing Al toxicity in the upland rice plants, grown in the nutrient solution.

Table 2. Genetic diversity of root and shoot length, root and shoot dry weight, and root shoot
weight ratio under Al stress conditions

Variable	Mean	GV*	PV	2xSD	GVC	PVC	h ² bs
				GV			
Root length	15.75	5.37	9.61	5.43	14.71	19.68	0.56
Shoot length	42.14	30.74	38.41	21.41	13.61	14.70	0.80
Root dry weight	0.037	0.00007	0.0015	3.25	22.12	100.0	0.05
Shoot dry weight	0.114	0.00053	0.0009	3.25	20.19	26.75	0.57
Root shoot weight Ratio	0.29	0.0014	0.0035	3.25	12.92	20.40	0.40
(RSR)							

*GV =Genotipe Variability, PV=PhenotipeVariability, PVC=Phenotipe Variability Coefficient, GVC= Genotipe Variability Coefficient, SDRG=standar deviate genetic variability, h^2_{bs} = heritability in a broad sense

The estimated genetic parameters were shown in Table 11. Root length had a narrow diversity of genotypes with a broad coefficient of 5.37 and 14.71 percent. Shoot length had a broad genetic diversity that was 30.74 percent but had a narrow coefficient of 13.61 percent (Table 2). The estimated heritability values of root and shoot dry weight were 0.05 and 0.8, respectively (Table 2). The estimate for their lengths was considerably high. Characters that had high heritability values indicated that these genetic factors were more dominant than others; therefore, their selections were made in the first generation (Akinwale et al., 2011; Herawati et al., 2019).

Correlation and Relative Root Length (RRL)

Positive correlations were observed for all characters, except for shoot length and RSR, which showed negative (Table 3). Features that had significant differences and positive relationships were used as selection criteria. Root and shoot length and the shoot dry weight were selected as one of the requirements of Al tolerance for DH1 line. These characters had high genetic diversity, heritability values, and were positively correlated with other features.

(KSK) under Arstress condition				
Characters	Shoot length	Root dry weight	Shoot dry weight	Root shoot weight ratio (RSR)
Root length	0.42**	0.28**	0.53**	0.12*
Shoot length		0.25*	0.65**	-0.25*
Root dry weight			0.43**	0.11 ^{ns}
Shoot dry weight				-0.14*

Table 3. Correlation of root and shoot length, their dry weights, and the Root Shoot weight Ratio (RSR) under Al stress condition

*= significant at level 005; **= very significant at level 001, ns=no significant

Among these characters, root length was more easily observed; therefore, the researchers used relative root length (RRL) to distinguish tolerant and Al-susceptible genotypes. Previous research indicated that the main target of Al toxicity was the root tissue of the plant. Root damage was characterized by decreased protein content in the cytoplasm and increased membrane damage to cell walls, which resulted in leakage (Zhu et al., 2018). Qian et al. (2018) reported that the fresh and dry weights of the rice seedlings were in significant correlation with chlorophyll content. This result indicated that a low Al concentration increased the seedlings' fresh and dry weights by increasing the leaf chlorophyll content and promoting photosynthesis.

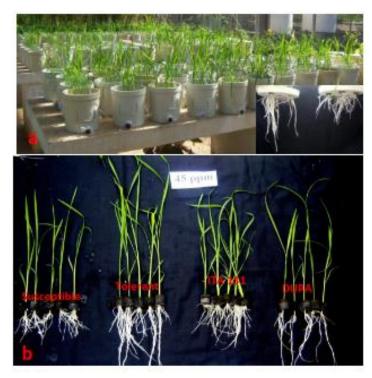


Figure 2. The experiment of Al stress on Yoshida nutrient solution showed the root lengths of ITA 131 (susceptible check), and DUPA (tolerant check) under 45 ppm.

Root shortening is one of the consequences of Al inhibition; therefore, its structure appeared to be shorter, fat, and reduced branching, while its adventitious roots grew the more (Figure 2a). The penetration of roots into hard soil layers also inhibit nutrients and water absorption. The toxicity level depends on the concentration of Al^{+3} ions in the soil solution. Al decreased the fresh weight by inhibiting the absorption of water and mineral substances (Qian et al., 2018).

The Relative Root Length (RRL) values for DH1 lines varied between 0.53-1.03 (Table 4). The RRL value of the Dupa (tolerant check) was 0.74, while ITA131 (susceptible check) was 0.53 (Figure 2b). The 5% LSD test showed no significant difference between the PAR values for more tolerant genotypes and for susceptible checks (Table 4). This test corresponded with the previous experiments carried out by Prasetiyono (2003), Bakhtiar et al. (2007) that Dupa had tolerance at RRL value of 0.7, however, for ITA131, it was 0.53, which was found to increase from the previous test of 0.41 (Bakhtiar et al., 2007). For this reason, it was necessary to review using ITA varieties as susceptible checks (Figure 2b). The 5% LSD test on DH1-lines resulted in 8 lines having significantly different higher RRL values than the Dupa check varieties (PAR = 0.74), such as line P6-274, P6-314, P3-196, P6-273, P6-311, P6-250, P6-267, and P6-278 (Table 4).

Lines	Al ₀	Al_{45}^{1}	RRL	Criteria ²	Lines	Al ₀	Al ₄₅	RRL	Criteria
Lines	(CI		KKL		Lines	(cm)			
P6-274	16.2	16.7	1.03*	HT	P6-319	20.4	16.0	0.78	Т
P6-314	20.3	20.3	1.01*	HT	P6-275	20.3	15.6	0.78	Т
P3-196	17.1	16.8	0.98*	HT	P6-297	25.1	19.3	0.77	Т
P6-273	19.9	19.5	0.97*	HT	P3-210	20.6	15.8	0.76	Т
P6-311	15.3	14.9	0.96*	HT	P3-161	20.2	15.8	0.76	Т
P3-250	16.8	15.9	0.95*	HT	P3-135	23.1	17.2	0.76	Т
P6-267	10.6	10.1	0.95*	HT	P3-175	21.8	16.6	0.76	Т
P6-278	19.4	18.3	0.94*	HT	P3-221	23.8	18.1	0.76	Т
P6-286	23.4	21.6	0.93	HT	P3-190	20.2	15.3	0.75	Т
P6-266	12.5	11.7	0.93	HT	P6-320	19.9	15.2	0.75	Т
P3-191	21.5	19.6	0.90	HT	P3-162	20.9	15.4	0.74	Т
P6-264	14.0	12.6	0.90	HT	P1-108	20.2	15.0	0.74	Т
P3-238	17.9	15.1	0.88	HT	P6-317	16.3	12.2	0.73	Т
P3-204	17.2	15.1	0.88	HT	P3-131	21.3	15.2	0.72	Т
P6-291	14.9	13.1	0.87	HT	P3-248	18.7	13.5	0.72	Т
P6-265	12.4	10.9	0.87	HT	P6-103	20.6	14.7	0.70	RT
P6-261	17.1	14.8	0.87	HT	P3-160	24.2	16.8	0.70	RT
P6-257	20.6	17.8	0.86	HT	P3-31	22.4	13.8	0.63	RT
P6-255	21.0	17.9	0.85	HT	P3-26	23.7	14.6	0.61	RT
P6-276	20.1	16.9	0.85	Т	P4-45	22.1	13.3	0.60	RT
P6-271	21.7	17.8	0.84	Т	P5-50	22.1	12.9	0.59	RT
P3-148	20.9	17.3	0.83	Т	P2-1	18.5	11.1	0.59	RT
P3-120	23.2	19.6	0.83	Т	P3-27	25.7	14.0	0.54*	RT
P6-272	20.5	16.6	0.83	Т	P2-2	18.5	10.1	0.54*	RT
P6-62	20.6	16.8	0.83	Т	P3-28	23.9	12.7	0.53*	RT
P6-105	16.6	13.7	0.83	Т	Dupa	24.7	18.2	0.74	Т
P6-295	21.8	17.8	0.83	Т	ITA131	21.1	11.3	0.53	RT
P3-159	24.5	19.9	0.81	Т	SGJT-28			0.89	HT
P3-134	19.3	15.6	0.80	Т	SGJT-36			0.86	HT
P3-150	21.9	17.6	0.80	Т	W.Rarem			0.52	RT
P6-302	20.3	15.5	0.79	Т	Fatmawati			0.76	Т
P3-158	24.1	19.2	0.79	Т	BNT 0.05			0.2	
P3-249	20.6	16.3	0.78	Т	KK (%)			15.69	2 1 $ 1$

Table 4. Root lengths in the treatments of 0 and 45 ppm Al with the Relative Root Length (RRL) value of DH1-lines at 14 days after planting

*Significantly different from Dupa based on LSD 0.05 test; ${}^{1}Al_{0}= 0$ AlCl₃, Al₄₅= 45 ppm AlCl₃; ${}^{2}HT = Highly tolerant, T=tolerant, AT=Rather tolerant$

In tolerance genotypes, Al was prevented from passing through the plasma membrane and entering the symplast and sites that were sensitive in the cytoplasm root tip. The ability of the root cell wall to absorb low Al and the permeability of its membrane were involved in the mechanism of external tolerance. Zhu et al. (2018) explained that Hydrogen sulfide (H2S) played an essential role in Al stress resistance in plants. H2S lowered Al toxicity by reducing its content in the apoplast and symplast rice root. Wang et al. (2017) showed that the activity of cytosolic glucose-6-phosphate dehydrogenase was also involved in resistance to Al with the intervention of ROS levels in soybean. The result by Qian et al. (2018) indicated that H2O2 accumulation was also a key factor contributing to the decreased root activity.

In Al tolerance, plant pH was raised at the root tip (Kochian et al., 2004; Ma, 2007). This was due to the influx of H^+ around this area, which resulted in the deposition of Al and a decreasing Al^{3+} ion activity (Samac and Tasfaye, 2003; Zhao et al., 2014). High NO³⁻ content in plants tend to reduce Al toxicity. It also caused the release of hydroxyl (OH⁻) or bicarbonate ions (HCO³⁻) into the rhizosphere, increased pH, and suppressed the solubility of Al (Justino et al., 2006; Zhao et al., 2018).

Criteria	Genotype	Number of lines
Highly	P6: 274, 314, 273, 311, 267, 278, 286, 266, 264, 291,	
tolerant	265, 261, 257, 255, dan P3: 196, 191, 238, 204, 250	19
Tolerant	P6: 276, 271, 272, 62, 105, 295, 302, 319, 275, 297,	
	320, 108, 317, dan P3: 148, 120, 159, 134, 150, 158,	
	249, 210, 161, 135, 175, 221, 190, 162, 131, 248	29
Rather	P2: 1, 2; P3:160, 31, 26, 27, 28; P4-45, P5-50, P6-103	
tolerant		10

Table 5. The results of the DH1-line selections for a new type of upland rice under Al stress

The RRL values of P3-27, P2-2, P3-28 were lower than the tolerant checks, and classified as the moderate tolerant genotypes (0.53-0.54), which was almost the same as the ITA susceptible checks (0.53) (Table 4). The grouping was based on the RRL values in 58 DH1-lines, tested on nutrient cultures at 0 and 45 ppm Al, and produced susceptible = PAR < 0.5, with low tolerance = 0.5 < PAR < 0.70, moderate = 0.70 < PAR < 0.85, and high = PAR > 0.85, therefore, 19 high, 29 moderate, and 10 low tolerant genotype were produced (Table 5). **Distribution of Population from Cross of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x**

Distribution of Population from Cross of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati)

Aluminum tolerance was based on the Relative Root Length (RRL) and the Root Shoot weight Ratio (RSR) in DH1 populations. The crossing of P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati) with the two parents were presented in Table 6. The Relative Root Lengths (RRL) in the P3 population ranged from 0.53 - 0.98, while the P6 population ranged from 0.70 - 1.03. The Fatmawati elders had an RRL value of 0.77, while that of SGJT-36 was 0.87. There were diversities in all observed characters, with the RSR of the P3 population that ranged from 0.20 to 0.32, while that of P6 graded from 0.22 to 0.39. The Fatmawati elders had RSR values of 0.30, while those of SGJT-36 was 0.32 (Table 6).

Table 6. The Relative Root Length (RRL) and the Root Shoot weight Ratio (RSR) of DH1-lines in populations of crossing P3 (Fatmawati x SGJT-36) and P6 (SGJT-36 x Fatmawati)

	$X \pm SD$	Range of D	H1 population	Mean value of parent **		
Characters	DH1*	P3	P6***	Fatmawati	SGJT-36	
Relative Root Length	0.8 ± 0.11	0.53 - 0.98	0.70 - 1.03	0.77	0.87	
Root shoot weight ratio						
(RSR)	0.29 ± 0.04	0.20 - 0.32	0.22 - 0.39	0.30	0.32	

*X \pm SD DH1 is mean \pm standard deviate, **Fatmawati and SGJT-36 5 plants each,*** P3 were 26 lines, and P6 were 27 lines

RRL and RSR values observed in DH1 populations varied significantly. The frequency distribution of P3 and P6 populations based on RRL values were presented in Table 7. Based on aluminum tolerance criteria, the frequency distribution of the two elders did not overlap. Fatmawati had moderate, while SGJT-36 had a high tolerance. The frequency distribution of DH1 populations of P3 derivatives had extreme, moderate, and low tolerance, while those of P6 had high and moderate tolerance only (SGJT-36 elders). Table 7. Distribution of DH1-lines in each population of crossing P3 and P6 (SGJT-36 x Fatmawati) based on aluminum tolerance.

Criteria	Pare	ent*	DH1**		
Cintenia	Fatmawati	SGJT-36	P3	P6	
High tolerant	0		5	14	
Moderate tolerant		0	16	12	
Low tolerant	0	0	5	1	
Susceptible	0	0	0	0	

*The Fatmawati elders and SGJT-36 each with five plants, ** P3 were 26 lines, and P6 were 27 lines, \sqrt{A} l tolerance criteria on elders

The frequent transgressive segregation in the anther of a plant produced lines with different tolerance levels. Few genes were observed to control Al acceptance levels in rice; therefore, not all genotypes possessed this gene. Zang et al. (2019) found that there were significant differences between the gene expression patterns of Indica and Japonica Al-tolerant varieties. Therefore, the gene arrangement in the subgroups was similar to those in Japonica species. Each gene, or their combination, played a role in regulating the mechanism of Al-tolerance in rice and expressed in each phase of plant growth (Wu et al. 2000). Thus, the aged species used in this study produced lines that were tolerant to aluminum stress. Therefore, further research was needed for the evaluation of leaf blast disease in the greenhouse.

CONCLUSION

The results of the evaluation of Al tolerance based on RRL in nutrient culture produced 19, 29, and 10 genotypic tolerance that was high, moderate, and low, respectively. The tolerance level of Al in the DH1-lines of upland rice produced by anther culture varied significantly. The root and shoot length with the shoot dry weight had a high coefficient of diversity, heritability, and significantly correlated with each other. The distribution of DH1 populations of P3 derivatives produced high, moderate, and low tolerance criteria, while those of P6 yielded high and moderate only.

Acknowledgment

We would like to thank Yenni and Imam (staff at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development) for their assistance in the laboratory and field works.

REFERENCES

Akinwale MG, Gregorio G, Nwilane F, Akinyele BO, Ogunbayo SA and Odiyi AC, 2011. Heritability and correlation coefficient analysis for yield and its components in rice (O. sativa L.). Afr. J. Plant Sci. 5:207212.

Awasthi JP, Saha B, Regon P, Sahoo S, Chowra U, Pradhan A, Roy A and Panda SK, 2017. Morphophysiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS ONE. 12(4): e0176357. <u>https://doi.org/10.1371/journal.pone.0176357</u>

Bakhtiar, Purwoko BS, Trikoesoemaningtyas, Chozin MA, Dewi IS and Amir M, 2007. Penapisan galur padi gogo hasil kultur antera untuk ketenggangan aluminium dan ketahanan terhadap penyakit blas (Screening of Doubled Haploid Upland Rice Lines Generated from Anther Culture to Aluminum Tolerance). Bul. Agron. 35(1):8 – 14.

Belachew KY and Stoddard F, 2017. Screening of faba bean (*Vicia faba* L.) accessions to acidity and aluminium. Peer J. 5: e2963; DOI 10.7717/peerj.2963.

Brunner I and Sperisen C, 2013. Aluminum exclusion and aluminum tolerance in woody plants. Frontiers in Plant Science. 4:1-12.

Freitas LB, Fernandes DM, Maia SCM, Moniz A, Mazziero BG and Steiner F, 2019. Sources and doses of aluminum in experiments with rice in nutrient solution. R. Bras. Eng. Agríc. Ambiental. 23(7):511-517.

Herawati R, Purwoko BS and Dewi IS, 2009. Keragaman genetik dan karakter agronomi galur haploid ganda padi gogo dengan sifat-sifat tipe baru hasil kultur antera (Genetic diversity and agronomic traits of double haploid lines with the characteristics of new types upland rice derivated from anther culture). Jurnal Agronomi Indonesia. 37(2):87-93.

Herawati R, Masdar and Alnopri, 2019. Genetic analysis of grain yield of F4 populations for developing new type of upland rice. SABRAO Journal of Breeding and Genetics. 51(1):68-79.

Ismail AM, Heuer S, Thomson MJ and Wissuwa M, 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol. 65:547–570.

Justino GC, Cambraia J, Olivia MA and Oliveira Ja, 2006. Uptake and reduction of nitrate in two rice cultivars in the presence of aluminum. Pesqui. Agropec. Bras. 41:1285-1290. Doi:10.1590/S0100-204X2006000800011

Kochian LV, Hoekenga OA, Pineros MA, 2004. How do crop plants tolerate acid soil? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology 55:459–493.

Kochian LV, Piñeros MA, Liu JP and Magalhaes JV, 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol. 66: 571±598. https://doi.org/10.1146/annurevarplant-043014-114822

Liu J, Luo X, Shaff J, Liang C, Jia X, Li Z, Magalhaes J and Kochian LV, 2012. A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminum resistance and improved carbon-use efficiency for aluminum resistance. Plant J. 71: 327–337.

Lupwayi NZ, Benke MB, Hao XY, O'Donovan JT and Clayton GW, 2014. Relating crop productivity to soil microbial properties in acid soil treated with cattle manure. Agron. J. 106: 612–621.

Ma JF, 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiology. 41:383-390.

Ma JF, 2007. Sindrome of aluminum toxicity and diversity of aluminum resistance in higher plant. Int. Rev. cytol. 264:225-252. Doi:10.1016/S0074-7696(07)64005-4

Ma JF, Chen ZC and Shen RF, 2014. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil. 381:1–12.

Nursyamsi D, 2000. Aluminum tolerance of tropical crops. MS. thesis. Hokkaido University. Hokkaido.

Prasetiyono J, 2003. Identifikasi marka mikrosatelit yang terpaut dengan sifat toleransi terhadap keracunan alumunium pada padi persilangan Dupa x ITA 131 (Identification of microsatellite markers that are linked to the tolerance properties of aluminum toxicity in crossing rice DUPA x ITA 131). MS. thesis. Bogor University, Bogor.

Qian L, Huang P, Hu Q, Qian Y, Xu S and Wang R, 2018. Morpho-Physiological Responses Of An Aluminum-Stressed Rice Variety 'Liangyoupei 9'. Pak. J. Bot. 50(3): 893-899.

Samac DA and Tasfaye M, 2003. Plant improvement for tolerance to aluminum in acid soils. Plant Cell Tissue and Organ Culture. 75:189-207.

Silva S, Pinto-Carnides, Martins-Lopes P, Mato M, Guedes-Pinto H and Santos C, 2010. Differential aluminum changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Evir & Exp Bot. 68:91-98.

Silva S, Pinto G, Dias MC, Correia CM, Moutinho-pereira J, Pinto-carnide O and Santos C, 2012. Aluminium long-term stress differently affects photosynthesis in rye genotypes. Plant Physiol. Biochem. 54:105±112. https://doi.org/10.1016/j.plaphy.2012.02.004

Stanfield WD, 1983. Theory and Problems of Genetics. 2nd edition. Schain.s Outline Series. Mc.Graw Hill Book Co. New Delhi.

Singh RK and Chaudhary BD, 1979. Biometrical Methods in Quantitative Genetics Analysis. Kalyani Publ. New Delhi. 304 hlm.

Wang HH, Hou JJ, Li Y, Zhang YY, Huang JJ and Liang WH, 2017. Nitric oxide-mediated cytosolic glucose-6-phosphate dehydrogenase is involved in aluminum toxicity of soybean under high aluminum concentration. Plant Soil. 416:39–52. doi: 10.1007/s11104-017-3197-x

Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF and Shen RF, 2015. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant Cell Environ. 38:1382–1390. doi: 10.1111/pce.12490

Wan WJ, Tan JD, Wang Y, Qin Y, He HM., Wu HQ, Zuo WL and He DL, 2019. Responses of the rhizosphere bacterial community in acidic crop soil to pH: changes in diversity, composition, interaction, and function. Sci. Total Environ. 697:134418.

Watanabe T and Okada K, 2005. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Annals of Botany. 95:379–385.

Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ and He C, 2000. QTL and epistasis for aluminum tolerances in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet. 100:1295-1303. <u>https://doi.org/10.1007/s001220051438</u>

Yoshida S, Forno DS, Cock JH and Gomez KA. 1976. Laboratory Manual for Physiological Studies of Rice. IRRI 3rd ed.

Yamamoto Y, 2019. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation, Soil Science and Plant Nutrition 65(1):41-55, DOI: 10.1080/00380768.2018.1553484

Zhang P, Ding Z, Zhong Z and Tong H, 2019. Transcriptomic Analysis for Indica and Japonica Rice Varieties under Aluminum Toxicity. Int. J. Mol. Sci. 20:997. doi:10.3390/ijms20040997

Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ, Zhong C, Bai ZG, Sajid H, Cao XC and Jin QY, 2018. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice. Front. Plant Sci. 9:294. doi:10.3389/fpls.2018.00294

Zhao XQ, Chen RF and Shen RF, 2014. Coadaptation of plants to multiple stresses in acidic soils. Soil Sci. 179:503–513. doi:10.1097/SS.00000000000086

Zhao XQ and Shen RF, 2018. Aluminum-Nitrogen Interactions in the Soil-Plant System. Frontiers in plant science, 9:807. https://doi.org/10.3389/fpls.2018.00807

Stanfield WD, 1983. Theory and Problems of Genetics. 2nd edition. Schain.s Outline Series. Mc.Graw Hill Book Co. New Delhi.

Singh RK and Chaudhary BD, 1979. Biometrical Methods in Quantitative Genetics Analysis. Kalyani Publ. New Delhi. 304 hlm.

Wang HH, Hou JJ, Li Y, Zhang YY, Huang JJ and Liang WH, 2017. Nitric oxide-mediated cytosolic glucose-6-phosphate dehydrogenase is involved in aluminum toxicity of soybean under high aluminum concentration. Plant Soil. 416:39–52. doi: 10.1007/s11104-017-3197-x

Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF and Shen RF, 2015. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant Cell Environ. 38:1382–1390. doi: 10.1111/pce.12490

Wan WJ, Tan JD, Wang Y, Qin Y, He HM., Wu HQ, Zuo WL and He DL, 2019. Responses of the rhizosphere bacterial community in acidic crop soil to pH: changes in diversity, composition, interaction, and function. Sci. Total Environ. 697:134418.

Watanabe T and Okada K, 2005. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Annals of Botany. 95:379–385.

Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ and He C, 2000. QTL and epistasis for aluminum tolerances in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet. 100:1295-1303. <u>https://doi.org/10.1007/s001220051438</u>

Yoshida S, Forno DS, Cock JH and Gomez KA. 1976. Laboratory Manual for Physiological Studies of Rice. IRRI 3rd ed.

Yamamoto Y, 2019. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation, Soil Science and Plant Nutrition 65(1):41-55, DOI: 10.1080/00380768.2018.1553484

Zhang P, Ding Z, Zhong Z and Tong H, 2019. Transcriptomic Analysis for Indica and Japonica Rice Varieties under Aluminum Toxicity. Int. J. Mol. Sci. 20:997. doi:10.3390/ijms20040997

Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ, Zhong C, Bai ZG, Sajid H, Cao XC and Jin QY, 2018. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice. Front. Plant Sci. 9:294. doi:10.3389/fpls.2018.00294

Zhao XQ, Chen RF and Shen RF, 2014. Coadaptation of plants to multiple stresses in acidic soils. Soil Sci. 179:503–513. doi:10.1097/SS.000000000000086

Zhao XQ and Shen RF, 2018. Aluminum-Nitrogen Interactions in the Soil-Plant System. Frontiers in plant science, 9:807. https://doi.org/10.3389/fpls.2018.00807

Revision-2

2 pesan

Reny Herawati <reny.herawati@unib.ac.id> Kepada: Asian Journal of Agriculture and Biology <asian.jab@gmail.com> 5 Maret 2021 15.37

Dear AJAB editor team,

With all due respect, we have uploaded the revisions according to the suggestions of the reviewers

We have also uploaded additional files containing information about the undertaking author, tracking of proofreading, certificate of proofreading, and plagiarism check results.

We also inform you that there were additional co-authors who contributed to the writing of our manuscript

Thank you for your kind attention, We hope to get a good response as soon as possible

Best regards,

Reny Herawati

Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Kepada: Reny Herawati <reny.herawati@unib.ac.id> 5 Maret 2021 17.08

Co-authors according to undertaking will be accepted. Any author not mentioned in undertaking will not be accepted [Kutipan teks disembunyikan]

Sincerely,

Editorial Office Asian Journal of Agriculture and Biology (AJAB) Islamabad, Pakistan URL: http://www.asianjab.com

Decision Letter to Authors - Acceptance - (AJAB-2020-05-295)

1 pesan

noreply@ejmanager.com <noreply@ejmanager.com> Balas Ke: "noreply@ejmanager.com" <noreply@ejmanager.com> Kepada: reny.herawati@unib.ac.id 6 Maret 2021 00.50

Dear Reny Herawati,

I am pleased to inform you that your manuscript titled as "Assessment of Aluminum Tolerant of Double Haploid Lines for Developing

New Type of Upland Rice" (Manuscript Number: AJAB-2020-05-295 was accepted for publication as full length research paper in Asian Journal of Agriculture and Biology.

Please submit the publication charges of USD 200/- (PKR 10,000/- for local authors) in favor of account title as given and send us the scanned copy of the receipt of this transaction.

Please submit the charges within 7 days of acceptance, otherwise your article may be stopped for further publication process.

Find below bank details of journal:

Account Title: Asia Journals Account No: 17427901438503 Bank Name: HBL, SRBC Branch, H-9, Islamabad, Pakistan IBAN: PK56HABB0017427901438503 Swift Code: HABBPKKA

You may login to your author account page, and visit accepted articles section in order to get offical/formal acceptance letter as PDF. I would like to remind that you could send your future manuscripts to Asian Journal of Agriculture and Biology.

Sincerely yours,

Sabir Hussain, Dr. Managing Editor

IMPORTANT: USE JOURNAL CONTACT EMAIL for your messages. Do not answer to this email. It is not checked for messages

http://www.ejmanager.com

Your Online First manuscript is published in Asian Journal of Agriculture and Biology.

6 pesan

Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Bcc: reny.herawati@unib.ac.id 10 April 2021 11.17

Dear Colleague,

We feel immense pleasure to intimate you that your Online First manuscript is published and now available online. To view and download article, please click the following link:

https://www.asianjab.com/online-first-2/

Please feel free to contact us for any query about AJAB.

Sincerely,

Editorial Office Asian Journal of Agriculture and Biology (AJAB) Islamabad, Pakistan URL: http://www.asianjab.com

Reny Herawati <reny.herawati@unib.ac.id> Kepada: Asian Journal of Agriculture and Biology <asian.jab@gmail.com>

Dear AJAB editor,

Until now, the manuscript does not show in AJAB current issues, we look forward from you soon

Best Regards, Herawati et al, 2021

[Kutipan teks disembunyikan]

Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Kepada: Reny Herawati <reny.herawati@unib.ac.id>

Please see in online first [Kutipan teks disembunyikan]

[Kutipan teks disembunyikan]

Reny Herawati <reny.herawati@unib.ac.id> Kepada: Asian Journal of Agriculture and Biology <asian.jab@gmail.com>

Dear editor,

We have seen our manuscript published in the online first, but there is no number of volume, and the formate article is different from current issues..please explain us.. Tq

Best regards Reny

https://mail.google.com/mail/u/0/?ik=63de116a2a&view=pt&search=all&permthid=thread-f%3A1696625598315106668&simpl=msg-f%3A1696625598... 1/2

13 Mei 2021 10.14

13 Mei 2021 13.27

13 Mei 2021 21.09

[Kutipan teks disembunyikan]

Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Kepada: Reny Herawati <reny.herawati@unib.ac.id> Cc: Laig Khan <laig.khan2011@gmail.com>

13 Mei 2021 21.42

Dear Author

Our online first article format is simple one. Page and volume numbers are assigned when they are published in Current Issue. DOI is assigned to every article and is used in place of page n volume. This is standard practice all over the world.

Stay blessed n Eid Greetings. [Kutipan teks disembunyikan]

Reny Herawati <reny.herawati@unib.ac.id> Kepada: Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Cc: Laiq Khan <laiq.khan2011@gmail.com> 13 Mei 2021 21.48

Thank you for the clarification.. [Kutipan teks disembunyikan]

Galley Proof of your article: AJAB-2020-05-295_ Full names, contribution

4 pesan

Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Kepada: Reny Herawati <reny.herawati@unib.ac.id> 25 Mei 2021 20.28

Dear Author,

Your article is almost ready for publication at the Asian Journal of Agriculture and Biology. But before publication, your final check will be highly appreciated. For this reason, the galley proof of your accepted article is attached.

Please check/read it **carefully** for any mistake or typographical error(s); then submit your corrections (if exist) maximum by **June 5, 2021.**

Please also provide the full names and contribution of each author.

Kindly note that if you do not respond to this message or do not submit any possible correction within the deadline we will reserve your article for online publication as it is, or we will drop your article from publication in this issue. Please also consider that **no changes can be made in your article after this step**.

Sincerely,

Editorial Office

Asian Journal of Agriculture and Biology (AJAB) Islamabad, Pakistan **URL:** http://www.asianjab.com

AJAB-2020-05-295_ Full names, contribution.pdf

Reny Herawati <reny.herawati@unib.ac.id> Kepada: Asian Journal of Agriculture and Biology <asian.jab@gmail.com> 26 Mei 2021 00.00

Dear editorial office AJAB,

We have checked and approved the final manuscript, and have provided the full names and contributions of each author. Please find the attached file below.

Thank you for your cooperation and quick response

Best regards, Herawati et al [Kutipan teks disembunyikan]

AJAB-2020-05-295_fullname_contributian_provide.pdf

Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Kepada: Reny Herawati <reny.herawati@unib.ac.id> 31 Mei 2021 11.34

Dear Author,

Please do not incorporate changes in PDF on your own. Only highlight the changes and write in comments.

1/7/22, 10:06 AM

Email Universitas Bengkulu - Galley Proof of your article: AJAB-2020-05-295_ Full names, contribution

We will only copy full names and contribution of authors from this PDF file. If you need any other corrections, please highlight those changes and send us again.

Sincerely,

Editorial Office

Asian Journal of Agriculture and Biology (AJAB) Islamabad, Pakistan URL: http://www.asianjab.com

[Kutipan teks disembunyikan]

Reny Herawati <reny.herawati@unib.ac.id> Kepada: Asian Journal of Agriculture and Biology <asian.jab@gmail.com> 31 Mei 2021 13.44

Dear AJAB Editor,

We send back the final manuscript, We apologized for the misunderstanding Thank You

Best Regards, Herawati et al

[Kutipan teks disembunyikan]

Revised_AJAB-2020-05-295_ Full names, contribution.pdf

New Issue, Vol. 2021(3), Asian Journal of Agriculture and Biology is Published

1 pesan

Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Kepada: Asian Journal of Agriculture and Biology <asian.jab@gmail.com> Bcc: reny.herawati@unib.ac.id 13 Juli 2021 14.36

Dear Colleague,

Many congratulations.

We feel immense pleasure to inform you that your article has been published in the current issue [Vol. 2021(2)] of Asian Journal of Agriculture and Biology (a Web of Science & Scopus indexed journal) and is now available online.

To view and download your article(s), please visit our website or click the following link:

https://www.asianjab.com/

You are also requested and encouraged to maximally cite this article in your future publications / articles for enhancing impact of your article and AJAB as well.

Sincerely,

Editorial Office Asian Journal of Agriculture and Biology (AJAB) Islamabad, Pakistan URL: http://www.asianjab.com