GENETICS DIVERSITY AND AGRONOMIC CHARACTERS OF F3 LINES SELECTED BY RECURRENT SELECTION FOR DROUGHT TOLERANCE AND BLAST RESISTANCE

by Reny Herawati, Entang Inoriah, Rustikawati, Mukhtasar

Submission date: 21-Aug-2020 12:14PM (UTC+0300)

Submission ID: 1372176493

File name: 1641-3096-1-turnitincheck.pdf (531.82K)

Word count: 4690

Character count: 24165

GENETICS DIVERSITY AND AGRONOMIC CHARACTERS OF F3 LINES SELECTED BY RECURRENT SELECTION FOR DROUGHT TOLERANCE AND BLAST RESISTANCE OF BENGKULU LOCAL RICE VARIETIES

Reny Herawati*, Entang Inoriah*, Rustikawati*, Mukhtasar*

*Department of Agroecotecnology, University of Bengkulu, WR Supratman Street, Bengkulu, 38371A, Indonesia

E-mail: reny herawati70@gmail.com

Abstract— Recurrent selection (RS) is a selection method by crossing selected plants from the population to develop new high yielding varieties. Recurrent selection has been carried out on local varieties to produce drought tolerance and blast resistance of rice lines. This research was conducted at Experimental Station, Indonesian Center for Rice Research, Muara Bogor, West Java and Pondok Kelapa, Bengkulu, Indonesia. A number of F2 RS line used as based population and F3 populations had been identified The potential of agronomic characteristics had produced some selected lines. There was an increase in the value of the average to number of filled grains/panicle which grain fertility was compared with its constituent elders. Selection based on plant height, the number of productive tillers, the number of grains per panicle, the number of filled grain per panicle and grain weight/hill will be effective in the beginning generations because it had high heritability values and broad genetic diversities. Further evaluation of lines should be arranged on the specific environment in order to obtain superior lines as previously intended.

I. INTRODUCTION

Rice breeding to get inbreds homogeneous needs to be selected to obtain information on the agronomic traits of high yielding lines, lines need to be planted again as plants observation and yield trials. Based on these experiences, should be developed further by way of exploring the local varieties are high yielding, but does not have the properties of drought resistance and blast disease that often struck planting upland rice in Indonesia.

Local varieties had been used in the breeding program to improve genetic potential. Local varieties had been planted by farmers for many generations on the specific agroecological region so that presumably they are resistant/tolerant to biotic or abiotic stresses in a specific location. Use of local varieties as parental hybridization is recommended for getting superior specific genotype on the new varieties so that released varieties should have a broad genetic variability ([1],[2],[3]). Specific local rice breeding in conventional methods in a dry land to improved high yielding couldn't do without known genetic problems and the way of heritability desiring. Populations have high genetic diversity will give a good response to selection for high genetic diversity will provide great opportunities to get

the right cross combination with the superior combined properties. To achieve the purpose of the selection so that the selection of the or more characters can be made more effective and it is necessary to know the relationship between the agronomic character, yield and yield components ([4],[5]).

Conventional breeding method to improve high yielding specific local rice in the dry land needs proper knowledge about genetic problems and the way of heritability desired. The selection will give an optimum response if using the criteria. The selection methods commonly applied to rice breeding in Indonesia are are pedigree, bulk and a modified bulk-pedigree. [6]. These methods suspended the natural accumulation of desired characters from the elder of plant/line [6]. The most effective breeding method to improve single-gene controlled characters is backcross, but to improve more than one of characters using recurrent selection method. Recurrent selection (RS) is a selection method from crossing selected populations to develop new superior populations ([7],[8]-[10]). In the other hand, this method is a powerful procedure to accumulate desirable genes from crossing recombination between continuously selected segregants to get the best new population than before, because it consists of plants that have a combination of traits is desired. The method has been done and succeeds

in breeding som 6 rops, such as corn and wheat ([7],[11]). Reference [12] showed that recurrent selection applied to genetically different populations would have a substantial advantage for grain yields, the results observed in the second and first cycles were significantly different.

Breeding technique in RS method has applied to the estimate of genetic progress after eight cycles for the yield of regular bean seeds [13], but still not effective in the selfpollinated plant like soybean [7]. RS have applied well in Brazilian upland rice breeding [10] and maize using the 11th cycle of reciprocal recurrent selection [4]. In soybean, RS can improve yield each cycle [7]. Reference [8] using both combinations between RS and anther culture to accelerate the improvement of new plant type variety of rice in breeding programs, thus increasing the efficiency of breeding programs. The result lines of the RS method from B11742 crossing combination produced plant segregate which has new plant type and resistance to leaf blight disease and bet 30 quality of rice [14]. Newest reported by [15] that the effect o 24 ecurrent selection on drought tolerance also identifies potential lines with high yield and drought tolerance for improvement variety further, especially for Breat Wheat in limited water areas.

This research aims to study genetic diversity and agronomic character of F3 lines population using RS method for selection purpose of the next generation population.

II. MATERIALS AND METHODS

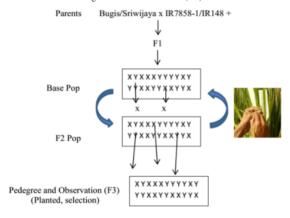
The research was conducted at Experimental Station, Indonesian Center for Rice Research, Muara Bogor, West Java and at Pondok Kelapa district, Bengkulu, Indonesia. The base population materials are 12 numbers of F2 RS from local Bengkulu upland rice varieties hybrid (Bugis and Sriwijaya) wich it has blast resistance and IR7858-1 and IR148 + lines wich it has drought tolerant.

The experimental design used Augmented Design according to [16]. The average of the adjusted genotypes were obtained after calculated the effect of the block with the formula:

Pj = Bj - MThe adjusted average value = Yi - Pjwhere: Pj = effect blocks all j

Bj = average control in one block j

M = average common control


Yi = the value of the i-th observation genotype

Plots measuring 6 m x 5 m consisting of 12 F1 lines. Each line planted two rows of each row contained 12 holes planting, and planted two seeds per hole. Each plot planted four lines and four elders as checks. There are five plots experiment as a block for the 20 lines tested. Fourth elders planted in all plots. Spacing 20 cm x 30 cm and the distance between lines of 40 cm. Fertilization is done with 200 kg Urea, 100 kg SP36 and 100 kg KCl per hectare. The whole SP36 and KCl gave at the time of planting, Urea given three times, each third dose at planting, 4 weeks and 7 weeks after planting. control of pests, diseases and weeds are done in accordance with the notice.

Populations are observed for their appearance in agronomic characters. Several populations that show good segregation of the selected plants will be used as the baseline population. Plants that are selected among populations that

have good agronomic characters will be selected by crossing as in Figure 1. This procedure is repeated until a population that has the desired 1 aracter is obtained. The selection method individually. The selected plants were then planted and evaluated in a pedigree nursery for their 9 gronomic performance characteristics, such as plant vigor, plant height, the number 17 tillers, flowering and maturity, a length of panicle, the number of filled grains per panicle, the number of unfilled grains, and weight of grains per hill.

Fig. 1. Recurrent Selection (RS)

Genetic variability was estimated from $(\sigma 2g)$ and standard deviation $(\sigma\sigma 2g)$. A character is considered to have wide genetic diversity if $\sigma 2g > 2\sigma\sigma 2g$ [17]. Criteria of genotypes variability coefficient (GVC) 2nd phenotypic variability coefficient (PVC) is relatively low (0 < x < 25%), rather lower (25% < x < 50%), quite high (50% < x < 75%), and high (75% < x < 100%) [18]. Heritability values (15%) were classified according methods developed by [19]: high (0.50 < h2bs < 1.00); medium (0.20 < h2bs < 9.50); and low (h2bs < 0.20). Lines were grouped based on plant height, number of productive tillers, and maturity. The Standard Evaluation System (0.50 < h2bs) was used for scoring the agronomic characters developed by the International Rice Research Institute [20].

III. RESULTS AND DISCUSSION

A. Evaluation of Genetic Diversity

This research resulted in 180 numbers F3 lines selected from recurrent selection (RS). The next evaluation, selection lines in Bengkulu specific locations, to get adap 12 specific lines generation in the previous growing season. Analysis of variance showed that there were significant differences in all characters were observed (Table 1). Genetic diversity can be estimated from genetic diversity (σ 2g) and the standard deviation of the genetic diversity (σ 02g). A character has a wide genetic diversity if σ 2g>2 σ 2g. The value of plant genetic parameter estimation showed that the character is flowering, harvesting, plant height, productive tiller, panicle

length, the number of filled grains/panicle, the number of unfilled grains/panicle and weight of grains/hill has a wide genetic diversity (Table 1).

Criteria of genotypes variability coefficient (GV2 and phenotypic variability coefficient (PVC) is relatively low (0 < x < 25 %), rather lower (25 % < x < 50 %), quite high (50% < x < 75%), and high (75 % < x < 100 %) [18]. This show that the criteria GVC and PVC is relatively close to the low (0 < x < 0.31), is rather low (0.31 < x < 0.63), is quite high (0.63 < x < 0.93), and high (0.93 < x < 1.31); PVC is relatively low (0 < x < 8.0), is rather low (8.0 < x < 16.0), high enough (16.0 < x < 24.0), and high (24.0 < x < 32.0). The coefficient of genotific diversity (GVC) and phenotype (PVC) for the character panicle length, the number of filled grain/panicle, the number of unfill grains/panicle and grain weight/hill between broad to very broad, and has a high heritability value between 0.83-0.91 (Table 1).

The heritability estimates for the character of the observed range from 0.39 to a number of 5ers and 0.91 for panicle length. Base on the criteria [19]: $\overline{0.50} < \text{h2bs} < 1.00 = \text{high}$; 0.221 h2bs< 0.50 = medium; h2bs< 0.20= low, characters of plant height, flowering and maturity, panicle length, number of fill grains per panicle and grain weight/hill in this study has high heritability (h2bs) 7 eported by ([5],[21]) that the selected characters, namely the number of productive tillers, the number of filled grains per panicle, and the percentage of empty gra 71 were very effective because they were correlated with grain weight per hill, had high heritability values, and had broad genetic variability. It's mean that the characters which have a high heritability values indicate that genetic factors contribute greater than the environment so that the selection of these characters begin in early generations. The same observations were 140 orted by ([21],[22]) showed moderate genotypic and phenotypic coefficient of variation, heritability in broad sense, moderate genetic advance and moderate genetic 28 ance in percentage of mean indicated that the low influence of environmental on expression of genes controlling the characters. In other words, the expression of these traits is due more to genetic factors than to environmental influences. Broad genetic variability is useful for further selection processes.

B. Agronomy Characters of Upland Rice Population Crosses Sriwijaya, Bugis, IR7858-1, and IR148

1). Growth Component

Agronomic characters were observed in a population of RS, as well as the parent is presented in Table 2 and Fig. 2. There was a diversity of agronomic characters in all character observed. Plant height of populations derived Bugis/IR7858-1 and Bugis/IR148 were very tall (>131cm), as same as Sriwijaya/IR148 ranges between 103-140 cm (Table 3). Plant height derived Bugis/IR7858-1 taller than elders. According to plant height standards developed by [20], the population of lines generated Bugis by RS result is more directed at the parent which is between tall to very tall (Table 3). The Sriwijaya as parental had moderate plant height criteria, and Bugis had a very tall, while IR7858-1 and IR148 had criteria between moderate to tall, indicating that the two parents are not stable and there is still segregation between populations.

Fig. 2. Performance of agronomic characters of F3 lines selected by Recurrent Selection (RS)

TABLE I

ANALYSIS OF VARIANCES AND GENETIC VARIABILITY OF AGRONOMICAL CHARACTERS OF RICE LINE POPULATION DERIVED SRIWIJAYA, BUGIS, IR7858-1, AND IR148

Characters	MS	F value	GV	PV	2xSDGV	GVC (%)	PVC (%)	h ² bs
Flowering (dap)	968.72	125.2**	48.05	55.79	35.37	80.0	0.08	0.86
Maturity (dap)	1259.52	26.2**	60.57	108.74	45.99	0.06	0.08	0.56
Plant Height (cm)	5885.19	64.6**	289.7	380.81	214.9	0.15	0.17	0.76
Number of productive tiller	227.23	13.8**	10.54	27.05	8.3	0.29	0.47	0.39
Penicle length (cm)	2474.78	200.6**	123.12	135.46	90.37	0.73	0.76	0.91
Number of filled grains/panicle	50583	1254.6**	2527.1	2567.45	1847.03	1.31	1.32	0.98
Number of unfilled grains/panicle	1629.44	97.3**	80.63	97.38	59.5	0.66	0.72	0.83
Grain weight /hill (g)	1821.88	136.68**	90.43	103.76	66.53	0.66	0.71	0.87

Note: MS=Mean Square; GV=Genotipic Variability; PV=Phenotypic Variability; SDGV=Standar Deviation of Genotipic Variability; GVC= Genotipic Variability Coefficient; PVC= Phenotypic Variability Coefficient; h2bs=Heritability; dap=day after planting; **significant at $\alpha=1\%$

 $TABLE\,2$ $AGRONOMICAL\,CHARACTERS\,OF\,F3\,RECURRENT\,SELECTION\,FROM\,PARENT\,OF\,\,SRIWIJAYA\,, BUGIS\,, IR7858-1\,, DAN\,IR\,148$

		Range of the population**				Means Square***			
Characters	X± SD*	Bugis/IR 7878-1	Bugis/IR 148	Sriwijaya /IR148	Sriwijaya /IR7858- 1	Sriwija ya	Bugis	IR7858-1	IR148
Flowering (dap)	89.5±3.9	83-110	80-94	85-95	85-95	82	98	84	91
Maturity (dap)	119.5±4.1	112-140	109-124	114-126	115-125	112	128	114	120
Plant Height (cm)	126.9±13.7	104-155	94-160	103-140	91-128	107	160	114	111
Number of productive tiller	8.28±3.9	2.0-21.0	1.0-17.0	2.0-28.0	3.0-20.0	15	6	14	12
Penicle length (cm)	21.9±1.3	19.9-27.2	19.7-24.1	18.2-22.8	20.0-23.1	19	24	21	20
Number of filled grains per panicle	68.1±8.7	51.7-96.7	23.3-75.3	56.7-78.7	57.3-81.7	65	129	79	81
Number of unfilled grains per panicle	18.9±4.7	10.7-40.7	11.3-30.3	9.3-23.3	11.7-21.7	17	29	19	15
Grain weight per hill (g)	19.4±2.4	15.3-24.7	15.1-23.5	13.9-23.1	15.3-22.6	13,5	24	19	20

Note:*X±SD=mean±Standar Deviation;**Population F3 range of 37 hill each; ***Population parent of 15 hill each; dap=day after planting

 $\label{eq:table3} TABLE\, 3$ Grouping of the F3 RS population base on number plant height

	Grouping of plant height					
Population	short (<90cm)	n 22 rate (91-110 cm)	tall (111- 130 cm)	very tall (>131cm)	Total	
Bugis/IR7858-1	0	6	38	106	150	
Bugis/IR148	0	4	38	98	140	
Sriwijaya/IR148	0	24	117	6	147	
Sriwijaya/IR7858-1	0	36	71	0	107	
Sriwijya	0	20	0	0	20	
Bugis	0	0	0	20	20	
IR7858-1	0	2	18	0	20	
IR148	0	19	1	0	20	

Note: Base on IRRI (1996)

 $\label{table 4} TABLE\, 4$ Grouping of the F3 RS population base on number of tillers

	20	20 Grouping of number of tillers				
Population	low (<5)	Low (5-9)	medium (10-19)	high (>19)	Total	
Bugis/IR7858-1	28	62	59	1	150	
Bugis/IR148	52	72	16	0	140	
Sriwijaya/IR148	10	68	68	1	147	
Sriwijaya/IR7858-1	5	45	56	1	107	
Sriwijya	0	0	20	0	20	
Bugis	0	20	0	0	20	
IR7858-1	0	0	20	0	20	
IR148	0	0	20	0	20	

Note: Base on IRRI (1996)

 $\label{eq:table5} {\sf Grouping} \mbox{ of the F3 RS population base on maturities}$

		Grouping of maturity							
Population	earlier (<115 dap)	medium (115-125 dap)	late (126- 150 dap)	extremely late (>151 dap)	Total				
Bugis/IR7858-1	8	108	34	0	150				
Bugis/IR148	23	117	0	0	140				
Sriwijaya/IR148	2	144	1	0	147				
Sriwijaya/IR7858-1	0	107	0	0	107				
Sriwijya	20	0	0	0	20				
Bugis	0	0	20	0	20				
IR7858-1	18	2	0	0	20				
IR148	2	18	0	0	20				

Note: Base on IRRI (1996)

The frequency of distribution of the F3 population leads to be moderate to 27 ery tall criteria (Table 3). Based on grouping the number of tillers [20], the number of productive tillers in Bugis/IR7858-1 ranged from 2.0-21.0, whereas Bugis/IR148 had 1.0-17.0 (Table 4). Therefore, population of lines derived Bugis/IR7858-1 more dominant being moderate to high, and can be grouped into 62 medium productivity lines (10-19) and 59 high productivity lines (>19), whereas those 140 genotypes derived from Bugis/IR148 had 52 very low productivity lines (<5) and two had low productivity lines (5-9) (Table 4).

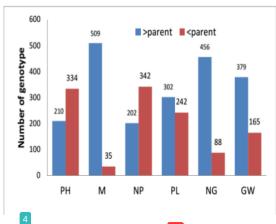


Fig. 3. The frequency distributions of the 13 agronomic traits, i.e. PH(plant height), M(maturity), NP(the number of productive tillers), PL(panicle length), NG(the number of filled grains per panicle), GW (grain weight per hill)

The number of productive tillers in genotype results of crossing Sriwijaya/IR148 and Sriwijaya/IR7858-1 more dominant in low to medium productivity lines (Table 4). The frequency distribution of the parental population tends to be low to medium productivity lines (Table 2).

Flowering in the genotype result of all crosses more dominant in the medium lines (115-125 days after planting), this shows that there is still segregation occurs in genotypes populations (Table 2). The frequency distribution of the Sriwijaya parental more directed at early maturity group, while Bugis is more directed at the late age groups.

Therefore, both IR148 and IR7858-1 parental more lead to be the early maturity group to medium. This shows that the two parents still segregating (Table 5). Reference [6] stated that the repairing of very early harvesting lines and high yields in a short time through recurrent selection showed that this way was more efficient and promising in rice improver 26 t.

Wide segregation was seen in the elite hybrid breeds in the F3 generation 2 The separation ranges of six important agronomic traits, namely plant height, maturity, number of productive tillers, panicle length, number of filled grain 4. and grain weight of each clump are presented in Figure 3. The sixth frequency distribution of the F3 RS 4 gronomic traits showed a uniform genotype distribution with some values on the higher side of the parent and some on the lower side. This shows that there were still segregating between genotype. Recurrent selection (RS) is a method of selecting plants and crossing from a systematic population to develop new superior plat ([7],[8]-[10]). In the other hand, this method is a powerful procedure to accumulate desirable genes from crossing recombination between continuously selected segregants to get the best new population than before, because it consists of plants that have a combination of traits is desired. The sixty-one percentage lines had shorter plant height than parents. For maturi 18 93 percent had higher leads to elders. The distribution of the number of productive tillers, panicle length, the number of filled grains, and grain weight per hill were 55, 37, 83, and 69 percent respectively more than parent. Wide diversity will more benefit for the null selection process.

Overall, the analysis of variance showed that there were significant differences in all the observed agronomic characters of the F3 line (Table 1). Populations have high genetic diversity will give a good response to selection for high genetic diversity will provide great opportunities to get the right cross combination with the superior combined properties. Reported by ([4],[5]) that it is important to achieve the purpose of the selection so that the selection of one or more characters can be made more effective, should be known relationships between agronomic characters, yield and yield components.

B. Yields Component

The average of panicle length was 21.99 cm with a standard deviation of 1.3. Bugis had 24 cm of panicles length range, so its derivatives on cross Bugis/IR7858-1 and

Bugis/IR148 had a range of higher panicle length compared Sriwijaya (Table 2). Generally long panicles produce more grains than short panicles. However, productivity is more influenced by grain density than panicle length.

The average number of fill grains/panicle was 68.04 and 8.67 of SD. The derivative crosses Bugis/IR7858-1, Sriwijya/IR148 and Sriwijya/IR7858-1 had higher potential average fill grains than the Bugis/IR148. Lines derived from Bugis/IR7858-1 had the most filled grain i.e. 96.67 grains, while Bugis/IR148 had the lowest. There was considerable variability in the total grain standard deviation and the number of filled grains per panicle between lines (Table 2). The limited distribution sink to source, or earlier senescence might have been the cause of the large percentage of unfill grains. Reference [23] reported that the activity of ribulose bisphosphate carboxylase activase and Rubisco-binding protein subunits that regulate photosynthate accumulation during the replenishment period will decrease at the end of the filling period, or during the aging period.

The number of unfilled grains/panicle result of cross Bugis higher than that more. Low fertility due to the void that is high enough on the elders constituent namely Bugis (29 grains/panicle) which resulted in some derivative lines has a fairly high emptiness.

Average grain weight per hill is 19.43 g with SD 1.36. Lines derived Bugis/IR7858-1 had the most grain weight/hill (24.70 g), whereas Sriwijaya/IR7858-1 had 26.50 g. These values were higher than those from their parental lines, i.e. 24 g in Bugis 19 19 g in Sriwijaya (Table 2). In general, there had been an increase in the average value of the all the characters were observed. Recurrent Selection (RS) have a greater chance produce superior lines expected because elite population having good properties result from crosses between selected plant is kept constantly. Reference [12] demonstrated that reconnection applied to genetically different populations in the first and second cycles showed significant and high yields (369.9 kg / ha (6.65%) and 259.9 kg / ha (4.67), respectively. %). Reported by [8] used a combination of recurrent selection and anther culture in a breeding program to accelerate the formation of new type lines, so it can improve the efficiency of breeding programs. RS lines result of the combination segregate cross B11742 produce plants that have the nature of new type rice and HDB resistance and better quality rice [14]. All agronomic characters were observed in populations F3 RS plants varied, in some of which are similar to one parent, there are intermediates, and there were exceed two parents. A high diversity is highly advantageous for the stage the next selection. Expected in the next generation will appear genotypes superior caused by segregation in the population as material selection, and will be obtained superior lines as previously intended.

IV. CONCLUSIONS

The recurrent selection had been implemented in local varieties to produce drought tolerance and blast resistance rice lines. A number of F2 RS line used as based population and F3 populations had been identified. The potential for agronomic characters had produced gome selected lines. There was an increase in the value of the average number of

filled grains/panicle and grain fertility compared with its constituent elders.

Selection based on plant height, the number of productive tillers, the number of grains per panicle, the number of filled grain per panicle and grain weight/hill will be effective in early generations because it had high heritability values and broad genetic diversities. Further evaluation of lines should be arranged on the specific environment in order to obtain superior lines as previously intended.

10 ACKNOWLEDGMENT

The author would like to thank the Directorate General of Higher Education, Ministry of Education and Culture, through Competitive Grants by DIPA UNIB Number. 0824/023-04.2.16/08/2011 on 9th December 2011, based contract Number: 130/H.30.10/UN30.10/PL/2012 on 02nd March 2012.

REFERENCES

- T. Sitaresmi, R.H. Wening, A.T. Rakhmi, N. Yunani, dan U. Susanto. "Pemanfaatan plasma nutfah padi varietas lokal dalam perakitan varietas unggul". Iptek Tanaman Pangan 8(1):22-30.
- [2] H. Alfi, B. Warman, I. Suliansyah, E. Swasti, and Sobrizal. "Genetic improvement in west sumatera landraces to get the early maturing mutants by induced mutations". IJASEIT 5(5):275-279. 2015.
- [3] I. Dwipa, I. Suliasyah, A. Syarif., and E. Swasti. "Exploration and Characterization of Brown Rice Germplasms in West Sumatra". IJASEIT 4(3):34-37. 2014.
- [4] Zen, S. "Parameter genetik karakter agronomi galur harapan padi sawah". Stigma 10(4):325-330. 2002.
- [5] R. Herawati, B.S. Purwoko, and I.S. Dewi. "Characterization of Doubled Haploid Derived from AntherCulture for New Type Upland Rice". J. Agron. Indonesia 38(3):170-176.2010.
- [6] B. Abdullah. "Progress of rice improvement through recurrent selection". J. Agron. Indonesia 37(3): 188-193. 2009.
- [7] WR. Fehr. Principles of Cultivar Development. Volume 1. Theory and Technique. McGraw-Hill, Inc. New York, St. Louis, San Fansisco, Vol 1, 1987.
- [8] B. Abdullah, I.S. Dewi, Sularjo, H. Safitri, A.P. Lestari. "Perakitan padi tipe baru melalui seleksi silang berulang dan kultur anter". Penelitian Pertanian Tanaman Pangan 27(1):1-8. 2008
- [9] A.P.C.G. Berilli, M.G. Pereira, R.D.S. Trindade, F.R.D. Costa, and K.S.D. Cunha. "Response to the selection in the 11th cycle of reciprocal recurrent selection among full-sib families of maize". Acta Scientiarum, Agronomy 35: 435-441. 2013.
- [10] O.P.Morais Júnior., P.G.S. Melo, O.P. Morais, O.P. Castro, F. Breseghello, M.M. Utumi, J.A. Pereira, F.J. Wruck, and J.M.C. Filho. "Genetic progress after cycles of upland rice recurrent selection". Sci. Agric. 72(4):297-305.2015.
- [11] N. Niu, V.N. Arief, I.H. DeLacy, D. Lush, J. Sheppard, G. Zhang, and M.J. Dieters. "Genetic gain in yield and protein over two cycles of a wheat recurrent selection Program". Breeding Science 60: 181–186. 2010.
- [12] Rangel, P.H.N., O.P. Morais and F.J.P. Zimmermann. "Grain yield gains in three recurrent selection cycles in the CNAIRAT 4 irrigated rice population". Crop Breeding and Applied Biotechnology, 2(3):369-374, 2002.
- [13] G.S.Silva, M.A.P. Ramalho, Â.F.B. Abreu, and J.A.R. Nunes. "Estimation of genetic progress after eight cycles of recurrent selection for common bean grain yield". Crop Breed. Appl. Biotechnol. 10(4):351-356. 2010.
- [14] B. Abdullah dan Sularjo. 2008. Seleksi silang berulang (SSB) untuk membentuk padi tipe baru. Seminar Nasional Padi, BBPTP-Sukamandi. 2008.
- [15] P. Ramya, G.P. Singh, N. Jain, P.M. Singh, M.K Pandey, K. Sharma, A. Kumar, Harikrishna, and K.V. Prabhu. "Effect of recurrent selection on drought tolerance and related morpho-physiological traits in bread wheat". PlosOne (DOI:10.1371/journal.pone.0156869) 11(6):1-17. 2016.

- [16] A. Baihaki. Teknik Rancang dan Analisis Penelitian Pemuliaan.
- Fakultas Pertanian, Universitas Padjadjaran, Bandung. 91 hal. 2000. A. Pinaria, A. Baihaki, R. Setiamihardja, A.A. Daradjat.. "Variabilitas genetik dan heritabilitas karakter-karakter biomassa 53
- genotipe kedelai". Zuriat 6:88-92. 1995.

 [18] Moedjiono dan M.J. Mejaya. "Variabilitas genetik beberapa karakter plasmanutfah jagung koleksi Balittas Malang". Zuriat 5(2):27-32.1994.
- [19] W.D. Stanfield WD. Theory and Problems of Genetics. 2nd edition. Schain's Outline Series. Mc.Graw Hill Book Co. New Delhi. 1983.
- [20] IRRI. Standard evaluation system for rice International rice testing program. The International Rice Testing Program (IRTP) IRRI Los Banos, Philippines. 1996.
- [21] A.K. Konatel, A. Zongo, H. Kam, A. Sanni, and A. Audebert. "Genetic variability and correlation analysis of rice (Oryza sativa L.) inbred lines based on agromorphological traits". African Journal of Agricultural Research. 11(35):3340-3346. 2016.
- [22] M.F.K. Mishu, M.W. Rahman, M.A.K. Azad, B.K. Biswas, M.A.I. Talukder, M.O. Kayess, M.R. Islam, and M.R. Alam. "Study on Genetic Variability and Character Association of Aromatic Rice (Oryza sativa L.) Cultivars. International Journal of Plant & Soil Science 9(1): 1-8. 2016
- [23] Z.W. Li, J. Xiong, Z. F. Li, X. H. Qi, H. F. Chen, C. H. Shao.. "Analysis of differential expression of proteins in rice leaf sheath during grain filling". Acta Agronomica Sinica 34:619-626. 2008.

GENETICS DIVERSITY AND AGRONOMIC CHARACTERS OF F3 LINES SELECTED BY RECURRENT SELECTION FOR DROUGHT TOLERANCE AND BLAST RESISTANCE

ORIGINALITY REPORT 10% 8% SIMILARITY INDEX INTERNET SOURCES **PUBLICATIONS** STUDENT PAPERS **PRIMARY SOURCES** journal.jpb.ac.id 1% Internet Source media.neliti.com 1% Internet Source G R Sadimantara, B Kadidaa, Suaib, L O 1% Safuan, Muhidin. "Growth performance and yield stability of selected local upland rice genotypes in Buton Utara of Southeast Sulawesi", IOP Conference Series: Earth and Environmental Science, 2018 Publication Rukmini MISHRA, Gundimeda Jwala Narashima RAO, Ravi Nageswara RAO, Pankaj KAUSHAL. "Development and Characterization of Elite Doubled Haploid Lines from Two Indica Rice Hybrids", Rice Science, 2015

Submitted to Institut Pertanian Bogor

Publication

6 www.alice.cnptia.embrapa.br

1%

M Riadi, R Sjahril, N Kasim, R H Diarjo.
"Heritability and path coefficient analysis for important characters of yield component related to grain yield in M4 red rice mutant", IOP Conference Series: Earth and Environmental Science, 2018

1%

Publication

Rr Ernawati, Meidaliyantisyah, J Barus. "The response of Inpago 8 rice to the provision of compost and Biochar in dryland", IOP Conference Series: Earth and Environmental Science, 2020

1%

Publication

Purwoko. "Agronomic performance of several doubled-haploid lines derived from anther culture of black rice × white rice", IOP Conference Series: Earth and Environmental Science, 2020

<1%

Publication

innovareacademics.in

<1%

11	Setu Rani Saha, Lutful Hassan, Md. Ashraful Haque, Mirza Mofazzal Islam, Md. Rasel. "Genetic variability, heritability, correlation and path analyses of yield components in traditional rice (Oryza sativa L.) landraces", Journal of the Bangladesh Agricultural University, 2019 Publication	<1%
12	krishikosh.egranth.ac.in Internet Source	<1%
13	Submitted to Higher Education Commission Pakistan Student Paper	<1%
14	premierpublishers.org Internet Source	<1%
15	www.mdpi.com Internet Source	<1%
16	Submitted to Universiti Putra Malaysia Student Paper	<1%
17	es.scribd.com Internet Source	<1%
18	Submitted to Padjadjaran University Student Paper	<1%
19	www.revistas.usp.br Internet Source	<1%

20	wwwnc.cdc.gov Internet Source	<1%
21	pt.scribd.com Internet Source	<1%
22	Svein Øivind Solberg, Agnese Kolodinska Brantestam, Kerstin Olsson, Matti Wiking Leino, Jens Weibull, Flemming Yndgaard. "Diversity in local cultivars of Pisum sativum collected from home gardens in Sweden", Biochemical Systematics and Ecology, 2015 Publication	<1%
23	mafiadoc.com Internet Source	<1%
24	doaj.org Internet Source	<1%
25	safe2015a.safetainability.org Internet Source	<1%
26	MISHRA, Rukmini, Gundimeda Jwala Narashima RAO, Ravi Nageswara RAO, and Pankaj KAUSHAL. "Development and Characterization of Elite Doubled Haploid Lines from Two Indica Rice Hybrids", Rice Science, 2015.	<1%
	iioah com	4

www.ejplantbreeding.org

<1%

29

"The Future of Rice Demand: Quality Beyond Productivity", Springer Science and Business Media LLC, 2020

<1%

Publication

30

Ramya P, Gyanendra Pratap Singh, Neelu Jain, Pradeep Kumar Singh et al. "Effect of Recurrent Selection on Drought Tolerance and Related Morpho-Physiological Traits in Bread Wheat", PLOS ONE, 2016

<1%

Publication

Exclude quotes

Off

On

Exclude matches

Off

Exclude bibliography