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Identification of drought tolerant and molecular analysis of DREB2A
and BADH?2 genes and yield potensial of lines from single crossing
Bengkulu local rice varieties

Abstract. Screening in the seedling stage of 39 progeny of F6 lines to drought stress was carried out in the greenhouse. Drought tolerant
and sensitive varieties of IR 20 and Salumpikit, respectively, were used as control plants. The metfgkls for traits identification of leal
curled, dried, and recovery ability after exposure to severe drought for two weeks was following the Standard Evaluation System (SES)
developed by IRRI. Molecular analysis to detect the presence of the DREB2A gene was carried out by PCR amplification of genomic
DNA using forward- and reverse- oligonucleotide primers of CCTCATTGGGTCAGGAAGAA and GGATCTCAGCCACCCACTTA,
respectively, while for BADH2 gene using forward- and reverse- oligonucleotide primers of GGCCAAGTACCTCAAGGCGA and
TGTCCCCAGCTGCTTCATCC, respectively. Molecular markers of DREB2A and BADH2 genes were also identified in 39 tested
lines with approximately 250 and 2300 bp length, respectively. This study concluded that the progeny of F6 lines generating from the
crossing of local varieties of IR7858 and IR 148 is the potential to become a drought-tolerant varielﬁ upland rice. Line numbers BKL2
B-2-264-6 and BKL4 B-1-268-10 have a potential yield of more than 12 tonnes/ha. These line has the potential to be developed on
rainfed lowland rice or dry land because it has drought resistance.

Keywords: BADH2, DREB2A, drought tolerance, gene identification, yield potential

Running title: Identification of DREB2A and BADH?2 genes for drought tolerant

INTRODUCTION

The development of upland rice variety is an alternative to increase national rice production in Indonesia because the
extensification of lowland rice is increasingly difficult. This strategy is carried out through optimizing the use of
uncultivated lands, where most of them have the potential for upland rice cultivation (Center for Research and
Dcvcl()pmﬂ 2006). The use of superior varieties, which has higher yields and tolerance to various obstacles so that it
adapt well to climate change, is urgently needed to support efforts to increase rice yields in the dry land. Anticipating the
impact of climate change on sustainable agricultural systems is carried out to produce technological innovations that are
able to overcome and suppress the impacts caused. These technological innovations include superior varieties of drought-
tolerant rice. Genempr()vement to obtain superior varieties that are adaptive to the conditions of drought stress is an
essential priority in rice breeding programs.

Assembling drought-tolerant rice varieties can be done through crossbreeding, which combines the resistant traits of
the parents with other crops that have a high yield. Molecular marker technology can help selection more accurately than
venli()nall. One of the markers related to drought tolerance is the QTL marker (quantitative trait locus) 12.1. The
International Rice Research Institute (IRRI) had crossed the Vandana variety of Indian rice with Way Rarem from
Indonesia. One of the filial is a crossing number of IR148+, which is derived from IR crossing 79971-B-369-B-B
(Muly;min@ et al. 2010). The crossing population has been showed to contain QTL 12.1 markers. The location of
markers is on chromosome 12, between SSR mar RM28048 and RM 511 (Mc Couch et al. 2002). The presence of
these markers can maintain yields in conditions ()&c{e drought stress during the reproductive stage before flowering. In
normal conditions, the marker QTL 12.1 did not have a significant effect on some of the parameters observed (Bernier et
al. 2007).

The DREB2 gen ntrols drought stress in plants (Matsukura et al. 2010; Srivastav et al. 2010; Akhtar et al. 2012;
Huang et al. 2018 REBs (Dehydration Responsive Element Bindings) are transcription factor proteins (TFs) that are
very important in regulating the expression of drought-responsive genes (Lata and Prasad 2011; Fujita et al. 2013). The
homology of the DREB2 gene in rice is DREB2A (Sakuma et al. 2002). Some of the DREB2A target genes are MT2A,
Atlg69870, At3g53990, At1g22985, RD29A, LEA14, At2g23120 [9], RD29B, Atlg52690, RD17 (Sakuma et al. 2006;
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Qin et al. 2011), AtHsfA3, HSP18.2, and Hsp70 (Qin et al. 2011). The importance of the DREB2A gene is because it can
be used as aregulator of valri()um:»es of drought-responsive genes, making it a marker of drought stress-resistant genes.

Osmotic adjustment in cells is the primary response of plants to dmugn (Ziveak et al. 2016; Blum 2017). The reports
of previous studies indicate that osmoprotectant substances, namely glycine betaine, plays an essizll role in cell
stabilization by balancing the structure of the protein quaternary and rnnbrame structure against the adverse effects of
salinity (Sakamoto and Murata 2000; Saxena et al. 2019). Besides, it facilitates osmotic adjustment by lowering the
internal osmotic potential, which contributes to the ability to tolerate water prcs, stabilizing the PSII and RuBisCO
complexes in the process of ph()nthesis under seizure conditions (Holmstrém et al. 2000; Wang et al. 2019; Huang et
al. 2020). The pc)sim effects of exogenous application of glycine in plants that grow on salinity stress have been shown to
pr()nl plant cells (Demiral and Tiirkan 2004; Saxena et al. 2019).

Betaine aldehyde dehydrogenase (BADH) is known as a key enzyme for biosynthesis of glycine betaine. Many
researchers have reported the accumulation of glycine bctainm]d BADHI gene expression for tolerance to salinity,
dryness, and low temperatures (Lapuz et al. 2019; Kahraman et al. 2019). The objective of the study was to identify
dr()ughl-l()l@]t traits and molecular analysis of DREB2A and BADH2 genes the progeny of F6 lines resulted from the
crossing of local varieties (Sriwijaya and Bugis) with drought-tolerant varieties of IR7858 and IR 148+ positive QTL on
chromosome

MATERIALS AND METHODS

The experiments were conducted at the University of Bengkulu. Screening sluw;ls done in the greenhouse of
Agricultural Faculty from Februari to April 2020, while molecular analysis was done in the laboratory of the Department
of Biology from May to July 2020. Plant mulcrn; were using the progeny of 39 lines that selected from F6 generations
resulted from the single crossing of Bengkulu local varieties (Sriwijaya and Bugis) with drought-tolerant varieties of
IR7858 and IR 148+ QTL positive on chromosome 12.1 (Mulyaningsih et al. 2010). Var. Salumpikit and IR 20 as drought-
tolerant and sensitive control varieties (Table 1).

Table 1. Selected F6 lines for traits and molecular identification of drought-tolerant genes of DREB2A and BADH2

Lines Line

number Genotype Initial Crossing number Genotype Initial Crossing

1 262 A1 4-1 Bugis x IR 148 22 250-6 Bugis x IR7858

2 260.A3 2 Bugis x IR7858 23 2599 Bugis x IR7858

3 260.A32 Bugis x IR7858 24 259-15 Bugis x IR7858

4 262.A1.4-2 Bugis x IR148 25 260-21 Bugis x IR7858

5 262.A41.4-3 Bugis x IR 148 26 260-26 Bugis x IR7858

6 260.A32 Bugis x IR7858 27 26243 Bugis x IR148

7 262.A14-4 Bugis x IR148 28 262-48 Bugis x IR148

8 260.A32 Bugis x IR7858 29 255-59 Sriwijaya x IR148
9 262.A14-5 Bugis x IR 148 30 2532 Sriwijaya x IR148
10 262.A1.4-6 Bugis x IR 148 3l 259-17 Bugis x IR7858

11 251-17 Bugis x IR148 32 2503 Bugis x IR7858
12 248-14-1 Bugis x IR7858 33 254-54 Sriwijaya x IR148
13 249-15-1 Bugis x IR7858 34 258-60 Sriwijaya x IR7T858
14 250-16 Bugis x IR 148 15 255-56 Sriwijaya x IR148
15 247-13 Bugis x IR7858 36 262-44 Bugis x IR148

16 269-11 Sriwijaya x IR7858 37 262-46 Bugis x IR148

17 248-14-2 Bugis x IR7858 38 259-18 Bugis x IR7858
18 249-15-2 Bugis x IR7858 39 2594 Bugis x IR7858
19 267-9-1 Sriwijaya x IR148 I IR20 Control variety
20 267-9-2 Sriwijaya x IR148 S Salumpikit Control variety
21 259-1 Bugis x IR7858

40

Screening of drought-tolerant rice of 39 F6 lines was carried out 5()wing the standard Evaluation System (SES)
developed by IRRI (200"['he drought-susceptible variety (IR2md local drought-tolerant variety (Salumpikit) were
used as control. The test was caa:dout following the method of Kumar et al. (2015); Swain et al. (2017); Herawati et al.
(2017). Plastic tubs sizes of 40 cm x 25 cm x 20 ¢cm was filled with soil. Then, each tub was planted ten family lines and
two control varieties. Each line was sown for 20 seeds in a row. Seedlings were watered intensively in 2 ks after
planting. After this stage, watering was stopped until the sensitive plants dried. Drought tolerance assessment was carried
out based on the SES methods, as described in Table 2. Trait responses of the seedlings were recorded, then seedlings
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were watered intensively for the next ten days. Recovery ability was recorded following the methods of SES, as described
in Table 2.

Genomic DNA was isolated from fresh leaves at 14 days after treatment (DAT). Fragments of 0.1 g of rice leaf were
ground in the mortar by adding liquid nitrogen. Isolation of total DNA was carried out by modifying the protocols of
Wizard's Genomic DNA Purification Kit. The ground leaf was put into a 2 nffflibe, then 600 pl of Nuclei Lysis Solution
was added, followed shaking by vortex for 3 seconds. Then, the solution was heated in a water bath at 65°C for 15
minutes. RNase of 3 pl was added Blowed incubation at 37 ° C for 15 minutes. Then, 200 pl Precipitation S¢ifion
was added, and the microtubes were centrifuged for 3 minutes at 13,000 rpm. The sup@t;mts were removed to a 1.5 ml
tube, and 600 pl of isopropanol was added. The microtubes were further centrif @&}l for 1 minute at room temperature.
The solution was discarded, and DNA remained on the bottom of microtubes was air-dried for 15 minutes. DNA
Rehydr: Solution of 100 pl was added and further incubated at 65°C for 1 hour or at 4°C for one night. The total
isolated DIeR is used as a template DN A for PCR amplification of DREB2A and BADH2 genes.

PCR amplification of the DREB2A gene using forward- and reverse- ()ligc leotide primers of
CCTCATTGGGTCAGGAAG@ and GGATCTCAGCCACCCACTTA, respectively (Jadhao et al. 2014; Kumar 2016;
Lathif et al. 2018). While the amplification of the BADH2 gene was using forward- and reverse- oligonucleotide primers
of GGCCAAGTACCTCAAGGCG and TGTCCCCAGCTGCTTCATCC, respectively (Robin et al. 2003). The PCR
mixtures, including the DNA template, forward and reverse primers, buffer, ANTP (nucleotide mi)ﬂzmd Taq polymerase,
were developed in the thermocycling. The program was started with denaturation temperature at 940C for 5 minutes,
followed by 35 cycles of denaturation at 940C for 1 minute, annealing at 590C for 2 minutes, and extension at 720C for 2
minutes, and the final extension at 720C for 10 minutes. PCR amplification products were subjected to electrophoresis in
agarose gel 1% of TBE buffer to identify successful amplifications. The gel from electrophoresis was immersed in EtBr
1% for 10 minutes, rinsed with ddH20 for 5 minutes, and visualized under UV transilluminator light.

In the season in 2020, a yield test of selected superior lines was carried out in March-July 2020 in Semarang Village,
Bengkulu City. The materials used iis study were 16 selected superior lines in the F7 generation. The experiment was
carried out plot measuring 8 m x 6 m with a spacia of 20 x 20 cm, and 1 seed was planted. Fertilize twice, the first
fertilization at the age of 14 days after planting (HSEJ with a dose of 150 kg/ha of Urea, 100 kg/ha SP36 and 100 kg/ha
KCI. The second fertilization at the age of 30 HST with a dose of 100 kg/ha Urea, 100 kg/ha SP36 and 100 kg/ha KCl.
Intensive control was carried out against weeds, pests and diseases. Observ;lli()lm the agronomic characters of 10
plant/plot samples taken from each line number. The characters observed included plant height, number of panicles/hill,
panicle length, number of filled grains/panicle, percentage of empty grain/panicle, 1000 grain weight, grain weight per hill,
and yield per plot.

RESULTS AND DISCUSSION

Identification of drought tolerant traits

Screening of F6 lines at the seedling stage was carried out to select the drought-tolerant rice (Kumar etal. 2015; Swain
etal. 2017; Herawati etal. 2017). Drought tolerant assessment following the methods of SES was done by comparing the
treated plants with control varieties of Salumpikit and IR20 (Table 2). The symptoms were identified after exposed to
drought stress for 14 days, including leaf curling, leaf drying, and ability to recover (Figure 1). The criteria of 39 Fb6 lines
were i1dentified as highly to rather tolerant, tolerant, and moderately tolerant to drought for a total number of 11, 19, and 9
lines, respectively (Table 3). The scores of dry leaf of the 30 lines with highly to rather a tolerance and tolerance were 0-1
which recovery ability was 90 to 100%, while the scores of the rest nine lines with moderate tolerance were 3-5 which
recovery ability was 70 to 90% (Table 4, Figure 1).

Table 2. Traits identification of selected F6 lines based on criteria description of SES developed by IRRI (2002)

Score Criteria Description

) Leaf Rolling Leaf Drying Recovery Ability

0 Highly Tolerant Leaves healthy No symptoms 100 % plgbd recovered

1 Tolerant Leaves start to fold (shallow) Slight tip drying 90-99% of plants recovered

3 Rather Tolerant Leaves folding (deep V-shape) Tip drying extended up to % 70-89% of plants recovered

5 Moderate tolerant Leaves fully cupped (U-shape) dor?;founh elltpkalllcares 40-69% of plants recovered

Moderate - - More than 2/3 of all leaves

7 sugoeptible Leaf margins touching (0-shape) fully dried 20-39% of plants recovered
All plants apparently dead.

9 Susceptible Leaves tightly rolled (V-shape) Length in most leaves fully 0-19% of plants recovered
dried
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Table 3. Screening of the 39 F6 lines for resistant traits and molecular identification of gene markers of DREB2A AND BADH?2

. The score The .
Line Genotype Crossing of rolling score of  Score of Criteria DREB2A  BADH2
number drought  recovery genes genes
leaf
leafl

1 262.A1 4-1 Bugis x IR148 3 3 3 T + +
2 260.A32 Bugis x IR7858 3 3 3 T + +
3 260.A32 Bugis x IR7858 0 0 0 HT + +
4 262.A1.4-2 Bugis x IR 148 3 3 3 T + +
5 262.A14-3 Bugis x IR148 3 3 3 T + +
6 260.A32 Bugis x IR7858 3 3 3 T + +
7 262.A1.4-4 Bugis x IR148 3 3 3 T + +
8 260.A32 Bugis x IR7858 5 5 5 MT + +
9 262.A1.4-5 Bugis x IR148 5 5 5 MT + +
10 262.A1.4-6 Bugis x IR148 3 3 3 T + +
11 251-17 Bugis x IR148 3 3 3 T + +
12 248-14-1 Bugis x IR7858 1 1 1 RT + +
13 249-15-1 Bugis x IR7858 3 3 3 T + +
14 250-16 Bugis x IR148 5 5 5 MT + +
15 247-13 Bugis x IR7858 3 3 3 T + +
16 269-11 Sriwijaya x IR7858 1 1 1 RT + +
17 248-14-2 Bugis x IR7858 0 0 0 HT + +
18 249-15-2 Bugis x IR7858 3 3 3 T + +
19 267-9-1 Sriwijaya x IR148 0 0 0 HT + +
20 267-9-2 Sriwijaya x IR148 1 1 1 RT + +
21 259-1 Bugis x IR7858 3 3 3 T + +
22 259-6 Bugis x IR7858 1 1 1 RT + +
23 259-9 Bugis x IR7858 5 5 5 MT + +
24 259-15 Bugis x IR7858 3 3 3 T + +
25 260-21 Bugis x IR7858 3 3 3 T + +
26 260-26 Bugis x IR7858 3 3 3 T + +
27 262-43 Bugis x IR148 0 0 0 HT + +
28 262-48 Bugis x IR148 1 1 1 RT + +
29 255-59 Sriwijaya x IR148 3 3 3 T + +
30 2532 Sriwijaya x IR148 5 5 5 MT + +
31 259-17 Bugis x IR7858 5 5 5 MT + +
32 259-3 Bugis x IR7858 3 3 3 T + +
33 254-54 Sriwijaya x IR148 3 3 3 T + +
34 258-60 Sriwijaya x IR7858 0 0 0 HT + +
35 255-56 Sriwijaya x IR148 0 0 0 HT + +
36 262-44 Bugis x IR148 5 5 5 MT + +
37 262-46 Bugis x IR148 5 5 5 MT + +
38 259-18 Bugis x IR7858 5 5 5 MT + +
39 2594 Bugis x IR7858 3 3 3 T + +
I IR20 Control variaety 5 5 5 MT + +
S Salumpikit Control variety 1 1 1 RT

HT=High Tolerani (6 lines); RT=Rather Tolerant (5 lines); T= Tolerant (19 lines); MT= Moderate Tolerant (9 lines); + = gene was identified




144 Table 4. The distribution of 39 F6 lines for identification of drought-tolerant

145
Drought Response The score of Recovery Ability
Highly-
The number Moderate
of Lines Rather Tolerant Tolerant Susceptible 1 3 5 5 9
To]eralm
(score 0-1) (score 3) (score 5) (Score 7-9)

11

19

9

IR20
146
147

148 Figure 1. Responses of F6 progeny lines to drought observed on drying leaf (a and b) and recovery ability (¢ dan d)
149

150 0-1 3-5 7-9

151 Figure 2. Description of rolling leaves based on SES Method: scores 0-1: started rolling to form V: 3-5: rolling to form V and U inside
152 leaves: 7-9: rolling leaves totally

153

154  Molecular identification of drought tolerant genes

155 Molecular analysis using PCR products showed that the DREB2A gene was visualized in 39 selected lines with the marker sizes

156 approximately 250 bp (Tawfik et al. 2016; Lathif et al. 2018) (Figure 3). It proves that the progeny of F6 lines originated from the
157 parents IR148 + carrying QTL and IR7858-1, which are drought-tolerant generated F6 lines that are the l:mllizll to be drought
158 tolerant. This evidence proved that drought tolerance in rice plants is controlled by the DREB2A genes (Akhtar et al. 2012; Huang et
159 al. 2018).
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M+-123 456789 10111213141516171819 M+ - 21222324 2526272829 303132333435363738 39

250 bp

Figure 3. PCR amplification of DREB2A (250 bp) on 39 selected lines from single crossing of local variety with IR 20 and Salumpikit
varieties (M= DNA ladder of 100 kb, + = positive control, - =negative control

M+ -123 456789 10111213141516171819 M + - 212223242526272829 303132333435363738 39

1300 bp L L L LT D T T Yy Syype—

1300 bp

Figure 4. PCR amplification of BADH2 (1300 bp) on 39 selected lines generated from single crossing of local variety with IR 20 and
Salumpikit varieties (M= DNA ladder of 100 kb, + = positive control, - = negative control

Successful use ()imleculalr markers that control complex traits for obtaining drought-tolerant superior rice varieties
has been reported by Lanceras et al. (2004). am'lc of the traits that have been studied include the yield, root length, root
thickness, leaf curl, stomata sensitivity (Price et al. 2002; Crt()is etal. 2003; Swain et al. 2017), and osmotic adjustment
(Ziveak et al. 2016; Blum 2017; Kahraman et al. 2019). Betaine aldehyde dehydrogenase (BADH) is known as a key
enzyme for the biosynthesis of glycine betaine. Many researchers have reported the accunmion of glycine betaine and
BADHI1 gene expression for tolerance to salinity, dryness, and low temperatures (Lapuz et al. 2019; Kahraman et al.
2019). Visualization of the BADH2 gene 39 selected lines showed a marker with a size approximately 1300 bp (Shrestha
2011; Hasthanasombut et al. 2011) (Figure 4).

Performance of agronomic characterters, yield and yield potential of superior lines

The appearance of agronomic characters, yields and yield potential of the 16 superior lines tested are presented in
Table 5. Almost all tested lines have shown uniformity as shown by the lowest average plant height appearance, namely
101.1 and the highest is 140.5 ¢m with a standard deviation of 1.52- 4.37. This shows that all tested lines were
homozygous in the 8" generation (F7). The highest average number of panicles/hill was 14.7 and the lowest was 6.5.
however, the panicle length ranges from 24 61 - 27.6 cm. The number of filled grains/panicles ranged from 995 - 15007,
while the percentage of empty grains rice was categorized as low based on the SES IRRI (2012), which ranged from
9.87% - 26.66% . This led to variations in grain weight per hill, which was around 19-35.5 grams/hill .

Table 5. The performance of agronomic characters, yields and yield potential of superior lines

. Yield
. 1000 grains grains Yield/p pote
i e T Sy . T
dion &= el (gram) {gram) (ton/
{gramj) ha)

X + 8D (Mean =+ standard deviation)
BKL3-RS1.1-253-18 1131 1.91 764135 2608£213  11571£2670  1106+781 2842126 1902371 512 s
BKLARS1aassap  1H0TE2ET  99s314 2602+ 194 v 10s s8I 274sses  2SEI1SE 510 510
BKLA-R51-1-25621  1054+1.64 10.88+2.15 4772299 112543022 179641097 2864189 2021120 48 478
BKL4-RS1.2.257.22 10732258 85+ 1.65 558199 110822926 17954819 279+213 2l6+843 43 431
BKL4-R51.3-258.23 10012179 T9+1.72 25054262 118644049 1229 876  285x227  18T£559 520 52
BKL1 B1.2560.1 1164227 1164195 24614163 108043007 1271 4688 76184 3184954 1005 1005

BKLI B-2-260-2 1158 =3.67 10.82225 LATELIT 1199342854 11144615 2662165  202+561 71z 702
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BKL1 B-3-261-3 1173 4245 1474353 25454293 | op4a2974 987463 76e126 36128 1038 1038

BKI2 B-1-262.4 1405324 1284343 27052225 |0s02.9676 2666494 29004104 W17 719 719
BKL2 B-2263-5 123:7 £2.31 1342351 20072247 1035742042 24871084 288 x168 OIE22M IO TS
BKL2 B.2.264.6 11922155 120+480 24922157 05,3495 14064833 2924301  BTIZTL 1200 121
BKLS B.1.265.7 10802200  143£258 25632168 gos. 076 16934726  ogd.igs B2623 653 653
BKL3 B-2-266-8 1071152 L1217 V6193 1384643450 21944696  288+139  0TL926 667 667
BKL3 B-3-267-9 H23£337 1220329 23682267 1191043948 2256+1407  2680x187 1912857 458 458
BKL4 B-1-268-10 12734437 1214338 25554237 gqia366 0 2072x1107  272x193 19112 106 1206
BKLA B-3-270-12 1123 +4.18 65135 2646£263 1983242701 190841118 284.150 166562 60 64

The yield of grain per plot varies from the lowest was 458 grams, and the highest, which was 1210 grams. If seen from
the Elppeill’ill])f agronomic characters, the high grain yield was supported by the characters of the large number of
panicles, the low percentage of empty grain, and the weight of 1000 grains. The length of the panicles did not show any
significant variation, which the range between 24.61-27.6 cm (Table 5).

Discussion

Seedlings' responses to drought stress were identified after 14 days without water. The tolerant lines continued to grow
well, vigorous, and leaves remained fully open, whereas the moderate tolerant lines were dried on leaf tips (Figure 1).
Kunu et al. (2014) reported that leaf rolling was delayed ia]r()ughl-l()leraml rice genotypes. Leaf rolling in rice plants
was induced by loss of turgor and low osmotic regulation. Delayed leaf rolling in the tolerant genotype showed that the
turgor remained normal, and the plants were protected from dehydration (Figure 2). Leaf rolling is one of the mechanisms
of plants to adjust the water p()lelall. which enables the plants to absorb groundwater in drought stress conditions
(Bunnag and Pongthai 2013; Swain et al. 2017).

Swain et al. (2017) reported that during the drought conditions and the level of groundwater was below 30 ¢cm depth,
of the 78 lines of drought-tolerant assessments were identified that 30 lines were scorcdn' 1, and 48 lines were scored of
3. Of these 78 assessments, 13 lines produced more than 1-ton grain/ha, tolerant lines (CR 143-2-2) produced more than
2.7 tons grain‘ha, while sensitive plants as a control (IR20) did not produce any.

Leaf rolling can reduce leaf surface area exposed to sunlight, thereby reducing the rate of transpiration in plants. This
condition will help plants to survive in a certain period when lhuilzlbility of water in the environment decreases. The
es in rice plants that play a role in this process are the Roc5 (Rice outermost cell-specific genes) genes that encode the
leucine zipper class IV transcriptional factor homeodomain. Overexpression of these genes results in leaf curling on the
adaxial side, whereas suppression of this gene causes leaf rolling on the abaxial side (Zou et al. 2011). Delaying leaf
rolling indicates that a plant effort to maintain turgor and avoid dehydration. Water shortages tend to have lower rates of
leaf rolling, which appeared in the plants that have tolerant criteria with a Score of 1 (Table 3). It allowed the plant to
survive to drought at the low water potential of leaf tissue (Sevanto 2018). Plants wermcovery after passing through a
period of drought indicated the ability of plants to improve their metabolic system (Bian etal. 2017; Wang et al. 2019).

Drought-tolerant rice varieties can be generated through crossbreeding by combining the tolerant character of the
ancestors with other varieties that have high productivity. The use of molecular marking technology can help selection
more accurate and faster. One of the markers related to drought tolerance is the QTL (quantitative trait locus) 12.1, which
has been produced through the crossing of Vandana varieties of Indian rice and Way Rarem variety from Indonesia
(Mulyaningsih et al. 2010). One of the lines is IR148+, which was used as a parent in this study. This marker can
mair rice yield in severe drought stress at the reproductive phase before flowering. The molecular marker of QTL
]2.& not have a significant effect on some of the parameters observed under normal conditions (Bernier et al. 2007).
DREBS (Dehydration Responsive Element Bindings) are transcription factor proteins (TFs) that are very important in
regulating the expression of drought-responsive genes (Lata and Prasad 2011; Fujita et al. 2013). The DREB2A gene is
essential as a regulator of drought-responsive genes, making it a marker of drought stress-tolerant.

Transcription factors in DREB2A are involved in the regulatory mechanisms that exist in some plants in response to
drought, salinity, zmhcat stress (Lata and Prasad 2011; Mizoi et al. 2012). There E five DREB2 genes in the rice
genome, including OsDREB2A, OsDREB2B, OsDREB2C, OsDREB2E, and OsABI4 (Matsukura et al. 2010; Srivastav et
al. 2010). Expression of OsDREB2A in rice is caused by water deficit and exogenous AB A application, which can result
in increased drought stress (Cui et al. 2011). The OsDREB2B transcript has a functional and non-functional form. It is
mafzkd during drought conditions, and consecutively can increase drought tolerance through alternative splicing induced
by its pre-mRNA (Matsukura et al. 2010). All of these results indicate that OsDREB2s also play an essential role in the
regulation ought tolerant.

Hua:T et al. (2018) identified a new transcription factor gene such as DREB2, namely OsDRAP1 (Responsive Drought
Genes AP2/EREBP), located in the introgressed segment on chromosome 8 of DK151 and whose expression is highly
regulated by drought at DK151, showing its role in drought tolerance rice.
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Osmotic adjustment in cells ghe primary response ()nlants to drought (Zivcak et al. 2016; Blum 2017). Previous
studies indicated that osmoprotectant substances, namely glycine betaine, plays an essential role in cell slization by
balancing the structure of the protein quallnalry and membrane against the adverse effects of salinity (Sakamoto and
Murata 2000; Saxena et al. 2019). Besides, it facilitates osmotic adjustment by reducing the p()tial of internal osmotic
that contributes to the ability of plant cells tolerant to water stress. It also stabilizes the PSII and RuBisCO complexes
during photosynthesis under stress conditions (Holmstrém et al. 2000; Huang et al. 2020). These are the positive effects
ex()gen()us betaine glycine application in plants that grow under the pressure of salinity or drought stress. Plant cells can
be protected from adverse effects of salinity induced oxidative stress by exogenous application of glycine betaine (Demiral
and Tiirkan 2004; Saxena et al. 2019).

The results of the PCR amplification of 39 selected lines for drought tolerance using DREB2A and BADH?2 primers
are presented in Table 3. All tested lines showed positive, containing both genes and had criteria with varying degrees
from the results of the drought test in the seedling stage. Although the results of the molecular study showed positive
results as a drought-tolerant marker gene in the seedling stage, evaluation at the productive stage needs to be d()n
obtain more accurate data. Drought-tolerant plants can adapt to drought conditions, which are shown on high grain. The
use of superior varieties is the most efficient technology to increase rice yield with low-cost production in the dry land.
Therefore, developing a superior variety by crossbreeding is needed to produce superior potential lines. Before releasing a
new superior variety, potential selected lines need to be tested in various locations.

The agronomic performance and yield of 16 superior lines showed that all lines had reached homozygous in the 8"
generation (F;7), where the plant height showed a relatively low standard deviation in all lines. Thalumber of panicles
ranging from 14.7 had a high yield potential, while the number of filled grains was 150.07 (Table 5). The new paradigm of
new rice breeding is the number of productive tﬂlermlween 8-12 tillers/hill with the number of grains/panicles ranging
from 150-200 grains (Peng and Khush 2003). Peng et al. (2008) stated that in the new type of rice breeding avoid extreme
traits such as 200-250 grain/panicle which can produce panicles with low seed filling. Therefore, the increase in the second
generation of new types of rice has been modified by IRRI to 150 grains/panicle. Several lines have a potential yield of
more than 10 tonnes/ha, namely lines with the assesion number BKL1 B-1-259-1 and BKL1 B-3-261-3 have yield
potential of 10.05 tonnes/ha and 10.08 tonnes/ha, respectively. Meanwhile, the lines with the BKL2 B-2-264-6 and BKL4
B-1-268-10 numbers had a potential yield of more than 12 ton /ha, namely 12.1 and 12.06 tons/ha, respectively (Table 5).
These lines have the opportunity to be developed on dry land or as rice on rainfed land because the lines tested were
identified as drought resistance (Table 3).
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