Studies on mealybug-species (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia, with description of two new species and three newly country recordsed species from Indonesia

AGUSTIN ZARKANI ${ }^{1,2^{*}}$, CANSU ERCAN ${ }^{2}$ ERCAN 4,5, DWINARDI APRIYANTO ${ }^{1,3, \&}$ MEHMET BORA KAYDAN ${ }^{2} \mathrm{KAYDAN}^{4,36,7}$
${ }^{1}$ Department of Plant Protection, Faculty of Agriculture, University of Bengkulu, 383711, Bengkulu, Indonesia.
${ }^{2}$ Email: agustinzarkani@unib.ac.id; https://orcid.org/0000-0001-9837-5019
${ }^{3}$ Email: add email for D. Apriyanto; https://orcid.org/0000-0002-5286-9010
${ }^{2}$ Department ${ }^{4}$ Department of Plant Protection, Faculty of Agriculture, Ege University, 35100, Izmir, Turkey.
${ }^{5}$ Email: add email for C. Ercan; https://orcid.org/0000-0003-3516-9183
${ }^{3}$ Biotechnology ${ }^{6}$ Biotechnology Development and Research Centre, Çukurova University, 01250, Adana, Turkey.
${ }^{7}$ Email: add email for M.B. Kaydan; https://orcid.org/0000-0002-0677-255X

* Corresponding author: Agustin Zarkani (agustinzarkani@unib.ac.id)

Abstract

Mealybugs (Hemiptera: Coccomorpha: Pseudococcidae) include economically important insect pests worldwide-; however, little is known about the mealybug species present in Indonesia. Seale insectsSamples were collected and identified from natural-wild and cultivated plants in several regions of southern Sumatra, Indonesia between 2018 and 2019. In total, 16Sixteen species of Pseudococcidae in 7 genera were foundidentified, including two new undescribed species, and three new species records new for to the Indonesian mealybug famna. Dysmicoccus sosromarsonoae Zarkani \& Kaydan sp. n.- and Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. are described and illustrated as new species for seience based on the morphology of the adult female, and a key is provided for their identification. Furthermore, Dysmicoccus arachidis Williams and ${ }_{2}$ Dysmicoccus D. carens Williams and Pseudococcus leptotrichotus Williams were found-are recorded as new records for the countryfor the first time from Indonesia. New locality and host-host-plant data are given for all-these speciesAdditionally, an identification key to the new mealybug species is provided.

Keywords: Biodiversity, host plant, insect, mealybugs, pests, Sternorryncha, taxonomy

Introduction

The Pseudococcidae (Hemiptera: SternorrynchaCoccomorpha: Coccomorpha), whose members are known as mealybugs, is ene of thea family of families of scale insects which include many important sap-sucking insect pests on-of woody and herbaceous plants. These insects not only damage their host plants directly, by mechanical injure-injury and feed their host plantsextraction of sap, but also indirectly by promete-promoting sooty mold growth on their sugary honeydew waste and transmit transmission of plant virus diseases (Franco et al. 2009, Daane et al. 2012).

The Pseudococcidae, with 2041 species in 259 genera, is the second largest scale insect family after the Diaspididae, which contains about 2693 species in 418 genera (García Morales et al. 2016). To date, there are 2034 species in 258 genera of Pseudoccidae in the world and this is the second abundant family after the Diaspididae which consists of about

Telah Diformat: Kanan: -1 cm

Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt , Setelah: 0 pt
Telah Diformat: Kanan: -1 cm
Memformat: Warna font: Otomatis
Memformat: Superskrip
Memformat: Warna font: Otomatis

Memformat: Font: Miring

Memformat: Font: 12 pt
Memformat: Font: 12 pt, Coretan
Memformat: Coretan
Memformat: Font: 12 pt, Coretan
Memformat: Coretan
Memformat: Coretan
Memformat: Font: 12 pt, Coretan
Dikomentari [GW1]: This information is repeated in more det ..
Memformat: Font: 12 pt
Dikomentari [GW2]: Too non-specific
Dikomentari [GW3]: Key words shoul dnot include words the ...
Memformat: Font: 12 pt, Coretan
Memformat: Font: 12 pt, Coretan
Memformat: Font: 12 pt, Coretan
Memformat: Font: 12 pt
Memformat: Font: 12 pt
Memformat: Font: 12 pt
Telah Diformat
Telah Diformat: Kanan: -1 cm
Telah Diformat
Telah Diformat: Kanan: -1 cm
Memformat: Font: Miring
Memformat: Font: Miring
Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm
Memformat: Font: Miring

2693 species in 418 genera (Garcia Morales et al. 2016). In the Indonesian archipelago, there are $105 \underline{8}$ species of Pseudococcidae in $32-31$ genera of Pseudococeidaehave been recorded so far, and this is also the second-largest family after the Diaspididae, with-which has $158-118$ species in 44-46 genera recorded in this archipelago-country-(Garcia_García-_Morales et al. 2016). From-In the family Pseudococcidae, the most species-rich and damaging genera in Indonesia are: Rastrococcus Ferris (15 species), Pseudococcus Westwood (13 species), Paraputo Laing (13 species), Dysmicoccus Ferris (9 species), and Paraputo Laing (13 species), Planococcus Ferris ($6-7$ species), Psethdococcus Westwood (13 species), and Rastrococcus Ferris (14 species) are the most species rich and harmful genera in Indonesia (Williams, 2004; Garcíia-Morales et al. 2016).

As a tropical elimate country located along major sea lanes connecting East Asia, South Asia and Oceania, it is not surprising that Indonesia has a flooding very large number of indigenous plants, vertebrates and invertebrates including great insect biorichness-diversity (McNeely et al. 1990; CBD Secretariat 2021). The first exploration-documentation of Indonesian insect richnessdiversity, including mealybugs in Indonesia was startedbegan in the British, Dutch and Japanese colonial-_eras, resulting in the description of many new Indonesian native fatma-species. The study was continued by Reyne (1954; 1957; 1961; 1965), Muniappan et al. (2008; 2011; 2012), Sartiami et al. (2015, 2016), Gavrilov-Zimin (2013; 2016; 2017; 2019; 2020; 2021) and Zarkani et al. (2020; 2021a \& b), in which several additional records to the scale insect fauna were made. However, the only comprehensive review of mealybugs recorded from Indonesia was-is published in the monograph by Williams (2004). The study had been continued by Reyne ($1954 ; 1957 ; 1961 ; 1965$), Muniappan et at. (2008; 2011; 2012), Sartiami et al. (2016), Gavrilov Zimin (2013; 2017; 2019; 2020; 2021) and Zarkani et al. (2020; 2021a \& b), which have made several additional records to the seale insect fawna. Generally, oOver the last 16 years the number of described scale insect species recorded in Indonesia has increased slowly by 53 species (GarciaGarcía-Morales et al. 2016). However, sThe knowledgetudies of Indonesian scale insect species are still patchy and incomplete-and irregular.

In $€$ The present paper- covers two new species and three newly-new country recorded species from Indonesia, and an i Identification keys to genera and Dysmicoccus species, and new additional-locality records for the currently known Pseudococcidae species, are provided and discussed.

Dikomentari [GW4]: What about records in Kalshoven \& Van der Vecht (1951) and Kalshoven (1981)? Were any of those new records?

Memformat: Font: Miring
?

Materials and Methodsmethods Matrials Mathor

4

Sample collection.-Mealybugs (nymphs and adult females) were collected from tropical plants located in several regions of southern Sumatra, Indonesia between April 2018 and October 2019. Specimens were collected from the I-infested plant parts of the plants (fruits, trunk and branches, and leaves) were cut, bagged, labeled and and-taken to the Laboratory of Plant Protection, University of Bengkulu for examination. For species determination, nymphs were reared on the respective-relevant fruits-plant material (at $25 \pm 1^{\circ} \mathrm{C}, \sim 70 \%$ relative humidity and of $16: 8 \mathrm{~h}$ light: dark photoperiod) until they reached the adult stage. Mention the microscope used to sort specimens for preservation and slide mounting. Specimens were killed, labeled and stored in 95\% ethyl alcohol.

Morphological identification. In the Plant Protection Department of the University of Bengkulu, Adult adult females specimens were slide-mounted using the method of Kosztarab and Kozár (1988) with some modifications (using distilled water after KOH and cleaning the specimens using a fine brush). They wereand identified by light microscopy using in the Plant Protection Department of the University of Bengkulu, using the method of Kosztarab and

Memformat: Font: Miring

Memformat: Font: Miring

Memformat: Font: Miring

Telah Diformat: Kanan: -1 cm , Spasi Setelah: 0 pt
Telah Diformat: Kanan: -1 cm
Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt, Setelah: 0 pt
Memformat: Font: Tidak Miring
Telah Diformat: Kanan: -1 cm

Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm
Memformat: Font: Tidak Miring

Memformat: Warna font: Otomatis

Kozart (1988) with some modifieations (using distilled water after KOH and cleaning the specimens using a fine brush). The Mealybugs were examined under a phase-contrast compound microscope (Olympus BX41) and were identified using the keys of Williams (2004), Cox and Ben-Dov (1986), Granara de Willink (2009), Granara de Willink and Szumik (2007) and Kaydan and Gullan (2012).

Morphometric analysis. For description of the new species, the main taxonomic characters of the adult females were evaluated and quantified under a compound light microscope. The morphological terms used here areare those used by Williams and Granara de Willink (1992) and Williams (2004) and Williams and Granara de Willink (1992). All the measurements given are for the maximum dimensions (e.g., body width was recorded at the widest part) and are expressed as ranges.-_Tarsal length excludes the claw. Setal length includes the setal base. Cerarii are numbered as described by Williams and Granara de Willink (1992), with cerarius 1 on the head, anterior to the antenna, and cerarius 17 being on abdominal segment VIII. An-A taxonomic illustration is provided for the each new species, and is based on. The figure represents-the holotype- used for the description. The illustration is split longitudinally, with the left half representing the dorsum and the right half the venter. Structural details are shown as enlargements around the central drawing, and are not all drawn to the same scale. The translucent pores on the hind legs which are mostly found on the dorsal surface, but they are illustrated ventrally on the main figure for convenience.

Type specimens of the new species described are deposited in the Mealybugs Museum, Department of Plant Protection, Faculty of Agriculture, University of Bengkulu, Bengkulu, Indonesia (MMUB). Add an explanation of the use of " $/$ " in holotype data listing. Also explain where the terminology you use in the descriptions comes from, and the units of measurement used in the descriptions

Results and Discussiondiscussion

In this study aFrom-total of 149 samples were collected from southern Sumatra, Indonesia ${ }_{2}=$ Among these samples, 16 mealybug species were identified, of which 2 two species of which are new to science and 3 speciesthree are new records for the Indonesian scale insect fauna. The identified specimens-species eonsist ofbelong to the senus-genera Dysmicoccus (5 species), Ferrisia (2 species), Nipaecoccus (1 species), Paracoccus (1 species), Planococcus (2 species), Pseudococcus (2 species) and Rastrococcus (4 species). The species marked below with an asterisk (*) are recorded for the first time from Indonesia.

Key to adult females of Pseudococcidae genera occurring on some tropical plants in Indonesia [adapted from Williams, (2004), Williams and Granara de Willink (1992) and Williams and Watson (1988)].

位
 Telah Diformat: Inden: Baris Pertama: 0 cm , Kanan: -1 cm

Dikomentari [GW5]: This key is not much use, as there are 31 mealybug genera known from Indonesia and this key covers only 7 of them.
It would be useful, instead, to modify Williams' (2004) key, to make
it posssible to identify all 31 genera in Indonesia including
Komodesia (as that genus was not covered in Williams (2004)) are containing 1 or more setae within its borders, or with the setae adjacent to the
rrisia Cockerel
Dorsal tubular ducts, if present, without this combination of characters
2(1) Cerarii always conspicuous, each bearing numerous truncate-conical setae, eachcerarian setae flat at apex
Rastrococcus Ferris

- Cerarii, if present, bearing pointed, conical, lanceolate or flagellate setae, never truncate-conical \qquad flagellate setae, never
3(2) Oral rim tubular ducts present_.. 4 Oral rim tubular ducts entirely absent_ .. 5

Telah Diformat: Inden: Kiri: 0 cm , Gantung: $1,25 \mathrm{~cm}$ Kanan: -1 cm , Tab berhenti: $1,25 \mathrm{~cm}$, Kiri +16 cm , Kanan,Pimpinan: ... + Tidak di 15 cm

4

Memformat: Font: Tidak Miring

 present next to each eye.

Key to adult females of Dysmicoccus found in Indonesia (adapted from Williams, 2004).
1 Cireulus present..
Cireulus absent...entinue to next Williams key) 12
$z \quad$ Cerarii numbering 7 pairs including frontal pair. Dorsal oral collar tubular ducts numerous, present in rows across most segments.................D. boninsis (Kuwana)

- Cerarii numbering more than 7 pairs. Dorsal oral collar tubular ducts if present never forming rows across segments ... 3
3 Most cerarii without auxiliary setae ... 4
Most cerarii with auxiliary setae .. 5
4 Ventral oral collar tubular duct sparse, a few present in medial area of abdomen and on tateral margin of abdominal segment VI and posterior segments only, absent from head and thoracic margins ...ens (Williams)

Memformat: Sorot

[^0]atrium; posterior spiracles each $75.0-85.0 \mu \mathrm{~m}$ long, $40-45 \mu \mathrm{~m}$ wide across atrium. Circulus circular, $80-110 \mu \mathrm{~m}$ wide. Legs well- developed; segment lengths for each posterior leg: coxa 115-135 $\mu \mathrm{m}$, trochanter + femur 205-220 $\mu \mathrm{m}$, tibia + tarsus $160-170 \mu \mathrm{~m}$, claw 27.5-30.0 $\mu \mathrm{m}$. Ratio of lengths of tibia + tarsus to trochanter + femur, $0.77-0.78 _$_ 1 ; ratio of length of tibia to tarsus, $1.2-1.4_{-}: 1$; ratio of length of trochanter + femur to greatest width of femur, 3.41-3.60 : 1; coxa with $30-50$ translucent pores, plus; derm surrounding each posterior coxa with 40-50 translucent pores present surrounding each coxa; tibia with numerous translucent pores. Tarsal digitules capitate, each $27.5-30.0 \mu \mathrm{~m}$ long. Claw digitules capitate, each about $22.5-25.0 \mu \mathrm{~m}$ long. Both pairs of ostioles present, anterior ostioles each with a total for both lips of 28-40 trilocular pores and 4-6 setae; posterior ostioles each with a total for both lips of 58-60 trilocular pores and 6-8 setae. Anal ring about $95 \mu \mathrm{~m}$ wide, with bearing 6 setae, each seta $160-165 \mu \mathrm{~m}$ long.

Dorsum. Derm membranous, with 16 pairs of cerarii around body margin, each cerarius with $2-5$ cerarian enlarged conical setae and 3-5 auxiliary setae. Each anal lobe cerarius set on membranous cuticle and containing 3-5 enlarged setae $25-30 \mu \mathrm{~m}$ long, plus $55-57$ trilocular pores and 3-5 hair-like auxiliary setae. Dorsal setae short and flagellate, each 30 $110 \mu \mathrm{~m}$ long, scattered throughout dorsum. Trilocular pores, each 3-4 $\mu \mathrm{m}$ in diameter, scattered. A few multilocular disc pores present on thorax and abdomen.

Venter. Setae flagellate, each $30-110 \mu \mathrm{~m}$ long, longest setae located medially on head. Apical setae of on anal lobe each $125-150 \mu \mathrm{~m}$ long. Multilocular disc pores, each $7-8 \mu \mathrm{~m}$ in diameter, present throughout venter, numbers on each abdominal segment as follows: I-III each with 60-70, IV 20-24, V 38-43, VI 100-110, VII 90-98, VIII + IX 36-38 and 125-145 on thorax and head. Trilocular pores, each $2.5-3.0 \mu \mathrm{~m}$ across, scattered throughout venter. Oral collar tubular ducts each $8-10 \mu \mathrm{~m}$ long, $4-5 \mu \mathrm{~m}$ wide, present throughout, but in bands across abdominal segments, as follows: VI 21, VII 15, VIII + IX 14.

Comments. Dysmicoccus sosromarsonoae sp. n., is most similar to D. finitimu. Williams in having anal lobe cerarii each containing a group of about 2_-7 conical setae. However, D. sosromatrsonote sp. n. can be readily distinguished from D. finitimutus in having multilocular dise pores and oral collar tubular ducts present in both dorsum and venter,

Etymology. This species is named after Dr. Soemartono Sosromarsono, the first Indonesian entomologist.

Host plants, Elaeis guineensis (Arecaceae) (Figure-Fig. 2),

Distribution, Indonesia, Bengkulu provinceProvince.

Dysmicoccus zeynepae Zarkani \& Kaydan sp. n.

(Figure. 3)
Material examined. Holotype: adult female, INDONESIA: left label: AZ205 / Sumatra / Bengkulu_ Malvaceae_ Durio zibethinus Murr./ 4.ii.2018_/ 03³4'54.4"S 102³8'33"E/ coll. A. Zarkani; right label: Holotype_/ Dysmicoccus zeynepaea sp. n. Zarkani \& Kaydan. MMUB.

Paratypes, 5 adult females, INDONESIA: same data as holotype (AZ205); 3 -adult females:-_INDONESIA,AZ206_/ Sumatra_/ Bengkulu_/ Meliaceae_/ Lansium parasiticum Corr.// 11.ii.2018_/ $03^{\circ} 59^{\prime} 28.0^{\prime \prime} \mathrm{S}, 102^{\circ} 25^{\prime} 50.4^{\prime \prime} \mathrm{E}$ / coll. A. Zarkani; 3 adult females:INDONESIA, AZ207/ Sumatra / Bengkulu / Sapotaceae_/ Manilkara zapota L./ 12.ii.2018 / $04^{\circ} 00^{\prime} 05.7^{\prime \prime} \mathrm{S}, 102^{\circ} 26^{\prime} 52.1^{\prime \prime} \mathrm{E} /$ coll. A. Zarkani; 3 adult females:-, INDONESIA, AZ208 $/$ Sumatra_/ Bengkulu_/ Rubiaceae_/ Coffea robusta Lindl._Ex De Will._/ 19.ii.2018_/ $03^{\circ} 36^{\prime} 15.4^{\prime \prime} \mathrm{S}, 102^{\circ} 36^{\prime} 30.8^{\prime \prime} \mathrm{E} /$ coll. A. Zarkani. Holotype andAll Paratypes are deposited in the-MMUB (Indonesia).

Dikomentari [GW11]: Not circular! It has a srong middle

Memformat: Sorot

Dikomentari [GW12]: This character does not occur in species of Dysmicoccus. When I take your drawing through Williams' (2004) key, it comes out in the genus Palmicultor.

Dikomentari [GW13]: Your illustration shows 6 setae

Memformat: Sorot
Dikomentari [GW14]: These setae are longer than those recorded preiously in Palmicultor palmarum

Dikomentari [GW15]: But it is not very close to that species at all (D. finitimus does not have pores on the derm by the hind coxae)! Memformat: Sorot

Memformat: Sorot
Memformat: Coretan, Sorot
Memformat: Coretan
Memformat: Coretan, Sorot
Memformat: Coretan, Sorot
Dikomentari [GW16]: See my comment about the genus assignment above. The palm host is consistent with this being a species of Palmicultor. See
von Ellenrieder, N., Kinnee, S.A. \& Watson, G.W. (2022) Review of the genus Palmicultor Williams, 1963 (Hemiptera Coccomorpha: Pseudococcidae), with evidence of a cryptic Coccomorpha: Pseudococcidae), with evidence of a cryptic
species. The Pan-Pacific Entomologist, 97 (4), 240-260. In the key in von Ellenrieder et al. (2022) your drawing keys out as a member of the Palmicultor palmarum species complex, which has not been studied. You would need to do molecular analysis to identify it further. See Williams (2004: 457) and von Ellenrieder et al. (2022: 253).

Memformat: Coretan

Memformat: Coretan, Sorot
Memformat: Font: Tebal
Memformat: Font: Tebal
Telah Diformat: Kanan: -1 cm
Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt
Telah Diformat: Kanan: -1 cm
Telah Diformat: Kanan: -1 cm , Spasi Setelah: 0 pt
Memformat: Font: Tebal
Telah Diformat: Kanan: -1 cm
Memformat: Font: Tebal
Telah Diformat: Inden: Baris Pertama: 1 cm, Kanan: -1 cm

AAppearance in life. Adult females secrete a thin powdery white wax covering across their bodies. The mealybug speciesL-liveing on the leafleaves, flowers; and fruits of the host plants, and they commonly live in symbioses withattended by ants.

Species diagnosis.

Description- of Adult-adult female (based on holotype and 5 paratypes): Body oval, $1.95-2.54 \mathrm{~mm}$ long, $1.64-2.25 \mathrm{~mm}$ wide. Eyes situated on margins, each $42-45 \mu \mathrm{~m}$ wide. Antenna 8-_segmented, $340-380 \mu \mathrm{~m}$ long, with 4 fleshy setae each $22.5-25.0 \mu \mathrm{~m}$ long; apical segment $75-80 \mu \mathrm{~m}$ long, $27.5-30.0 \mu \mathrm{~m}$ wide, with apical setae $30-35 \mu \mathrm{~m}$ long. Clypeolabral shield 200-220 $\mu \mathrm{m}$ long, 175-185 $\mu \mathrm{m}$ wide. Labium 3-_segmented, 110-120 $\mu \mathrm{m}$ long, $80-85$ $\mu \mathrm{m}$ wide. Anterior spiracles each $85-90 \mu \mathrm{~m}$ long, $45-50 \mu \mathrm{~m}$ wide across atrium; posterior spiracles each $95_{i} 0-115_{i} 0 \mu \mathrm{~m}$ long, $55-60 \mu \mathrm{~m}$ wide across atrium. Circulus circular $80-110$ $\mu \mathrm{m}$ wide. Legs well-_developed; segment lengths for each posterior leg: coxa $160-175 \mu \mathrm{~m}$, trochanter + femur $145-155 \mu \mathrm{~m}$, tibia + tarsus $175-180 \mu \mathrm{~m}$, claw $35.0-37.5 \mu \mathrm{~m}$. Ratio of length of tibia + tarsus to trochanter + femur, 1.77-1.78: 1; ratio of length of tibia to tarsus, 1.2-1.4_: 1 ; ratio of length of trochanter + femur to greatest width of femur, 2.41-2.60_: 1 ; coxa with 30-50 translucent pores; tibia with numerous translucent pores. Tarsal digitules capitate, each 35-40 $\mu \mathrm{m}$ long. Claw digitules capitate, each about $27.5-30.0 \mu \mathrm{~m}$ long. Both pairs of ostioles present, anterior ostioles each with a total for both lips of 28-40 trilocular pores and 4-6 setae; posterior ostioles each with a total for both lips of 58-60 trilocular pores and 6-8 setae. Anal ring about $70 \mu \mathrm{~m}$ wide, with-bearing 6 setae, each seta $80-90 \mu \mathrm{~m}$ long

Dorsum. Derm membranous, with 16 pairs of cerarii around body margin, each cerarius with 4-7 enlarged cerarian conical setae and 3-5 auxiliary setae. Each anal lobe cerarius set on membranous cuticle and containing 5-7 enlarged conical setae $25-35 \mu \mathrm{~m}$ long, plus $40-45$ trilocular pores and 3-5 hair-like auxiliary setae. Dorsal setae flagellate, each $15-75 \mu \mathrm{~m}$ long, scattered throughout dorsum. Trilocular pores, each 3-4 $\mu \mathrm{m}$ in diameter, scattered. Multilocular disc pores and tabsent-ubular ducts absent.

Venter. Setae flagellate, each $30-110 \mu \mathrm{~m}$ long, longest setae located medially on head. Apical setae of on anal lobes unusually short, each $80-90 \mu \mathrm{~m}$ long. Multilocular disc pores, each $7-8 \mu \mathrm{~m}$ in diameter, present only immediately around the-vulva, numbering $8-10$-in numbers. Trilocular pores, each $2.5-3.0 \mu \mathrm{~m}$ across, scattered throughout venter. Oral collar tubular ducts absent.

Comments. Dysmicoccus zeynepae-sp. no, is most similar to D. finitimus, in having anal lobe cerarii each containing a group of about 2_ 7 conical setae. However, D. zeynepae-sp. n. can be readily distinguished from D. finitintus in having: (i) no multilocular dise pores and oral collar tubular duets on dorsum; (ii) a few multilocular dise pores without oral collar tubular ducts on venter.

Etymology. This species is named after Zeynep Kaydan ("mother") of Kaydan’s Lab.), oratory), Zeynep Güleç and Zeynep Kaya whom are good friends.

Host plants. Durio zibethinus (Malvaceae), L. parasiticum (Meliaceae), M. zapota (Sapotaceae) and-, C. robusta (Rubiaceae) (Figure 4).

Distribution, Indonesia (Bengkulu provinceProvince).

*Dysmicoccus arachidis Williams

Material examined. INDONESIA: Bengkulu provinceProvince: Kabawetan, Kepahiang district, -6 q q, on Crassocephalum crepidioides (Benth.) S. Moore (Asteraceae), 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S} 102^{\circ} 35^{\prime} 33^{\prime \prime} \mathrm{E}, 12$.vi.2018, Collcoll. A. Zarkani (AZ80-81).

Comments. This species is a newly country recorded species from- for Indonesia and onty the second record of the species; after-Williams (2004) whe previously reported this speciesit in

Dikomentari [GW17]: Us eof decimal places for such larg emeasurements is unnecessary and inappropriate
Dikomentari [GW18]: Not circular! It is rounded-quadrate
Memformat: Coretan
Memformat: Coretan
Memformat: Sorot

Dikomentari [GW19]: This species is nothing like D. finitimus They don't even have the same number of cerarii or same-sized legs!

You need to take the species through Williams's (2004: 161) key to Dysmicoccus carefully to find the species closest to it.
Memformat: Sorot
Memformat: Coretan, Sorot
Memformat: Coretan
Memformat: Coretan
Memformat: Font: Tebal
Memformat: Font: Tebal
Telah Diformat: Kanan: -1 cm
Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm
Telah Diformat: Kanan: -1 cm
Memformat: Font: 12 pt
Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt,
Setelah: 0 pt
Dikomentari [GW20]: This is a very different host to that previously recorded for D. arachidis. In view of the misidentification above I recommend that you double-check all the other identifications using Williams's (2004) key to make sure they are correct!

Telah Diformat: Kanan: -1 cm
Telah Diformat: Inden: Baris Pertama: 0 cm, Kanan: -1 cm
from India (Tripura) on Arachis hypogaea L. (Fabaceae). There is very little information available about D. arachidis.

Dysmicoccus brevipes (Cockerell)

Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm
Telah Diformat: Kanan: -1 cm
Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt,
Material examined. INDONESIA: Bengkulu provinceProvince: Slebar, Bengkulu city, 3 웅, on Syzygium aqueum Alston (Myrtaceae), 20 m a.s.l, $03^{\circ} 49^{\prime} 25.2^{\prime \prime} \mathrm{S} 102^{\circ} 19^{\prime} 08.7^{\prime \prime} \mathrm{E}$, 10.vii.2018, Goll-coll. A. Zarkani (AZ210).

Comments. -The species is polyphagous on ornamentals and fruits within 62 plant families and 147 genera. CosmopolitanIt is cosmopolitan, being found in 126 countries-; Distribution in Indonesia:- it has been recorded from Irian Jaya (Williams and-\& Watson, 1988), Java (Ben Dov, 1994; Betrem; 1937; Ben-Dov 1994; Williams; 2004) and Sumatra (Williams2004).

*Dysmicoccus carens Williams

Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt,

Setelah: 0 pt

Telah Diformat: Kanan: -1 cm squarrosus L. (Poaceae); India (New Delhi) on Setaria verticillata L. (Poaceae), (Orissa) on grass, (Tamil Nadu) on Saccharum officinarum L. (Poaceae), Cymbopogon sp. (Poaceae), Chloris barbata Sw. (Poaceae); Pakistan (Rawalpindi) on Sorghum nitidum Pers. (Poaceae), S. sudanensis (Piper) Hitch (Poaceae), (Mona) on Arundo donax L. (Poaceae), (Lasbela, Ambagh) on Panicum antidotale Retz. (Poaceae); Sri Lanka (Uva provinceProvince, Wellawa, Kokagala) on grass (Williams, 2004; Kaydan et al. 2004). This-This is a newly new country record fored species from Indonesia.

Dysmicoccus lepelleyi (Betrem)

\leftarrow
\leftarrow
\leftarrow
Material examined. INDONESIA: Bengkulu provinceProvince: Slebar, Bengkulu city, 3 우, on Manilkara zapota L. (Sapotaceae), 20 m a.s.l, $03^{\circ} 49^{\prime} 25.2^{\prime \prime} \mathrm{S} 102^{\circ} 19^{\prime} 08.7^{\prime \prime} \mathrm{E}$, 10.vii.2018, Coll.coll. A. Zarkani (AZ230).

Comments. This is polyphagous species on ornamentals and fruits within 17 plant famikies of plants:-such as Anacardiaceae, Annonaceae, Arecaceae, Asparagaceae, Clusiaceae, Euphorbiaceae, Fagaceae, Malvaceae, Meliaceae, Moraceae, Musaceae, Myrtaceae, Rubiaceae, Rutaceae, Sapindaceae, Sapotaceae, and Zingiberaceae (GarciaGarcía-_Morales et al. 2016). In Indonesia, the species wasit has been recorded previously from Java (Ben-Dov1994; Betrem, 1937; Williams, 2004), Lombok (Williams, 2004),) and Sumatra (Williams, 2004). It is also found in neighboring countries such as Cambodia, Malaysia, Singapore, Thailand, and Vietnam (GarciaGarcía-_Morales et al. 2016).

Key to adult female Dysmicoccus found in Indonesia (adapted from Williams, 2004)

1(0) Circulus present ... 2 - Circulus absent ...

Setelah: 0 pt

Memformat: Font: 12 pt

Telah Diformat: Kanan: -1 cm

Material examined. INDONESIA: Bengkulu provinceProvince: Sukaraja, Seluma district, 3 웅, on Psophocarpus tetragonolobus L. (Fabaceae), 10 m a.s.l, $03^{\circ} 59^{\prime} 07^{\prime \prime} 102^{\circ} 25^{\prime} 37^{\prime \prime} \mathrm{E}$, 15.vi.2018, Coll.coll. A. Zarkani (AZ82-83).

Telah Diformat: Inden: Baris Pertama: 0 cm , Kanan: -1 cm

Memformat: Font: Miring

Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm
Telah Diformat: Kanan: -1 cm
Telah Diformat: Kanan: -1 cm, Spasi Sebelum: 0 pt,
Setelah: 0 pt

Telah Diformat: Kanan: -1 cm
Telah Diformat: Inden: Baris Pertama: 0 cm , Kanan: -1 cm

Memformat: Font: Miring

Memformat: Font: Miring
Telah Diformat: Kanan: -1 cm

2(1) Cerarii numbering 7 pairs including frontal pair. Dorsal oral collar tubular ducts numerous, present in rows across most segments D. boninsis (Kuwana)

- Cerarii numbering more than 7 pairs. Dorsal oral collar tubular ducts, if present, never forming rows across segments
3(2) Most cerarii without auxiliary setae -4
- Most cerarii with auxiliary setae .. 5

4(3) Ventral oral collar tubular ducts sparse, a few present in medial area of abdomen and on lateral margins of abdominal segment VI and posterior segments only, absent from head and thoracic margins
D. carens (Williams)

- Ventral oral collar tubular ducts numerous, present in rows across most abdominal segments to lateral margin, and around lateral margins forwards to head and thorax
D. arachidis Williams
$5(3)$ With series of large oral collar tubular ducts, each about twice as wide as a trilocular pore, present around dorsal lateral margins \qquad D. lepelleyi (Betrem)
- Without a series of large oral collar tubular ducts around dorsal lateral margins 6

6(5) Anal lobe cerarii each containing a group of about 2-7 conical setae 7

- Anal lobe cerarii each containing only 2 conical setae .. 9

7(6) Oral collar tubular ducts absent from both dorsum and venter. Venter with a few multilocular disc pores D. zeynepae Zarkani \& Kaydan sp. n.

- Oral collar tubular ducts absent from dorsum but present on venter. Venter with numerous multilocular disc pores
$8(7)$ Dorsum with a few multilocular disc pores, more numerous over entire venter. Translucent pores present on anterior surface of hind coxa
D. sosromarsonoae Zarkani \& Kaydan sp. n.
- Multilocular disc pores absent from dorsum, present on venter of abdomen only Translucent pores absent from anterior surface of hind coxa but present on posterior surface
D. finitimus Williams

9(6) Abdominal cerarii anterior to anal lobe pair, each with 2 conical setae except for an occasional cerarius with only a single conical seta \qquad

- Some abdominal cerarii, anterior to anal lobe pair, usually containing more than 2 conical setae
10(9) Dorsal setae flagellate, never thick or conical D. debregeasiae (Green)
- Dorsal marginal setae, including auxiliary setae, about same length as other dorsal setae or only slightly longer
D. orchidium Williams
$11(9)$ Dorsal setae on abdominal segment VIII, anterior to anal ring, longer than other dorsal setae, almost as long as anal ring setae.................................D. brevipes (Cockerell)
- Dorsal setae on abdominal segment VIII, anterior to anal ring, shorter, about same size as other dorsal setae.
D. neobrevipes Beardsley

Telah Diformat: Inden: Kiri: 0 cm , Gantung: $1,75 \mathrm{~cm}$ Kanan: -1 cm , Tab berhenti: $1,25 \mathrm{~cm}$, Kiri +16 cm , Kanan,Pimpinan: ... + Tidak di $1 \mathrm{~cm}+15 \mathrm{~cm}$

Memformat: Sorot

Dikomentari [GW21]: Remove this species from thi skey

Memformat: Sorot

Telah Diformat: Inden: Kiri: 0 cm , Gantung: $1,75 \mathrm{~cm}$ Kanan: -1 cm , Tab berhenti: $1,25 \mathrm{~cm}$, Kiri +16 cm , Kanan,Pimpinan: ... + Tidak di $1 \mathrm{~cm}+15 \mathrm{~cm}$

Dikomentari [GW22]: These features are not directly

 comparable. Use opposite conditions of the same character. Williams (2004: 161) separates these using the distribution of marginal oral collar ducts (see his couplet 10)Telah Diformat: Kanan: -1 cm

Ferrisia dasylirii (Cockerell)

T Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt,
Setelah: 0 pt
Telah Diformat: Kanan: -1 cm
Material examined. INDONESIA: Bengkulu provinceProvince: Muara Bangkahulu, Bengkulu city, 6 \& \uparrow, on Solanum torvum Swartz (Solanaceae) and Theobroma cacao L. (Sterculiaceae), 20 m a.s.l. $3^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}$, 3.vii.2019, Coll.coll. A. Zarkani (AZ245-246).

Comments. - The species is polyphagous on ornamentals and fruits and has been recorded on host plants inknown from 23 families and 52 genera (GarciaGarcía-_Morales et al. 2016).

In Indonesia, the species-it was-has been recorded previously from Sumatra (Zarkani et al. 2020).

Ferrisia virgata (Cockerell)

Material examined. INDONESIA: Bengkulu provinceProvince: Muara Bangkahulu, Bengkulu city, 3 아, on Psidium guajava L. (Myrtaceae), 20 m a.s.l., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}$ $102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}, 5$.iii.2019, Coll-coll. A. Zarkani (AZ247).

Comments. Polyphagous-The species is polyphagous on ornamentals and fruits-, and is known from 78 plant families and 207 genera (GarciaGarcía-_Morales et al. 2016). CosmopolitanIt is cosmopolitan--, having been recorded from 101 countries (GarciaGarcíaMorales et al. 2016). In Indonesia, the speciesit was-has been recorded previously in-from Irian Jaya (Gavrilov-Zimin, 2013; Williams and Watson, 1988), Java (Ben-Dov, 1994; Betrem, 1937; Keuchenius, 1915; Ali, 1968; Williams, 2004); and Sulawesi (Williams, 2004).

Nipaecoccus viridis (Newstead)

Material examined. INDONESIA: Bengkulu provinceProvince: Kampung Melayu, Bengkulu city, 3 우, on Citrus sp. (Rutaceae), 10 m a.s.l, 03 $54^{\prime} 16.5^{\prime \prime} \mathrm{S} 102^{\circ} 19^{\prime} 11.7^{\prime \prime} \mathrm{E}$, 18.ii.2018, Goll.coll. A. Zarkani (AZ211).

Comments. Polyphagous-The species is polyphagous on ornamentals and fruits;-, and has been recorded from 45 plant families and 114 genera (GareiaGarcía_-_Morales et al. 2016). CosmopolitanIt is cosmopolitan, having been reported from 63 countries (GarciaGarcíaMorales et al. 2016). In Indonesia, the speciesit was has beenrecorded previously in Irian Jaya (Ben-Dov, 1994; CABI, 1983), Java (Ben-Dov, 1994; CABI, 1983; Williams, 2004); and Sulawesi (Williams, 2004).

Paracoccus evae Williams

Material examined. INDONESIA: Bengkulu provinceProvince: Sukaraja, Seluma district, 3 우, on Melastoma malabathricum L. (Melastomataceae), 50 m a.s.l, $03^{\circ} 52^{\prime} 00.4^{\prime \prime} \mathrm{S}$ $102^{\circ} 22^{\prime} 51.2^{\prime \prime} \mathrm{E}, 23$.vii.2019, Coll.coll. A. Zarkani (AZ249).

Comments.-This is the second report of P. evae from Indonesia-after; Williams (2004) found recorded the speciesit infrom Java on Eupatorium sp. (Asteraceae).

Planococcus dischidiae (Takahashi)

Material examined. INDONESIA: Bengkulu provinceProvince: Kabawetan, Kepahiang district, 1 \& , on C. robusta, 600 m a.s.1, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S} 102^{\circ} 35^{\prime} 33^{\prime \prime} \mathrm{E}$, 12.vi.2018, Collcoll. A. Zarkani (AZ235_-239).

Comments. Previously, -Ptanococeus, dischidiae was has firstly foundbeen collected on Dischidia sp. (Apocynaceae) and Epipremnum (Araceae), and . The species whas been previously-recorded in-from Indonesia (Sulawesi) (Ben-Dov= 1994; Cox- 1989; Williams2004) and Malaysia (Ben-Dov= 1994; Takahashi; 1951).

Planococcus lilacinus (Cockerell)

Memformat: Font: Miring

Telah Diformat: Kanan: -1 cm

Telah Diformat: Kanan: -1 cm, Spasi Sebelum: 0 pt,
Setelah: 0 pt
Telah Diformat: Kanan: -1 cm

Telah Diformat: Inden: Baris Pertama: 0 cm
Memformat: Font: Miring

Memformat: Font: Miring

Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm

Telah Diformat: Kanan: -1 cm, Spasi Sebelum: 0 pt, Setelah: 0 pt

Memformat: Font: 12 pt

Telah Diformat: Kanan: -1 cm
Telah Diformat: Inden: Baris Pertama: 0 cm
Memformat: Font: Miring

Memformat: Font: Miring

Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm

Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt, Setelah: 0 pt

Telah Diformat: Kanan: -1 cm

Telah Diformat: Kanan: -1 cm

Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt,
Setelah: 0 pt
Telah Diformat: Kanan: -1 cm

Memformat: Font: Tidak Tebal
Telah Diformat: Kanan: -1 cm

Material examined. INDONESIA: Bengkulu provinceProvince: Muara Bangkahulu, Bengkulu city, 1 \&, on Saraca asoca (Roxb.) (Fabaceae), 20 m a.s.l., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}$ $102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}, 10 . \mathrm{ii} .2019$ and 15.iii.2020, Coll-coll. A. Zarkani (AZ313).

Comments. -PThe species is polyphagous on ornamentals and fruits;-, and has \&been recorded from 73 plant families and 196 genera (GarciaGarcía_-_Morales et al. 2016). CosmopolitanIt is cosmopolitan, having been reported from 64 countries (GarciaGarcíaMorales et al. 2016). In Indonesia, the speciesit has been-was recorded previously in-from Irian Jaya (Ben-Dov; 1994) (Williams et al., 1988), Java (Williams; 2004), Kalimantan (BenDov, 1994), (Cox, 1989), Lombok (Williams, 2004), Sulawesi (Williams, 2004),) and Sumatra (Ben-Dov, 1994; Cox, 1989; Williams; 2004).

Pseudococcus jackbeardsleyi Gimpel \& Miller

Material examined. INDONESIA: Bengkulu provinceProvince: Kabawetan, Kepahiang district, 1 ㅇ, on Selenicereus undatus (Haw.) DR Hunt (Cactaceae), 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}$ $102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 10.vii.2018, Coll.coll. A. Zarkani (AZ227).

Comments. Polyphagous-This neotropical species is polyphagous on ornamentals and fruits, vegetables and herbs; it has been reported from 52 plant families and 112 genera (GareiaGarcía-_Morales et al. 2016). CosmopelitanIt is cosmopolitan, having been reported from 52 countries (GarciaGarcía_-Morales et al. 2016). In Indonesia, the speciesit has been was recorded previously in-from Flores (Gavrilov-Zimin- 2017), Irian Jaya (Gavrilov-Zimin2013); and Java (Williams, 2004).

*Pseudococcus leptotrichotus Williams

Material examined. INDONESIA: Bengkulu provinceProvince: Kabawetan, Kepahiang district, 12 아, on C. robusta, 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S} 102^{\circ} 35^{\prime} 33^{\prime \prime} \mathrm{E}, 12$.vi.2018, Collcoll. A. Zarkani (AZ235--239).

Comments.-This is a new country record for Indonesia, and is the first mealybug species recorded from Indonesia which that was had been previously reported recorded in Malaysia (Sarawak)-in a leaf nest of Oecophylla sp. ants, from Malaysia (Sarawak). In these specimensIndonesia, P. leptotrichotus were collected en-in a leaf nest of Oecophylla sp. ants on coffee leaves, of Oecophylla sp. ants and from a soil nest of unidentified ants on coffee berries and trees of unidentified ants.

Pseudococcus longispinus (Targioni Tozzetti)

Material examined. INDONESIA: Bengkulu provinceProvince: Muara Bangkahulu, Bengkulu city, 3 q ㅇ, on Theobroma cacao L. (Sterculiaceae), 20 m a.s.l., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}$ $102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}, 5 . \mathrm{iii} .2019$, Collcoll. A. Zarkani (AZ247).

Comments. -PThe species is polyphagous on ornamentals and fruits;-, and has abeen recorded from 84 plant families and 167 genera (GareiaGarcía-_Morales et al. 2016). CosmopolitanIt is cosmopolitan, having been reported from 115 countries (GareiaGarcíaMorales et al. 2016). In Indonesia, the species wasit has been recorded previously in from

Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt , Setelah: 0 pt

Telah Diformat: Kanan: -1 cm
Telah Diformat: Inden: Baris Pertama: 0 cm
Memformat: Font: Miring
Memformat: Font: Miring
Memformat: Font: Miring

Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm

Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt,
Setelah: 0 pt
Telah Diformat: Kanan: -1 cm

Telah Diformat: Inden: Baris Pertama: 0 cm

Memformat: Font: Miring
Memformat: Font: Miring

Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm

Telah Diformat: Kanan: -1 cm, Spasi Sebelum: 0 pt,
Setelah: 0 pt
Telah Diformat: Kanan: -1 cm

Telah Diformat: Inden: Baris Pertama: 0 cm

Dikomentari [GW23]: Was this a true ants' nest containing ant eggs and larvae? or just mealybugs covered by a protective carton shelter of soil made by the ants?

Memformat: Sorot

Memformat: Sorot
Dikomentari [GW24]: Was this a true ants' nest containing ant eggs and larvae, or just mealybugs covered by a protective carton shelter of soil made by the ants?

Telah Diformat: Inden: Baris Pertama: 1 cm, Kanan: -1 cm
Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt , Setelah: 0 pt
Telah Diformat: Kanan: -1 cm
Telah Diformat: Inden: Baris Pertama: 0 cm
Memformat: Font: Miring
Memformat: Font: Miring

Irian Jaya (Ben-Dov- 1994; Williams; 1988), Java (Ben-Dov- 1994; Betrem- 1937), Lombok (Williams; 2004), Sulawesi (Watson et al. 2014); and Sumatra (Green; 1930).

Rastrococcus chinensis Ferris

Material examined. INDONESIA: Bengkulu provinceProvince: Singaran Pati, Bengkulu city, 12 qㅇ, on Nephelium lappaceum L. (Sapindaceae), 20 m a.s.l., $03^{\circ} 48^{\prime} 57.9^{\prime \prime} \mathrm{S}$ $102^{\circ} 18^{\prime} 38.9^{\prime \prime} \mathrm{E}, 12 . \mathrm{vi} .2018$, Collcoll. A. Zarkani (AZ168_-170).

Comments. -The species was recorded previously on Alocasia sp. (Araceae), Ardisia lindleyana D. Dietr. (Primulaceae), Eugenia sp. (Myrtaceae), Melastoma malabathricum L. (Melastomataceae), Morinda umbellata L. (Rubiaceae), Psychotria asiatica L. (Rubiaceae), Syzygium sp. (Myrtaceae), Syzygium anomalum Lauterb. (Myrtaceae-) and Syzygium hancei Merr. \& Perry (Myrtaceae). The speciesIt has been-was recorded previously in from Brunei, China, and Malaysia (GarciaGarcía-_Morales et al. 2016). In Indonesia, the speciesit was has been recorded previously infrom Java (Ben-Dov= 1994; Williams__1989; 2004).

Rastrococcus invadens Williams

Material examined. INDONESIA: Bengkulu provinceProvince: Kabawetan, Kepahiang district, 12 qㅇ, on Mangifera indica L. (Anacardiaceae), 600 m a.s.l., $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}$ $102^{\circ} 35^{\prime} 33^{\prime \prime} \mathrm{E}, 12$.vi.2018, Collcoll. A. Zarkani (AZ235_-239).

Comments. Polyphagous-The species is polyphagous on ornamentals and fruits; it hastbeen recorded from 29 plant families and 54 genera (GarciaGarcía-Morales et al. 2016). CosmopolitanIt is cosmopolitan, having been reported from 32 countries (GarciaGarcíaMorales et al. 2016). In Indonesia, the species wasit has been recorded previously infrom Bali (Ben-Dov, 1994; Williams; 1989, 2004),-) and Java (Ben-Dov- 1994; Williams; 1989, 2004).

Rastrococcus tropicasiaticus Williams

Material examined. INDONESIA: Bengkulu provinceProvince: Air Periukan, Seluma district, 1 \& , on Azadirachta excelsa (Jack) M. Jacobs (Meliaceae), 10 m a.s.1., $3^{\circ} 59^{\prime} 07.1^{\prime \prime} \mathrm{S}$ $102^{\circ} 25^{\prime} 37.4^{\prime \prime} \mathrm{E}, 1 . \mathrm{v} .2019$, Collcoll. A. Zarkani, (AZ336).

Comments.-Zarkani et al. (2021) reported R. tropicasiaticus for the first time in Indonesia (Bengkulu) on A. excelsa (Meliaceae), Cerbera manghas L. (Apocynaceae), Dimocarpus longan Lour. (Sapindaceae), Ficus sp. (Moraceae), and Tectona grandis L. (Lamiaceae) for the first time in Indonesia (Bengkulu). The speciesIt is also known to live on woody plants and wild grass in parts of southern Asia such as Malaysia, Philippines, Thailand, and Vietnam (Gareia_García--Morales et al. 2016).

Acknowledgements

The authors wish to thank Dr - Takumasa Kondo (Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Colombia), for his kind help and for critieal readingque of the manuscript. The project was financially supported by the Research and Community Service Centre, Lembaga Penelitan dan Pengabdian pada Masyarakat (LPPM), The University of

Memformat: Font: Miring
Telah Diformat: Inden: Baris Pertama: 1 cm, Kanan: -1 cm

Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt, Setelah: 0 pt
Telah Diformat: Kanan: -1 cm
Memformat: Font: Times New Roman

Telah Diformat: Inden: Baris Pertama: 0 cm

Memformat: Font: Miring
Telah Diformat: Inden: Baris Pertama: 1 cm, Kanan: -1 cm
Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt,
Setelah: 0 pt
Telah Diformat: Kanan: -1 cm
Memformat: Font: Tebal
Memformat: Font: Tidak Tebal
Telah Diformat: Inden: Baris Pertama: 0 cm
Memformat: Font: Tidak Tebal
Memformat: Font: Tidak Tebal
Memformat: Font: Tidak Tebal
Memformat: Font: Tidak Tebal, Miring
Memformat: Font: Tidak Tebal
Memformat: Font: Tidak Tebal
Memformat: Font: Tidak Tebal
Memformat: Font: Tidak Tebal
Memformat: Font: Tidak Tebal, Miring
Memformat: Font: Tidak Tebal
Telah Diformat: jbd-subjud10, Inden: Baris Pertama: 1 cm , Kanan: -1 cm

Telah Diformat: Kanan: -1 cm, Spasi Sebelum: 0 pt, Setelah: 0 pt

Telah Diformat: Kanan: -1 cm
Memformat: Font: 12 pt
Telah Diformat: Kanan: -1 cm
Memformat: Font: Miring
Telah Diformat: Kanan: -1 cm, Spasi Sebelum: 0 pt, Setelah: 0 pt

Dikomentari [GW25]: Abbreviations are only followed by a full stop if the last letter is not the same as the full word; Dr doe snot need a full stop.

Bengkulu with grants No. SP. DIPA-041.012.400977/2020. The writing of the manuscript was assisted by WCP Dikti Program 2021.

References

Ali, S.M. (1968) Coccids (Coccoidea: Hemiptera: Insecta) affecting fruit plants in Bihar (India). Journal of the Bombay Natural History Society, 65-, 120-137.
Ben-Dov, Y. (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance. Intercept Limited, Andover, UK, 686 pp.
Betrem $\mathbf{J}_{2} \mathrm{G}_{\mathbf{Z}}$ (1937) De morporphologie en systematiek van enkele vande vooraamste witteluizensoorten van Java. Archief voor de Koffiecultuur in Nederlandsch-Indie 11; 1-118.
CABI (1983) Nipaecoccus viridis (Newstead). Distribution Maps of Pests, Series A, Agricultural, Map no. 446, 2 pp.
CBD Secretariat (2021) Indonesia___Country Profile: Biodiversity Facts. Available from: https://www.cbd.int/countries/profile/default.shtml?country=id\#facts (accessed 22 March 2021).
Cox J_M. $_{2}$ (1989) The mealybug genus Planococcus (Homoptera: Pseudococcidae). Bulletin British Museum (Natural History). L_Entomology, 58;-1-78.
Cox ${ }_{2} \mathrm{~J}_{\underline{2}} \mathrm{M}_{-5}$ \& Ben-Dov, Y (1986) Planococcine mealybugs of economic importance from the Mediterranean Basin and their distinction from a new African genus (Hemiptera: Pseudococcidae). Bulletin of Entomological Research, 76;-,481-489.
 $M_{\text {., }}$, Miano, J.L., Sforza, R., Walton, V.M-. \& Zaviezo, T. (2012) Biology and management of mealybugs in vineyards. In: Bostanian, N.J., Vincent, C. $=$ \& Isaacs, R, (eds), Arthropod Management in Vineyards. Springer Netherlands Press, Dordrecht, pp. 271-307,-484 p.
Dammerman, K.W. (1929) The agricultural zoology of the Malay Archipelago. The animals injurious and beneficial to agriculture, horticulture and forestry in the Malay Peninsula, the Dutch East Indies and Philippines. J.H. de Bussy I-XI, Amsterdam, Netherlands, 473 pp .
Franco $\mathrm{O}_{2} \mathrm{~J}_{-} \mathrm{C}_{-}$, Zada, A, \& Mendel, Z. (2009) Novel approaches for the management of mealybug pests. In: Ishaaya $\mathrm{I},-$. \& Horowitz, $\mathrm{A}_{2} \mathrm{R}_{\mathbf{2}}$ (eds), Biorational Control of Arthropod Pests. Springer Science + Business Media, New York, pp 233-278, 393 p.
 (2016) ScaleNet: a literature-based model of scale insect biology and systematics. ScaleNet: a literature-based model of scale insect biology and systematics. [online] URLAvailable from: http://scalenet.info (accessed 15 March 2021)=
Gavrilov-Zimin $I_{-} A_{-}$(2013) New scale insects (Homoptera: Coccinea) from Sulawesi and New Guinea, with some other additions to the Indonesian fauna. Tropical Zoology, 26;-64-86.
https://doi.org/10.1080/03946975.2013.807570
Gavrilov-Zimin, I.A. (2016), Cytogenetic and taxonomic studies of some legless mealybugs (Homoptera, Coccinea, Pseudococcidae). Comparative Cytogenetics, 10 (4), 587-601.
Gavrilov-Zimin I_A. (2017) Taxonomic and faunistic notes on scale insects (Homoptera: $_{\text {I }}$ Coccinea) of Bali, Flores and New Guinea (Indonesia). In: Telnov, D. (ed.), Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea. Entomological Society of Latvia, Salaspils, 3; , pp. 141-149.

Telah Diformat: Kanan: -1 cm, Spasi Sebelum: 0 pt,
Setelah: 0 pt
Telah Diformat: Inden: Kiri: 0 cm, Gantung: 1 cm , Kanan:
$-1 \mathrm{~cm}$
Memformat: Font: Miring

Memformat: Font: Miring

Memformat: Font: Miring

Memformat: Font: Miring

Memformat: Font: (Default) Times New Roman, 12 pt, Warna font: Otomatis
Memformat: Font: (Default) Times New Roman, 12 pt, Warna font: Otomatis
Memformat: Font: Miring
Memformat: Font: (Default) Times New Roman, 12 pt, Tidak Tebal, Warna font: Otomatis

Memformat: Font: (Default) Times New Roman, 12 pt, Warna font: Otomatis

Memformat: Font: (Default) Times New Roman, 12 pt, Warna font: Otomatis
Memformat: Font: (Default) Times New Roman, 12 pt, Miring, Warna font: Otomatis
Memformat: Font: (Default) Times New Roman, 12 pt, Warna font: Otomatis
Memformat: Font: (Default) Times New Roman, 12 pt, Warna font: Otomatis
Memformat: Font: (Default) Times New Roman, 12 pt, Warna font: Otomatis

Memformat: Font: Tidak Miring
Memformat: Font: Miring

Gavrilov-Zimin, I_A. (2019) New Asterolecaniidae s.l. (Homoptera: Coccinea) from different regions of the world and some distributional records. Tropical Zoology, 32; , 142-154. Memformat: Font: Miring https://doi.org/10.1080/03946975.2019.1641673
Gavrilov-Zimin IA (2020) Chromosomal and reproductive features of some Oriental and Australasian scale insects (Homoptera, Coccinea). Comparative Cytogenetics, 14; Memformat: Font: Miring 339-352.
https://doi.org/10.3897/CompCytogen.v14i3.53367
Gavrilov-Zimin, I_A. (2021) New and poorly known giant scale insects (Homoptera: Coccinea: Margarodidae s. lat.) from the Oriental region with taxonomic and nomenclatural notes on the subfamily Monophlebinae-. European Journal of Taxonomy 7 746;- $_{2}$ 50-61. https://doi.org/10.1080/03946975.2019.1641673
Granara de Willink MC (2009) Dysmicoccus de la Región Neotropical (Hemiptera: Pseudococcidae). Revista de la Sociedad Entomológica Argentina, 68-, 11-95.
Granara de Willink M $_{2} C_{-}^{-}$\& Szumik C $_{2}$ (2007) Phenacoccinae de Centro y Sudamérica (Hemiptera: Coccoidea: Pseudococcidae): Sistemática-sistemática y filogenia. Revista Memformat: Font: Miring de la Sociedad Entomológica Argentina, 66;-29-129.
Green, E.E. (1930) Fauna Sumatrensis (Bijdrag Nr. 65). Coccidae. Tijdschrift voor Entomologie, 73;-279-297.
Kalshoven, L_G_E (1981) Coccoidea. Pests of crops in Indonesia. Ichtiar Baru, Jakarta, Indonesia, 701 pp .
Kaydan, M.B-- \& Gullan, P_J. (2012) A taxonomic revision of the mealybug genus Ferrisia Fullaway (Hemiptera: Pseudococcidae), with descriptions of eight new species and a new genus. Zootaxa, 3543,$- 1-65$.
Kaydan, M_B., Konczné Benedicty, Z-_ \& Szita, É. (2014) New species of the genus Ortheziola Šulc (Hemiptera, Coccoidea, Ortheziidae). ZooKeys, 406;-, 65-80. https://doi.org/10.3897/zookeys.406.7596
Keuchenius PE (1915) Onderzoekingen en beschouwingen over eenige schadlijke schildluizen van de Koffiekultuur op Java. Mededeelingen van het Besoekisch Proefstation. Djember, 16; , 1-65.
Kosztarab $_{2}$ M--. \& Kozár ${ }_{2}$ F (1988) Scale Insects of Central Europe. Akadémiai Kiadó, Budapest. 456 pp.
McNeely, J.A., Miller, K.R., Reid, W.V., Mittermeier, R.A--. \& Werner, T.B. (1990) Conserving the World's Biological Diversity. IUCN, Gland, Switzerland, 193 pp.
 $\mathrm{J}_{\underline{-}} \mathrm{J}_{-}$. \& Hammig, M_D. (2008) First report of the Papaya-papaya Mealybugmealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), in Indonesia and India. Journal of Agricultural and Urban Entomology, 25; , 37-40.

 invasive insects (Hemiptera: Sternorrhyncha) in Southeast Asia and West Africa. Journal of Agricultural and Urban Entomology, 26;-167-174.

Memformat: Font: Miring
Memformat: Font: Miring
\qquad
Memformat: Font: Miring

Memformat: Font: Miring
\square
\qquad
Memformat: Font: Miring

Memformat: Font: Miring
\qquad
\square

Memformat: Font: Miring

Memformat: Font: Miring https://doi.org/10.3954/1523-5475-26.4.167
 Aulacaspis scale, a newly introduced insect pest in Indonesia. HAYATI Journal of Biosciences, 19; ${ }_{2}$ 110-114. https://doi.org/10.4308/hjb.19.3.110
Reyne A (1954) Hippeococcus a new genus of Pseudococcidae from Java with peculiar habits. Zoologische Mededelingen Uitgegeven door het Rizksmuseum van Natuurlijke Historie te Leiden 32; 233-257.

Reyne A (1957) Walkeriana tosariensis, a new monophlebine coccid from Casuarina junghununiana Miq. in east-Java. Beaufortia, Amsterdam 6; 115-145.
Reyne A (1961) Scale insects from Dutch New Guinea. Beaufortia, Amsterdam 8; 121-167.
Reyne A (1965) Observations on some Indonesian scale insects. Tijdschrift voor Entomologie, Amsterdam 108; 145-188.
Sartiami, D...Watson, G.W...Mohamad Roff, M.N...Hanifah, M. \& Idris, A.B. (2015) First record of cassava mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae), in Malaysia. Zootaxa, 3957 (2), 235-238.

Sartiami D, Watson GW, Mohamad Roff MN, Idris AB (2016) New Indonesian country records and species information for mealybugs (Hemiptera Pseudococcidae) in Wirjati's historic collection. Redia ${ }_{2}$ XCIX $_{2}$ 155-161.
Takahashi R (1951) Some mealybugs (Pseudococcidae, Homoptera) from the Malay Peninsula. Indian Journal of Entomology 12; 1-22.
Watson GW, Muniappan R, Shepard BM, Sembel DT, Xiong JJ, Rauf A (2014) Sap-sucking insect records (Hemiptera: Sternorrhyncha and Thysanoptera: Thripidae) from Indonesia. Florida Entomologist 97; 1594-1597. https://doi.org/10.1653/024.097.0432
Williams DJ (1989) The mealybug genus Rastrococcus Ferris (Hemiptera: Pseudococcidae). Systematic Entomology 14; 433-486. https://doi.org/10.1111/j.1365-3113.1989.tb00298.x
Williams DJ (2004). Mealybugs of Southern Asia. The Natural History Museum, London, and Southdene SDN BHD, Kuala Lumpur. 896 pp.
Williams DJ, Granara de Willink MC (1992) Mealybugs of Central and South America. CAB International, Wallingford, 635 pp .
Williams DJ, Watson GW (1988) The Scale Insects of the Tropical South Pacific Region. Pt. 2. The Mealybugs (Pseudococcidae). CAB International, Wallingford, U.K., 260 pp.

Wirjati (1958) On a small mealybug from a virgin forest. Idea, Journal of the Entomological Society of Indonesia 11; 14-17.
Wirjati (1959) A new species of Trionymus found on rice-roots in Java. Idea, Journal of the Entomological Society of Indonesia 12; 14-19.
Zarkani A, Apriyanto D, Turanli F, Kaydan MB (2020) New record of Ferrisa dasylirii (Cockerell) (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia. Serangga 25; 93-100.
Zarkani A, Sunardi T, Nadrawati, Ercan C, Kaydan MB (2021a) First record of Rastrococcus tropicasiaticus Williams (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia. Serangga, 26 (3), 29-36.
Zarkani A, Apriyanto D, Turanli F., Ercan C, Kaydan MB (2021b) A check list of the scale insect (Hemiptera: Pseudococcidae) in Indonesia. Zootaxa, 5016 (2), 151-195.

FIGURE 1. Adult female Dysmicoccus sosromarsonoae Zarkani \& Kaydan Sp. n. Memformat: Warna font: Otomatis
Holotypeholotype.

Memformat: Font: Tebal

Telah Diformat: Inden: Kiri: 0 cm , Baris Pertama: 0 cm

FIGURE 2. Dysmicoccus sosromarsonoae Zarkani \& Kaydan sp. n. on Elaeis guineensis Jacq.

FIGURE 3. Adult female Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. Holotypeholotype

\square

FIGURE 4. Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. on (A) Lansium parasiticum Corr., (B) Coffea robusta Lindl.Ex De Will, (C) Manilkara zapota L., and (D) Durio zibethinus Murr.

Studies on mealybugs (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia, with description of a new species and three new country records

AGUSTIN ZARKANI ${ }^{1,2^{*}}$, CANSU ERCAN ${ }^{4,5}$, DWINARDI APRIYANTO ${ }^{1,3} \&$ MEHMET BORA KAYDAN ${ }^{4,6,7}$
${ }^{1}$ Department of Plant Protection, Faculty of Agriculture, University of Bengkulu, 383711, Bengkulu, Indonesia.
${ }^{2}$ Email: agustinzarkani@unib.ac.id; https://orcid.org/0000-0001-9837-5019
${ }^{3}$ Email: dwinardi2018@gmail.com; https://orcid.org/0000-0002-5286-9010
${ }^{4}$ Department of Plant Protection, Faculty of Agriculture, Ege University, 35100, Izmir, Turkey.
${ }^{5}$ Email: cansuercann01@gmail.com; https://orcid.org/0000-0003-3516-9183
${ }^{6}$ Biotechnology Development and Research Centre, Çukurova University, 01250, Adana, Turkey.
${ }^{7}$ Email: bkaydan@cu.edu.tr; https://orcid.org/0000-0002-0677-255X
*Corresponding author

Abstract

Mealybugs (Hemiptera: Coccomorpha: Pseudococcidae) include economically important insect pests worldwide; however, little is known about the species present in Indonesia. Samples were collected and identified from wild and cultivated plants in several regions of southern Sumatra, Indonesia between 2018 and 2019. Eighteen species of Pseudococcidae in 8 genera were identified, including one undescribed species. Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. is described and illustrated based on the morphology of the adult female, and a key is provided for the identification of all 18 species. Furthermore, Dysmicoccus arachidis Williams, D. carens Williams and Pseudococcus leptotrichotus Williams are recorded for the first time from Indonesia; new locality and host-plant data are given for these species.

Keywords: Biodiversity, host plant, pests, Sternorryncha, taxonomy

Introduction

The Pseudococcidae (Hemiptera: Coccomorpha: Coccomorpha), whose members are known as mealybugs, is a family of scale insects which include many important sap-sucking insect pests of woody and herbaceous plants. These insects not only damage their host plants directly, by mechanical injury and extraction of sap, but also indirectly by promoting sooty mold growth on their sugary honeydew waste and by facilitating the transmission of plant virus diseases (Franco et al. 2009, Daane et al. 2012).

The Pseudococcidae, with 2041 species in 259 genera, is the second largest scale insect family after the Diaspididae, which contains about 2693 species in 418 genera (García Morales et al. 2016). In the Indonesian archipelago, 108 species of Pseudococcidae in 31 genera have been recorded so far, the second-largest family after the Diaspididae, which has 118 species in 46 genera recorded (García Morales et al. 2016). In the family Pseudococcidae, the most species-rich and damaging genera in Indonesia are: Rastrococcus Ferris (15 species), Pseudococcus Westwood (13 species), Paraputo Laing (13 species), Dysmicoccus Ferris (9 species), and Planococcus Ferris (7 species) (Williams 2004; García Morales et al. 2016).

As a tropical country located along major sea lanes connecting East Asia, South Asia and Oceania, it is not surprising that Indonesia has a very large number of indigenous plants, vertebrates and invertebrates including great insect biodiversity (McNeely et al. 1990; CBD

Secretariat 2021). The first documentation of Indonesian insect diversity, including mealybugs in Indonesia began in the British, Dutch and Japanese colonial eras and has continued to the present, resulted in the description of many new Indonesian native species and several additional records to the scale insect fauna (Dammerman 1929; Reyne 1954, 1957, 1961, 1965; Wiriati 1958, 1959; Kalshoven 1981; Muniappan et al. 2008, 2011, 2012; Sartiami et al. 2015, 2016; Gavrilov-Zimin 2013, 2016, 2017, 2019, 2020, 2021; and Zarkani et al. 2020, 2021a, b). However, the only comprehensive review of mealybugs recorded from Indonesia is in the monograph by Williams (2004). In the last 16 years the number of described scale insect species recorded in Indonesia has increased by 53 species (García Morales et al. 2016) but the knowledge of Indonesian scale insect species are still patchy and incomplete.

The present paper covers a new species and three new country records from Indonesia. Identification keys to genera and Dysmicoccus species, and new locality records for the currently known Pseudococcidae species, are provided and discussed.

Materials and methods

Mealybugs (nymphs and adult females) were collected from tropical plants in several regions of southern Sumatra, Indonesia between April 2018 and October 2019. Infested plant parts (fruits, trunk and branches, and leaves) were cut, bagged, labeled and taken to the Laboratory of Plant Protection, University of Bengkulu for examination. For species determination, nymphs were reared on the relevant plant material (at $25 \pm 1^{\circ} \mathrm{C}, \sim 70 \%$ relative humidity and of $16: 8 \mathrm{~h}$ light: dark photoperiod) until they reached the adult stage. A eompound lightbinocular dissection microscope, LEICA EZ4HD, was used to sort specimens for preservation and slide mounting. Specimens were killed, labeled and stored in 70% ethyl alcohol.

In the Plant Protection Department of the University of Bengkulu, adult female specimens were slide-mounted using the method of Kosztarab and Kozár (1988) with some modifications (using distilled water after KOH and cleaning the specimens using a fine brush). They were identified by light microscopy using a phase-contrast compound microscope (Olympus BX41) and were identified using the keys in Cox and Ben-Dov (1986), Williams (2004), Granara de Willink and Szumik (2007), Granara de Willink (2009), and Kaydan and Gullan (2012).

For description of the new species, the main taxonomic characters of the adult females were evaluated and quantified under a compound light microscope. The morphological terms used are those used by Williams and Granara de Willink (1992) and Williams (2004). All the measurements given are for the maximum dimensions (e.g., body width was recorded at the widest part) and are expressed as ranges. Tarsal length excludes the claw. Setal length includes the setal base. Cerarii are numbered as described by Williams and Granara de Willink (1992), with cerarius C_{1} on the head, anterior to the antenna, and cerarius C_{17} being on abdominal segment VIII. A taxonomic illustration is provided for each new species, and is based on the holotype used for the description. The illustration is split longitudinally, with the left half representing the dorsum and the right half, the venter. Structural details are shown as enlargements around the central drawing, and are not all drawn to the same scale. The translucent pores on the hind legs are mostly found on the dorsal surface, but they are illustrated ventrally on the main figure for convenience.

Type specimens of the new species described are deposited in the Mealybugs Museum, Department of Plant Protection, Faculty of Agriculture, University of Bengkulu, Bengkulu, Indonesia (MMUB). Add an explanation of the use of " $/$ " in holotype data listing (to indicate

Results and discussion

From 149 mealybug samples collected from southern Sumatra, Indonesia, 18 species were identified, one of which is a new to science and three are new country records for Indonesia. The identified species belong to the genera Dysmicoccus (5 species), Ferrisia (2 species), Nipaecoccus (1 species), Palmicultor (1 species), Paracoccus (1 species), Planococcus (2 species), Pseudococcus (3 species) and Rastrococcus (3 species). The species marked below with an asterisk $\left(^{*}\right.$) are recorded for the first time from Indonesia.

Key to adult females of Pseudococcidae genera occurring in this study (adapted from Williams and Granara de Willink (1992), Williams and Watson (1988) and Williams (2004).

$1(0)$	D
	area containing 1 or more setae within its borders, or with the setae adjacent to the rim
	isia Cockerell
	Dorsal tubular ducts, if present, without this combination of characters 2
2(1)	Cerarii always conspicuous, each containing numerous truncate-conical cerarian setae, each with apex flat Rastrococcus Ferris
-	Cerarii, if present, containing cerarian setae with pointed apices, never truncateconical setae \qquad
3(2)	Oral rim tubular duct
	Oral rim tubular ducts absent
4(3)	Venter of each anal lobe with anal lobe bar; auxiliary setae present in anal lobe cerarii only \qquad Paracoccus Ezzat \& McConnel
	Venter of each anal lobe with triangular to quadrate sclerotized area occupying much of lobe, never with a slender anal lobe bar only \qquad Pseudococcus Westwood
5(3)	Anal lobe bars present. Cerarii numbering 18 pairs Planococcus Ferris
	Anal lobe bars absent. Cerarii numbering fewer than 18 pairs 6
6(5)	Some or most dorsal setae enlarged, conical to lanceolate, about same size as cerarian setae \qquad Nipaecoccus Šulc
	Dorsal setae either flagellate or conical to lanceolate, all noticeably slender than cerarian setae \qquad
	Minute duct-like pores numerous on derm next to hind coxae Palmicultor Williams
	Minute duct-like pores absent from derm next to hind coxaeDysmicoccus Ferris

Dikomentari [GW1]: Zootaxa is an international journal. Keys in its articles should provide coverage at country level or more widely. Your key does not cover the whole of Sumatra, never mind Indonesia. If your article does not provide coverage at the country level then it will not be suitable for publication in Zootaxa, but should go in an Indonesian or regional journal.

It would be very useful if you modified Williams' (2004) key, to make it possible to identify all $\mathbf{3 1}$ genera in Indonesia including Komodesia (as that genus was not covered by Williams (2004)). You can easily do this without writing out the entire key to genera, in the same way as in your key later in the manuscript, by referring to a couplet in the key to genera in Williams (2004). Komoodesia is very distinctive and keys out in the first 5 couplets of Williams' (2004) key.

Memformat: Sorot
Memformat: Sorot

Genus Dysmicoccus Ferris

Type species: Dactylopius brevipes Cockerell by original designation.
Genus diagnosis of adult female (adapted from Williams, 2004). Body normally broadly oval, $1.65-4.20 \mathrm{~mm}$ long, $0.90-2.89 \mathrm{~mm}$ wide. Antennae each normally with $6-8$ segments. Cerarii present, numbering 6-17 pairs (never 18), anal lobe cerarii each each bearing either 2 cerarian setae or as many as 8 , these usually conical, sometimes conical setae replaced by flagellate setae but cerarii always recognizable by concentrations of trilocular pores. Anterior cerarii each sometimes containing more than 2 setae. Circulus present or absent. Legs well developed, hind legs with translucent pores present or absent; tarsal digitules usually
knobbed, occasionally setose. Claw usually stout, claw denticle absent. Anal lobes usually developed, either membranous or sclerotized, each lobe bearing a normal apical seta. Ventral margin of abdominal segments anterior to anal lobes always membranous. Anal ring normally situated at apex of abdomen (rarely a short distance from apex), usually bearing 6 setae, occasionally with more setae present. Anterior and posterior ostioles present. Dorsal setae variously shaped, often flagellate. Ventral setae flagellate. Trilocular pores present on dorsum and venter. Multilocular disc pores usually present, at least on venter. Quinquelocular pores and oral rim tubular ducts always absent. Oral collar tubular ducts usually apparent, at least on venter, sometimes present on dorsum, rarely absent entirely. Discodial pores present, sometimes large and occasionally present next to each eye.

*Dysmicoccus arachidis Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Crassocephalum crepidioides (Benth.) S. Moore (Asteraceae), 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime}$ S, $102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 12.vi.2018, coll. A. Zarkani (AZ80-81), 6 앙.

Comments. This species is a new country record for Indonesia and only the second record of the species; Williams (2004) previously reported it from India (Tripura) on Arachis hypogaea L. (Fabaceae). There is very little information available on D. arachidis.

Dysmicoccus brevipes (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Slebar, on Syzygium aqueum Alston (Myrtaceae), 20 m a.s.l, $03^{\circ} 49^{\prime} 25.2^{\prime \prime} \mathrm{S}, 102^{\circ} 19^{\prime} 08.7^{\prime \prime} \mathrm{E}$, 10.vii.2018, coll. A. Zarkani (AZ210), 3 우.

Comments. The species is polyphagous on ornamental plants and fruits belonging to 62 plant families and 147 genera. It is cosmopolitan, being found in 126 countries; in Indonesia it has been recorded from Irian Jaya (Williams \& Watson 1988), Java (Betrem 1937; Ben-Dov 1994; Williams 2004) and Sumatra (Williams 2004).

*Dysmicoccus carens Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Sukaraja, on Psophocarpus tetragonolobus L. (Fabaceae), 10 m a.s.l, $03^{\circ} 59^{\prime} 07^{\prime \prime} \mathrm{S}, 102^{\circ} 25^{\prime} 37^{\prime \prime} \mathrm{E}$, 15.vi.2018, coll. A. Zarkani (AZ82-83), 3 우.

Comments. Dysmicoccus carens is a new country record for Indonesia. The species was-has been recorded previously on Poaceae, previously from Bangladesh (North) on Andropogon squarrosus L.; India, New Delhi on Setaria verticillata L., Orissa on grass, Tamil Nadu on Saccharum officinarum L., Cymbopogon sp. and Chloris barbata Sw.; Pakistan, Rawalpindi on Sorghum nitidum Pers. and S. sudanensis (Piper) Hitch, Mona on Arundo donax L., Lasbela, Ambagh on Panicum antidotale Retz.; and Sri Lanka, Uva Province, Wellawa, Kokagala on grass (Williams 2004). Dysmicoccus carens is a new country record for Indonesia.

Dysmicoccus lepelleyi (Betrem)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Slebar, on Manilkara zapota L. (Sapotaceae), 20 m a.s.l, $03^{\circ} 49^{\prime} 25.2^{\prime \prime} \mathrm{S}, 102^{\circ} 19^{\prime} 08.7^{\prime \prime} \mathrm{E}, 10 . v i i .2018$, coll. A. Zarkani (AZ230), 3 웅.

Comments. This is polyphagous species on ornamentals and fruits within 17 plant families: Anacardiaceae, Annonaceae, Arecaceae, Asparagaceae, Clusiaceae, Euphorbiaceae, Fagaceae, Malvaceae, Meliaceae, Moraceae, Musaceae, Myrtaceae, Rubiaceae, Rutaceae, Sapindaceae, Sapotaceae, and Zingiberaceae (García Morales et al. 2016). In Indonesia, it has been recorded previously from Java (Betrem 1937; Ben-Dov 1994; Williams 2004), Lombok (Williams 2004) and Sumatra (Williams 2004). It is also found in neighboring countries such as Cambodia, Malaysia, Singapore, Thailand, and Vietnam (Williams 2004).

Dysmicoccus zeynepae Zarkani \& Kaydan sp. n.

(Fig. 1)
Material examined, all deposited at MMUB.
Holotype: adult female, INDONESIA: left label: AZ205, Sumatra, Bengkulu on ${ }^{*}$ Durio zibethinus Murr. (Malvaceae), 03³4'54.4"_S 102³8'33"_E, 4.ii.2018, coll. A. Zarkani; right label: Holotype, Dysmicoccus zeynepaet sp. n. Zarkani \& Kaydan. MMUB.

Paratypes, 5 adult females, INDONESIA: same data as holotype (AZ205); 3 adult females, AZ206, Sumatra, Bengkulu on Lansium parasiticum Corr. (Meliaceae), $03^{\circ} 59^{\prime} 28.0^{\prime \prime}$ S, $102^{\circ} 25^{\prime} 50.4^{\prime \prime}$ E, 11.ii.2018, coll. A. Zarkani; 3 adult females, AZ207, Sumatra, Bengkulu on Manilkara zapota L. (Sapotaceae), $04^{\circ} 00^{\prime} 05.7^{\prime \prime}$ S, $102^{\circ} 26^{\prime} 52.1^{\prime \prime}$ E, 12.ii.2018, coll. A. Zarkani; 3 adult females, AZ208, Sumatra, Bengkulu, Coffea robusta Lindl. Ex De Will. (Rubiaceae), 03³6'15.4"_S, 102³6'30.8"_E-, 19.ii.2018, coll. A. Zarkani. All deposited in MMUB.

Description of adult female

Appearance in life (Fig. 1). Adult females secrete a thin powdery white wax covering across over their bodies. Living on leaves, flowers and fruits of host plants, commonly attended by ants.

Description ofslide-mounted adult female (based on holotype and 5 paratypes) (Fig. 2): Body oval, $1.95-2.54 \mathrm{~mm}$ long, $1.64-2.25 \mathrm{~mm}$ wide. Eyes situated on margins, each $42-$ $45 \mu \mathrm{~m}$ wide. Antenna 8 segmented, 340-380 $\mu \mathrm{m}$ long, with 4 fleshy setae each $22.5-25.0 \mu \mathrm{~m}$ long; apical segment $75-80 \mu \mathrm{~m}$ long, $27.5-30.0 \mu \mathrm{~m}$ wide, with apical seta $30-35 \mu \mathrm{~m}$ long. Clypeolabral shield 200-220 $\mu \mathrm{m}$ long, 175-185 $\mu \mathrm{m}$ wide. Labium 3 segmented, $110-120 \mu \mathrm{~m}$ long, $80-85 \mu \mathrm{~m}$ wide. Anterior spiracles each $85-90 \mu \mathrm{~m}$ long, $45-50 \mu \mathrm{~m}$ wide across atrium; posterior spiracles each $95 .-115$. $\mu \mathrm{m}$ long, $55-60 \mu \mathrm{~m}$ wide across atrium. Circulus roundedquadrate $80-110 \mu \mathrm{~m}$ wide. Legs well developed; segment lengths for each posterior leg: coxa 160-175 $\mu \mathrm{m}$, trochanter + femur 145-155 $\mu \mathrm{m}$, tibia + tarsus $175-180 \mu \mathrm{~m}$, claw 35.0-37.5 $\mu \mathrm{m}$. Ratio of length of tibia + tarsus to trochanter + femur, 1.77-1.78: 1; ratio of length of tibia to tarsus, $1.2-1.4: 1$; ratio of length of trochanter + femur to greatest width of femur, 2.41-2.60 : 1; coxa with 30-50 translucent pores; tibia with numerous translucent pores. Tarsal digitules capitate, each 35-40 $\mu \mathrm{m}$ long. Claw digitules capitate, each about 27.5-30.0 $\mu \mathrm{m}$ long. Both pairs of ostioles present, anterior ostioles each with a total for both lips of $28-$ 40 trilocular pores and 4-6 setae; posterior ostioles each with a total for both lips of 58-60 trilocular pores and 6-8 setae. Anal ring about $70 \mu \mathrm{~m}$ wide, bearing 6 setae, each seta $80-90$ $\mu \mathrm{m}$ long.

Memformat: Font: Tidak Tebal
Telah Diformat: Spasi Sebelum: 0 pt, Setelah: 0 pt
Dikomentari [GW2]: Please check that the data given here is exactly as it is written on the slide labels, with " $/$ " indicating where the line breaks are

Telah Diformat: Inden: Baris Pertama: 1 cm , Spasi Sebelum: 0 pt, Setelah: 0 pt

Dikomentari [GW3]: Please check that the data given here is exactly as it is written on the slide labels, with " "" indicating where the line breaks are

Telah Diformat: Spasi Sebelum: 0 pt, Setelah: 0 pt
Dikomentari [GW4]: Figures must be numbered in the order in which they are fererred to. I have re-numbered tha figures (see separate file).

Memformat: Font: Tidak Tebal

Dorsum. Derm membranous, with 16 pairs of cerarii around body margin, each cerarius with 4-7 enlarged conical setae and 3-5 auxiliary setae. Each anal lobe cerarius set on membranous cuticle and containing 5-7 enlarged conical setae $25-35 \mu \mathrm{~m}$ long, plus $40-45$ trilocular pores and 3-5 hair-like auxiliary setae. Dorsal setae flagellate, each $15-75 \mu \mathrm{~m}$ long, scattered throughout dorsum. Trilocular pores, each 3-4 $\mu \mathrm{m}$ in diameter, scattered. Multilocular disc pores and tubular ducts absent.

Venter. Setae flagellate, each $30-110 \mu \mathrm{~m}$ long, longest setae located medially on head. Apical setae on anal lobes unusually short, each $80-90 \mu \mathrm{~m}$ long. Multilocular disc pores, each $7-8 \mu \mathrm{~m}$ in diameter, present only immediately around vulva, numbering $8-10$. Trilocular pores, each 2.5-3.0 $\mu \mathrm{m}$ across, scattered throughout venter. Oral collar tubular ducts absent.

Comments. Dysmicoccus zeynepae is most similar to D. finitimus in having anal lobe cerarii each containing a group of about 2-7 conical setae. However, D. zeynepae can be readily distinguished from D. finitimus in having: (i) no multilocular disc pores and oral collar tubular ducts on dorsum; (ii) a few multilocular disc pores without oral collar tubular ducts on venter. It is also closed to D. lepelleyi in term of small legs and having translucent pore on hind coxa and femur, but D. zeynepae have no oral collar tubular ducts from both dorsum and venter.

Etymology. This species is named after Zeynep Kaydan ("mother" of Kaydan's Laboratory), Zeynep Güleç and Zeynep Kaya who are good friends of the Kaydan's lab.

Host plants. Durio zibethinus (Malvaceae), L. parasiticum (Meliaceae), M. zapota (Sapotaceae) and C. robusta (Rubiaceae) (Figure 2).

Distribution. Indonesia (Sumatra I., Bengkulu Province).
Key to adult female Dysmicoccus found in Indonesia (adapted from Williams 2004).
1(0) Circulus present
Memformat: Sorot

Dikomentari [GW5]: I took your illustration through Williams's (2004: 161) key to Dysmicoccus to find the closest species. I think the closest fit is D. castanopseus. Your comparison should be to the taxonomically closest species, even if that species does not occur in Indonesia.
DEAR GILLIAN YOU ARE RIGHT BUT WE COULD NOT FIND ANY CLOSE ONES. WE THINK CERARIAN SETAE IS MOST IMPORTANT AT THE MOMENT. FURTHER STUDIES NEEDS TO BE DONE FOR THAT
I see your point. Maybe mention that it also has similarities with D. castanopseus? We will see what the reviewers say.

- Some abdominal cerarii, anterior to anal lobe pair, usually containing more than 2 conical setae
9(8) Venter with marginal oral collar tubular duct present, at least as far anterior as thorax.. ..D. Debregeasiae (Green)
Venter with marginal oral collar tubular duct confined to abdomen \qquad D. orchidium Williams

10(8) Dorsal setae on abdominal segment VIII, anterior to anal ring, longer than other dorsal setae, almost as long as anal ring setae \qquad ..D. brevipes (Cockerell)
Dorsal setae on abdominal segment VIII, anterior to anal ring, shorter, about same size as other dorsal setae \qquad D. neobrevipes Beardsley

Ferrisia dasylirii (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Solanum torvum Swartz (Solanaceae) and Theobroma cacao L. (Sterculiaceae), 20 m a.s. $1.3^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}, 3$.vii.2019, coll. A. Zarkani (AZ245-246), 6 웅.

Comments. The species is polyphagous on ornamentals and fruits and has been recorded on host plants in 23 families and 52 genera (García Morales et al. 2016). In Indonesia, it has been recorded previously from Sumatra (Zarkani et al. 2020).

Ferrisia virgata (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Psidium guajava L. (Myrtaceae), 20 m a.s.l., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}$, 5.iii.2019, coll. A. Zarkani (AZ247), 3 우.

Comments. The species is polyphagous on ornamentals and fruits, and is known from 78 plant families and 207 genera (García Morales et al. 2016). It is cosmopolitan, having been recorded from 101 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Irian Jaya (Williams \& Watson 1988; Gavrilov-Zimin 2013), Java (Keuchenius 1915; Betrem 1937; Ali 1968; Ben-Dov 1994; Williams 2004) and Sulawesi (Williams 2004).

Nipaecoccus viridis (Newstead)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Kampung Melayu, on Citrus sp. (Rutaceae), 10 m a.s.1, $03^{\circ} 54^{\prime} 16.5^{\prime \prime} \mathrm{S}, 102^{\circ} 19^{\prime} 11.7^{\prime \prime} \mathrm{E}, 18.1 i .2018$, coll. A. Zarkani (AZ211), 3 웅.

Comments. The species is polyphagous on ornamentals and fruits, and has been recorded from 45 plant families and 114 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 63 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously in Irian Jaya (CABI, 1983; Ben-Dov 1994), Java (CABI, 1983; Ben-Dov 1994; Williams 2004) and Sulawesi (Williams 2004).

Palmicultor cryptic species complex, species near palmarum (Ehrhorn) eryptic species complex
(Fig. 3)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Air Periukan, on Elaeis guineensis Jacq (Arecaceae), 8 m a.s.l., $03^{\circ} 59^{\prime} 07^{\prime \prime} \mathrm{S}, 102^{\circ} 25^{\prime} 37^{\prime \prime} \mathrm{E}$, 2.ii.2018, coll. A. Zarkani (AZ203), 3 아.

Appearance in life (Fig. 3), Body of adult female covered with fluffy white wax secretion. The mealybugs live mainly on the fruits and are attended by ants (Fig. 4).

Description of adult female (based on holotype and 2 paratypes) (Fig. 4): Body oval, $1.98-2.42 \mathrm{~mm}$ long, $1.38-1.48 \mathrm{~mm}$ wide. Eyes situated on margins, each $25-30 \mu \mathrm{~m}$ in diameter. Antenna 7 segmented, each $270-280 \mu \mathrm{~m}$ long, with 4 fleshy setae each $22.5-30.0$ $\mu \mathrm{m}$ long; apical segment $75-90 \mu \mathrm{~m}$ long, $22.5-30.0 \mu \mathrm{~m}$ wide, with apical seta $27.5-30.0 \mu \mathrm{~m}$ long. Clypeolabral shield $220-230 \mu \mathrm{~m}$ long, 175-185 $\mu \mathrm{m}$ wide. Labium 3 segmented, 110$120 \mu \mathrm{~m}$ long, $80-85 \mu \mathrm{~m}$ wide. Anterior spiracles each $60-65 \mu \mathrm{~m}$ long, $20-25 \mu \mathrm{~m}$ wide across atrium; posterior spiracles each $75-85 \mu \mathrm{~m}$ long, $40-45 \mu \mathrm{~m}$ wide across atrium. Circulus notched on each side with a strong middle constriction, $80-110 \mu \mathrm{~m}$ wide. Legs well developed; segment lengths for each posterior leg: coxa 115-135 $\mu \mathrm{m}$, trochanter + femur $205-220 \mu \mathrm{~m}$, tibia + tarsus $160-170 \mu \mathrm{~m}$, claw $27.5-30.0 \mu \mathrm{~m}$. Ratio of lengths of tibia + tarsus to trochanter + femur, $0.77-0.78: 1$; ratio of length of tibia to tarsus, $1.2-1.4: 1$; ratio of length of trochanter + femur to greatest width of femur, 3.41-3.60:1; derm surrounding each posterior coxa with 40-50 translucent pores; coxa with 30-50 translucent pores; tibia with numerous translucent pores. Tarsal digitules capitate, each 27.5-30.0 $\mu \mathrm{m}$ long. Claw digitules capitate, each about $22.5-25.0 \mu \mathrm{~m}$ long. Both pairs of ostioles present, anterior ostioles each with a total for both lips of 28-40 trilocular pores and 4-6 setae; posterior ostioles each with a total for both lips of 58-60 trilocular pores and 6-8 setae. Anal ring about $95 \mu \mathrm{~m}$ wide, bearing 6 setae, each seta $160-165 \mu \mathrm{~m}$ long.

Dorsum. Derm membranous, with 16 pairs of cerarii around body margin, each cerarius with 2-5 enlarged conical setae and 3-5 auxiliary setae. Each anal lobe cerarius set on membranous cuticle and containing 3-6 enlarged setae $25-30 \mu \mathrm{~m}$ long, plus $55-57$ trilocular pores and 3-5 hair-like auxiliary setae. Dorsal setae short and flagellate, each $30-110 \mu \mathrm{~m}$ long, scattered throughout dorsum. Trilocular pores, each 3-4 $\mu \mathrm{m}$ in diameter, scattered. A few multilocular disc pores present on thorax and abdomen.

Venter. Setae flagellate, each $30-110 \mu \mathrm{~m}$ long, longest setae located medially on head. Apical setae on anal lobe each $125-150 \mu \mathrm{~m}$ long. Multilocular disc pores, each $7-8 \mu \mathrm{~m}$ in diameter, present throughout venter, numbers on each abdominal segment as follows: I-III each with 60-70, IV 20-24, V 38-43, VI 100-110, VII 90-98, VIII + IX 36-38 and 125-145 on thorax and head. Trilocular pores, each $2.5-3.0 \mu \mathrm{~m}$ across, scattered throughout venter. Oral collar tubular ducts each $8-10 \mu \mathrm{~m}$ long, $4-5 \mu \mathrm{~m}$ wide, present throughout, but in bands across abdominal segments, as follows: VI 21, VII 15, VIII + IX 14.

Comments. The Indonesian specimen is a member of the P. palmarum cryptic species complex, which was discussed by von Ellenrieder et al. (2022). Members of this species complex have more than 12 pairs of cerarii; the derm surrounding each posterior coxa has $40-$ 50 duct-like pores, and each hind coxa and hind tibia have numerous translucent pores. The dorsal setae in the Indonesian specimen are up to twice as long as those recorded previously in P. palmarum by Williams and Watson (1988) and Williams (2004). You need to say why you have not given this species a name (von Ellenrieder et al. (2022) may give you ideas for what to say here). Is there a reason why you have not done a DNA sequence for it? The cryptic species complex will only get resolved if molecular data is documented on it.

Memformat: Font: Miring

Memformat: Warna font: Merah

Paracoccus evae Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Sukaraja, on Melastoma malabathricum L. (Melastomataceae), 50 m a.s.l, $03^{\circ} 52^{\prime} 00.4^{\prime \prime} \mathrm{S}, 102^{\circ} 22^{\prime} 51.2^{\prime \prime}$ E, 23.vii.2019, coll. A. Zarkani (AZ249), 3 웅.

Comments. This is the second report of P. evae from Indonesia; Williams (2004) recorded it from Java on Eupatorium sp. (Asteraceae).

Planococcus dischidiae (Takahashi)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Coffea robusta, 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}, 102^{\circ} 35^{\prime} 33$ " E, 12.vi.2018, coll. A. Zarkani (AZ235-239), 1 ㅇ.

Comments. Previously, P. dischidiae has been collected on Dischidia sp. (Apocynaceae) and Epipremnum (Araceae), and has been recorded from Indonesia (Sulawesi) (Cox 1989; BenDov 1994; Williams 2004) and Malaysia (Takahashi 1951; Ben-Dov 1994).

Planococcus lilacinus (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Saraca asoca (Roxb.) (Fabaceae), 20 m a.s.l., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}$, 10.ii. 2019 and 15.iii.2020, coll. A. Zarkani (AZ313), 1 ¢.

Comments. The species is polyphagous on ornamentals and fruits, and has been recorded from 73 plant families and 196 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 64 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Irian Jaya (Williams \& Watson 1988; Ben-Dov 1994), Java (Williams 2004), Kalimantan (Cox 1989; Ben-Dov 1994), Lombok (Williams 2004), Sulawesi (Williams 2004) and Sumatra (Cox 1989; Ben-Dov 1994; Williams 2004).

Pseudococcus jackbeardsleyi Gimpel \& Miller

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Selenicereus undatus (Haw.) DR Hunt (Cactaceae), 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime}$ S, $102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 10.vii.2018, coll. A. Zarkani (AZ227), 1 Q.

Comments. This neotropical species is polyphagous on ornamentals, fruits, vegetables and herbs; it has been reported from 52 plant families and 112 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 52 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Flores (Gavrilov-Zimin 2017), Irian Jaya (Gavrilov-Zimin 2013) and Java (Williams 2004).

*Pseudococcus leptotrichotus Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on C. robusta, 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}, 102^{\circ} 35^{\prime} 33^{\prime \prime} \mathrm{E}$, 12.vi.2018, coll. A. Zarkani (AZ235-239), 12 우아.

Comments. This is a new country record for Indonesia, and is the first mealybug species recorded from Indonesia that had been previously recorded in a leaf nest of Oecophylla sp.
ants in Malaysia (Sarawak). In Indonesia, P. leptotrichotus were collected in a leaf nest of Oecophylla sp. ants on coffee leaves and within a protective carton shelter of soil made by unidentified ants on coffee berries and trees.

Pseudococcus longispinus (Targioni Tozzetti)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Theobroma cacao L. (Sterculiaceae), 20 m a.s.1., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime}$ E, 5.iii.2019, coll. A. Zarkani (AZ247), 3 우.

Comments. The species is polyphagous on ornamentals and fruits, and has been recorded from 84 plant families and 167 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 115 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Irian Jaya (Williams \& Watson 1988; Ben-Dov 1994), Java (Betrem 1937; Ben-Dov 1994), Lombok (Williams 2004), Sulawesi (Watson et al. 2014) and Sumatra (Green 1930).

Rastrococcus chinensis Ferris

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Singaran Pati, on Nephelium lappaceum L. (Sapindaceae), 20 m a.s.l., $03^{\circ} 48^{\prime} 57.9^{\prime \prime} \mathrm{S}, 102^{\circ} 18^{\prime} 38.9^{\prime \prime} \mathrm{E}$, 12.vi.2018, coll. A. Zarkani (AZ168-170), 12 웅.

Comments. The species was recorded previously on Alocasia sp. (Araceae), Ardisia lindleyana D. Dietr. (Primulaceae), Eugenia sp. (Myrtaceae), Melastoma malabathricum L. (Melastomataceae), Morinda umbellata L. (Rubiaceae), Psychotria asiatica L. (Rubiaceae), Syzygium sp. (Myrtaceae), S. anomalum Lauterb. (Myrtaceae) and S. hancei Merr. \& Perry (Myrtaceae). It has been reported previously from Brunei, China and Malaysia (García Morales et al. 2016). In Indonesia, it has been recorded previously from Java (Williams 1989, 2004; Ben-Dov 1994).

Rastrococcus invadens Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Mangifera indica L. (Anacardiaceae), 600 m a.s.l., $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}, 102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 12.vi.2018, coll. A. Zarkani (AZ235-239), 12 웅.

Comments. The species is polyphagous on ornamentals and fruits; it has been recorded from 29 plant families and 54 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 32 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Bali and Java (Williams 1989, 2004; Ben-Dov 1994).

Rastrococcus tropicasiaticus Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Air Periukan, on Azadirachta excelsa (Jack) M. Jacobs (Meliaceae), 10 m a.s.l., $3^{\circ} 59^{\prime} 07.1^{\prime \prime} \mathrm{S}$, $102^{\circ} 25^{\prime} 37.4^{\prime \prime}$ E, 1.v.2019, coll. A. Zarkani, (AZ336), 1 q.

Comments. Zarkani et al. (2021) reported R. tropicasiaticus for the first time in Indonesia (Bengkulu) on A. excelsa (Meliaceae), Cerbera manghas L. (Apocynaceae), Dimocarpus
longan Lour. (Sapindaceae), Ficus sp. (Moraceae), and Tectona grandis L. (Lamiaceae). It is also known to live on woody plants and wild grass in parts of southern Asia such as Malaysia, Philippines, Thailand and Vietnam (Williams 2004).

Acknowledgements

The authors wish to thank Dr Takumasa Kondo (Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Colombia), for his kind help and critique of the manuscript. The project was financially supported by the Research and Community Service Centre, Lembaga Penelitan dan Pengabdian pada Masyarakat (LPPM), The University of Bengkulu with grants No. 2038/UN30.15/PP/2022. The writing of the manuscript was assisted by WCP Dikti Program 2021.

References

Ali, S.M. (1968) Coccids (Coccoidea: Hemiptera: Insecta) affecting fruit plants in Bihar (India). Journal of the Bombay Natural History Society, 65, 120-137.
Ben-Dov, Y. (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance. Intercept Limited, Andover, 686 pp.
Betrem, J.G. (1937) De morporphologie en systematiek van enkele vande vooraamste witteluizensoorten van Java. Archief voor de Koffiecultuur in Nederlandsch-Indie, 11, 1-118.
CABI (1983) Nipaecoccus viridis (Newstead). Distribution Maps of Pests, Series A, Agricultural, Map no. 446, 2 pp.
CBD Secretariat (2021) Indonesia - Country Profile: Biodiversity Facts. Available from: https://www.cbd.int/countries/profile/default.shtml?country=id\#facts (accessed 22 March 2021)
Cox, J.M. (1989) The mealybug genus Planococcus (Homoptera: Pseudococcidae). Bulletin British Museum (Natural History), Entomology, 58, 1-78.
Cox, J.M. \& Ben-Dov, Y. (1986) Planococcine mealybugs of economic importance from the Mediterranean Basin and their distinction from a new African genus (Hemiptera: Pseudococcidae). Bulletin of Entomological Research, 76, 481-489.
Daane, K.M., Almeida, R.P.P., Bell, V.A., Walker, J.T.S., Botton, M., Fallahzadeh, M., Mani, M., Miano, J.L., Sforza, R., Walton, V.M. \& Zaviezo, T. (2012) Biology and management of mealybugs in vineyards. In: Bostanian, N.J., Vincent, C. \& Isaacs, R. (Eds), Arthropod Management in Vineyards. Springer Netherlands Press, Dordrecht, pp. 271-307.
Dammerman, K.W. (1929) The agricultural zoology of the Malay Archipelago. The animals injurious and beneficial to agriculture, horticulture and forestry in the Malay Peninsula, the Dutch East Indies and Philippines. J.H. de Bussy I-XI, Amsterdam, 473 pp.
Franco, J.C., Zada, A \& Mendel, Z. (2009) Novel approaches for the management of mealybug pests. In: Ishaaya, I. \& Horowitz, A.R. (eds), Biorational Control of Arthropod Pests. Springer Science + Business Media, New York, pp 233-278.
García Morales, M., Denno, B., Miller, DR., Miller, G.L., Ben-Dov, Y. \& Hardy, N.B. (2016) ScaleNet: a literature-based model of scale insect biology and systematics. Available from: http://scalenet.info (accessed 18 October 2022)

Gavrilov-Zimin, I.A. (2013) New scale insects (Homoptera: Coccinea) from Sulawesi and New Guinea, with some other additions to the Indonesian fauna. Tropical Zoology, 26, 64-86. https://doi.org/10.1080/03946975.2013.807570
Gavrilov-Zimin, I.A. (2016) Cytogenetic and taxonomic studies of some legless mealybugs (Homoptera, Coccinea, Pseudococcidae). Comparative Cytogenetics, 10 (4), 587-601.
Gavrilov-Zimin, I.A. (2017) Taxonomic and faunistic notes on scale insects (Homoptera: Coccinea) of Bali, Flores and New Guinea (Indonesia). In: Telnov, D. (Ed.), Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea. Entomological Society of Latvia, Salaspils, 3, pp. 141-149.
Gavrilov-Zimin, I.A. (2019) New Asterolecaniidae s.l. (Homoptera: Coccinea) from different regions of the world and some distributional records. Tropical Zoology, 32, 142-154. https://doi.org/10.1080/03946975.2019.1641673
Gavrilov-Zimin, I.A. (2020) Chromosomal and reproductive features of some Oriental and Australasian scale insects (Homoptera, Coccinea). Comparative Cytogenetics, 14, 339352. https://doi.org/10.3897/CompCytogen.v14i3.53367
Gavrilov-Zimin, I.A. (2021) New and poorly known giant scale insects (Homoptera: Coccinea: Margarodidae s. lat.) from the Oriental region with taxonomic and nomenclatural notes on the subfamily Monophlebinae. European Journal of Taxonomy, 746, 50-61. https://doi.org/10.1080/03946975.2019.1641673
Granara de Willink, M.C. (2009) Dysmicoccus de la Región Neotropical (Hemiptera: Pseudococcidae). Revista de la Sociedad Entomológica Argentina, 68, 11-95.
Granara de Willink, M.C. \& Szumik, C. (2007) Phenacoccinae de Centro y Sudamérica (Hemiptera: Coccoidea: Pseudococcidae): sistemática y filogenia. Revista de la Sociedad Entomológica Argentina, 66, 29-129.
Green, E.E. (1930) Fauna Sumatrensis (Bijdrag Nr. 65). Coccidae. Tijdschrift voor Entomologie, 73, 279-297.
Kalshoven, L.G.E. (1981) Coccoidea. Pests of crops in Indonesia. Ichtiar Baru, Jakarta, 701 pp.
Kaydan, M.B. \& Gullan, P.J. (2012) A taxonomic revision of the mealybug genus Ferrisia Fullaway (Hemiptera: Pseudococcidae), with descriptions of eight new species and a new genus. Zootaxa, 3543, 1-65.
Keuchenius, P.E. (1915) Onderzoekingen en beschouwingen over eenige schadlijke schildluizen van de Koffiekultuur op Java. Mededeelingen van het Besoekisch Proefstation. Djember, 16, 1-65.
Kosztarab, M. \& Kozár, F. (1988) Scale Insects of Central Europe. Akadémiai Kiadó, Budapest, 456 pp .
McNeely, J.A., Miller, K.R., Reid, W.V., Mittermeier, R.A. \& Werner, T.B. (1990) Conserving the World's Biological Diversity. IUCN, Gland, Switzerland, 193 pp.
Muniappan, R., Shepard, B.M., Watson, G.W., Carner, G.R., Sartiami, D., Rauf, A., Xiong, J.J. \& Hammig, M.D. (2008) First report of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), in Indonesia and India. Journal of Agricultural and Urban Entomology, 25, 37-40.
Muniappan, R., Shepard, B.M., Watson, G.W., Carner, G.R., Rauf, A., Sartiami, D., Hidayat, P., Afun, J.V.K., Goergen, G. \& Ziaur Rahman, A.K.M. (2011) New records of invasive insects (Hemiptera: Sternorrhyncha) in Southeast Asia and West Africa. Journal of Agricultural and Urban Entomology, 26, 167-174. https://doi.org/10.3954/1523-5475-26.4.167

Muniappan, R., Watson, G.W., Evans, G.A., Rauf A. \& von Ellenrieder, N. (2012) Cycad Aulacaspis scale, a newly introduced insect pest in Indonesia. HAYATI Journal of Biosciences, 19, 110-114. https://doi.org/10.4308/hjb.19.3.110
Reyne, A. (1954) Hippeococcus a new genus of Pseudococcidae from Java with peculiar habits. Zoologische Mededelingen Uitgegeven door het Rizksmuseum van Natuurlijke Historie te Leiden, 32, 233-257.
Reyne, A. (1957) Walkeriana tosariensis, a new monophlebine coccid from Casuarina junghununiana Miq. in east-Java. Beaufortia, Amsterdam, 6, 115-145.
Reyne, A. (1961) Scale insects from Dutch New Guinea. Beaufortia, Amsterdam, 8, 121-167.
Reyne, A. (1965) Observations on some Indonesian scale insects. Tijdschrift voor Entomologie, Amsterdam, 108, 145-188.
Sartiami, D., Watson, G.W., Mohamad Roff, M.N., Hanifah, M. \& Idris, A.B. (2015) First record of cassava mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae), in Malaysia. Zootaxa, 3957 (2), 235-238.
Sartiami, D., Watson, G.W., Mohamad Roff, M.N. \& Idris, A.B. (2016) New Indonesian country records and species information for mealybugs (Hemiptera Pseudococcidae) in Wirjati's historic collection. Redia, XCIX, 155-161.
Takahashi, R. (1951) Some mealybugs (Pseudococcidae, Homoptera) from the Malay Peninsula. Indian Journal of Entomology, 12, 1-22.
von Ellenrieder, N., Kinnee, S.A. \& Watson, G.W. (2022) Review of the genus Palmicultor Williams, 1963 (Hemiptera: Coccomorpha: Pseudococcidae), with evidence of a cryptic species. The Pan-Pacific Entomologist, 97 (4), 240-260.
Watson, G.W., Muniappan, R., Shepard, B.M., Sembel, D.T., Xiong, J.J. \& Rauf, A. (2014) Sap-sucking insect records (Hemiptera: Sternorrhyncha and Thysanoptera: Thripidae) from Indonesia. Florida Entomologist, 97, 1594-1597. https://doi.org/10.1653/024.097.0432
Williams, D.J. (1989) The mealybug genus Rastrococcus Ferris (Hemiptera: Pseudococcidae). Systematic Entomology, 14, 433-486. https://doi.org/10.1111/j.1365-3113.1989.tb00298.x
Williams, D.J. (2004) Mealybugs of southern Asia. The Natural History Museum, London. Southdene SDN BHD, Kuala Lumpur. 896 pp.
Williams, D.J. \& Granara de Willink, M.C. (1992) Mealybugs of Central and South America. CAB International, Wallingford, 635 pp .
Williams, D.J. \& Watson, G.W. (1988) The Scale Insects of the Tropical South Pacific Region. Pt. 2. The Mealybugs (Pseudococcidae). CAB International, Wallingford, 260 pp.
Wirjati (1958) On a small mealybug from a virgin forest. Idea, Journal of the Entomological Society of Indonesia, 11, 14-17.
Wirjati (1959) A new species of Trionymus found on rice-roots in Java. Idea, Journal of the Entomological Society of Indonesia, 12, 14-19.
Zarkani, A., Apriyanto, D., Turanli, F. \& Kaydan, M.B. (2020) New record of Ferrisía dasylirii (Cockerell) (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia. Serangga, 25, 93-100.
Zarkani, A., Sunardi, T., Nadrawati, Ercan, C. \& Kaydan, M.B. (2021a) First record of Rastrococcus tropicasiaticus Williams (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia. Serangga, 26 (3), 29-36.
Zarkani, A., Apriyanto, D., Turanli, F., Ercan, C. \& Kaydan, M.B. (2021b) A check-list of the Indonesian scale insects (Hemiptera: PseudococcidaeCoccomorpha) in Indonesia. Zootaxa, 5016 (2), 151-195.
https://doi.org/10.11646/zootaxa.5016.2.1

Figure captions

Telah Diformat: Kanan: -1 cm

FIGURE 1. Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. on: (A) Lansium parasiticum Memformat: Font: Tebal Corr.; (B) Coffea robusta Lindl. ex De Will; (C) Manilkara zapota L.; and (D) Durio zibethinus Murr.

FIGURE 12. Adult female Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. holotype.
FIGURE 3. Palmicultor cryptic species group, species near palmarum (Ehrhorn) attaeking Elaeis guineensis Jacq. fruits.

Telah Diformat: Normal, Inden: Kiri: 0 cm , Baris Pertama: 0 cm , Kanan: -1 cm , Sesuaikan spasi antara teks Latin dan Asia, Sesuaikan spasi antara teks Asia dan angka

Telah Diformat: Kanan: -1 cm
FIGURE 2. Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. on (A) Lansitm parasiticum Corr.; (B) Coffea robusta Lindl. ex De Will; (C) Manillkara zapota L.; and (D) Durie zibethinus Murr.

FIGURE 34. Adult female Palmicultor palmarum (Ehrhorn) cryptic species group, from Indonesia, Sumatra I., Bengkulu Province, Seluma district, Air Periukan, on Elaeis guineensis Jacq (Arecaceae).

FIGURE 4. Palmicultor palmarum (Ehrhorn) cryptic species group: attack on Elatis Telah Diformat: Kanan: -1 cm guineensis Jacq. fruits.

Studies on mealybugs (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia, with description of a new species and three new country records

AGUSTIN ZARKANI ${ }^{1,2^{*}}$, CANSU ERCAN ${ }^{4,5}$, DWINARDI APRIYANTO ${ }^{1,3} \&$ MEHMET BORA KAYDAN ${ }^{4,6,7}$
${ }^{1}$ Department of Plant Protection, Faculty of Agriculture, University of Bengkulu, 383711, Bengkulu, Indonesia.
${ }^{2}$ Email: agustinzarkani@unib.ac.id; https://orcid.org/0000-0001-9837-5019
${ }^{3}$ Email: dwinardi2018@gmail.com; https://orcid.org/0000-0002-5286-9010
${ }^{4}$ Department of Plant Protection, Faculty of Agriculture, Çukurova University, 01250, Adana, Turkey.
${ }^{5}$ Email: cansuercann01@gmail.com; https://orcid.org/0000-0003-3516-9183
${ }^{6}$ Biotechnology Development and Research Centre, Çukurova University, 01250, Adana, Turkey.
${ }^{7}$ Email: bkaydan@cu.edu.tr; https://orcid.org/0000-0002-0677-255X
*Corresponding author

Abstract

Mealybugs (Hemiptera: Coccomorpha: Pseudococcidae) include economically important insect pests worldwide; however, little is known about the species present in Indonesia. Samples were collected and identified from wild and cultivated plants in several regions of southern Sumatra, Indonesia between 2018 and 2019. Eighteen species of Pseudococcidae in 8 genera were identified, including one undescribed species. Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. is described and illustrated based on the morphology of the adult female, and a key is provided for the identification of all 18 species. Furthermore, Dysmicoccus arachidis Williams, D. carens Williams and Pseudococcus leptotrichotus Williams are recorded for the first time from Indonesia; new locality and host-plant data are given for these species.

Keywords: Biodiversity, host plant, pests, Sternorryncha, taxonomy

Introduction

The Pseudococcidae (Hemiptera: Coccomorpha: Coccomorpha), whose members are known as mealybugs, is a family of scale insects which include many important sap-sucking insect pests of woody and herbaceous plants. These insects not only damage their host plants directly, by mechanical injury and extraction of sap, but also indirectly by promoting sooty mold growth on their sugary honeydew waste and by facilitating the transmission of plant virus diseases (Franco et al. 2009, Daane et al. 2012).

The Pseudococcidae, with 2041 species in 259 genera, is the second largest scale insect family after the Diaspididae, which contains about 2693 species in 418 genera (García Morales et al. 2016). In the Indonesian archipelago, 108 species of Pseudococcidae in 31 genera have been recorded so far, the second-largest family after the Diaspididae, which has 118 species in 46 genera recorded (García Morales et al. 2016). In the family Pseudococcidae, the most species-rich and damaging genera in Indonesia are: Rastrococcus Ferris (15 species), Pseudococcus Westwood (13 species), Paraputo Laing (13 species), Dysmicoccus Ferris (9 species), and Planococcus Ferris (7 species) (Williams 2004; García Morales et al. 2016).

As a tropical country located along major sea lanes connecting East Asia, South Asia and Oceania, it is not surprising that Indonesia has a very large number of indigenous plants, vertebrates and invertebrates including great insect biodiversity (McNeely et al. 1990; CBD

Secretariat 2021). The first documentation of Indonesian insect diversity, including mealybugs in Indonesia began in the British, Dutch and Japanese colonial eras and has continued to the present, resulted in the description of many new Indonesian native species and several additional records to the scale insect fauna (Dammerman 1929; Reyne 1954, 1957, 1961, 1965; Wiriati 1958, 1959; Kalshoven 1981; Muniappan et al. 2008, 2011, 2012; Sartiami et al. 2015, 2016; Gavrilov-Zimin 2013, 2016, 2017, 2019, 2020, 2021; and Zarkani et al. 2020, 2021a, b). However, the only comprehensive review of mealybugs recorded from Indonesia is in the monograph by Williams (2004). In the last 16 years the number of described scale insect species recorded in Indonesia has increased by 53 species (García Morales et al. 2016) but the knowledge of Indonesian scale insect species are still patchy and incomplete.

The present paper covers a new species and three new country records from Indonesia. Identification keys to genera and Dysmicoccus species, and new locality records for the currently known Pseudococcidae species, are provided and discussed.

Materials and methods

Mealybugs (nymphs and adult females) were collected from tropical plants in several regions of southern Sumatra, Indonesia between April 2018 and October 2019. Infested plant parts (fruits, trunk and branches, and leaves) were cut, bagged, labeled and taken to the Laboratory of Plant Protection, University of Bengkulu for examination. For species determination, nymphs were reared on the relevant plant material (at $25 \pm 1^{\circ} \mathrm{C}, \sim 70 \%$ relative humidity and of 16:8 h light: dark photoperiod) until they reached the adult stage. A binocular dissection microscope, LEICA EZ4HD, was used to sort specimens for preservation and slide mounting. Specimens were killed, labled and stored in 70% ethyl alcohol.

In the Plant Protection Department of the University of Bengkulu, adult female specimens were slide-mounted using the method of Kosztarab and Kozár (1988) with some modifications (using distilled water after KOH and cleaning the specimens using a fine brush). They were identified by light microscopy using a phase-contrast compound microscope (Olympus BX41) and were identified using the keys in Cox and Ben-Dov (1986), Williams (2004), Granara de Willink and Szumik (2007), Granara de Willink (2009), and Kaydan and Gullan (2012).

For description of the new species, the main taxonomic characters of the adult females were evaluated and quantified under a compound light microscope. The morphological terms used are those used by Williams and Granara de Willink (1992) and Williams (2004). All the measurements given are for the maximum dimensions (e.g., body width was recorded at the widest part) and are expressed as ranges. Tarsal length excludes the claw. Setal length includes the setal base. Cerarii are numbered as described by Williams and Granara de Willink (1992), with cerarius C_{1} on the head, anterior to the antenna, and cerarius C_{17} being on abdominal segment VIII. A taxonomic illustration is provided for each new species, and is based on the holotype used for the description. The illustration is split longitudinally, with the left half representing the dorsum and the right half, the venter. Structural details are shown as enlargements around the central drawing, and are not all drawn to the same scale. The translucent pores on the hind legs are mostly found on the dorsal surface, but they are illustrated ventrally on the main figure for convenience.

Type specimens of the new species described are deposited in the Mealybugs Museum, Department of Plant Protection, Faculty of Agriculture, University of Bengkulu, Bengkulu, Indonesia (MMUB). Add an explanation of the use of "p" in holotype data listing (to indicate line break son the slide labels). Also explain where the terminology you use in the descriptions comes from, and the units of measurement used in the descriptions.

Results and discussion

From 149 mealybug samples collected from southern Sumatra, Indonesia, 18 species were identified, one of which is a new to science and three are new country records for Indonesia. The identified species belong to the genera Dysmicoccus (5 species), Ferrisia (2 species), Nipaecoccus (1 species), Palmicultor (1 species), Paracoccus (1 species), Planococcus (2 species), Pseudococcus (3 species) and Rastrococcus (3 species). The species marked below with an asterisk (*) are recorded for the first time from Indonesia.

Key to adult females of Pseudococcidae genera occurring in Indonesia (adapted from Williams and Watson (1988), Williams and Granara de Willink (1992) and Williams (2004). 1(0) Legs absent .. 2
Legs present .. 4
2 (1) Disc-like pores absent. Duct-like pore present on venter in a group posterior to each second spiracle. Anal ring normally situated on surface or at base of vary short tube, bearing at least 6 setae .Chaetococcus Maskell

- Disc-like pores present on venter of abdomen. Duct-like pore absent. Anal ring situated at base of anal tube, normally bearing 6 setae, rarely without setae ... 3
3 (2) Circulus numbering 5. Micro tubular duct present behind posterior spiracle \qquad ..odosia Gavrilov-Zimin Circulus numbering 1. Micro tubular duct absent behind posterior spiracle
.Antonina Signoret
4(3) Claws digitules each expanding widely, either from proximal end, or nearer to distal end.. .. 5 Claws digitules, either setose or minutely dilated distally.. 8
5 (4) Antennae each with 8 segments.....................................Archeomyrmococcus Williams Antennae each with 6-7 segments 5

6 (5) Head sclerotized at anterior end, at least on venter. Constriction present between head and thorax. Posterior lip of each anterior ostiole larger than anterior lip, usually semicircular and flap like, often bearing a few short setae \qquad Malaicoccus Takahashi

- Head membranous on venter. Except sometimes for small areas of sclerotization around basal antenna segments. Constriction absent from between head and thorax. Posterior lip of each anterior ostiole about same size as anterior lip, not semi-circular and flap like, without any setae
- Postenor of abdomen pointed; anal lobes not prominent poorly developed, recognisable by presence or apical setae . \qquad Hippeococcus Reyne
8 (6) Dorsal tubular ducts large, each with an orifice surrounded by a circular, sclerotized area containing 1 or more setae within its borders, or with the setae adjacent to the rim
10 (9) Recognisable cerarii, absent 11
Recognisable cerarii, present, sometimes on anal lobes only. 13
11(10) Dorsal ostioles usually represented by both anterior and posterior pairs, althoughsometimes poorly developedpart of Crisicoccus FerrisDorsal ostioles represented by posterior pair only12
12 (10)Anal ring oval or triangular, situated on venter a short distance from apex of abdomen.Cephalothorax dilated.Leptorhizoecus Williams
- Anal ring usually circular, rarely V-shaped, situated on dorsum. Cephalothorax notdilated...Mollicoccus Williams
13 (10)Oral rim tubular duct present, each with well-developed rim 14
Oral rim tubular duct absent entirely 16
14 (13)Cerarii numbering no more than 6 pairs, present on abdomen only, except for frontalcerarii occasionally present.Maconellicoccus Ezzat
Cerarii numbering 9-18 pairs; present on abdomen and at least on thorax15
15(14) Venter of each anal lobe with anal lobe bar; auxiliary setae present in anal lobe cerariionlyParacoccus Ezzat \& McConnelVenter of each anal lobe with triangular to quadrate sclerotized area occupying muchof lobe, never with a slender anal lobe bar only
\qquad Pseudococcus Westwood
16(13) Quinquelocular pores present at least, on venter; if only few present, these situatednear moulhparts onlyBrevennia Goux
Quinquelocular pores absent 17
17 (16)Anal lobe ceraril large, each bearing multiple cerarian setae, dispersed over entiresclerotized area occupying most or lobe and sometimes extending to medial area ofabdominal segment VIII. All dorsal setae, at least on abdomen, thick, conical orlanceolateLanceococcus Williams
- Anal lobe cerarii, each bearing 2 or more cerarian setae, either on membranous orsclerotized area; if on sclerotized area, then cerarian setae occupying either marginalarea of each lobe or area near centre, not occupying most of lobe. All dorsal setaeeither slender or conical18
18(17) Venter of each anal lobe sclerotized, with inner edge of sclerotized area thick, bar-like,extending anterior medially: bar-like structure not connected to apical seta or bar seta.Ceraril numbering 16-18 pairs, each cerarius bearing multiple setae; preocular cerarii(C2) always present
\qquad ExallomochlusWilliams Venter of each anal lobe membranous or sclerotized; if sclerotized, not as above. Cerarii numbering 1-18 pairs, each cerarius bearing varying numbers of setae: preocular cerarii present.or absent19
19(18) Anal lobe bars present, always associated with bar setas, each bar either completefrom apical seta or present forwards from bar seta only (note: occasional specimens ofFormicococcus lingnani Ferris may lack anal lobe bars).. 20Anal lobe bars absent. Anal lobes either membranous or variously sclerotized........... 21
20(19) Some or all abdominal serarri bearing more than 2 cerarian setae each (note:occasional specimens or Formicococcus lingnani Ferris may lack anal lobe bars)湅
All abdominal cerarii bearing 2 cerarian setae each

\qquad
Planococcus Ferris
21(19) Some or most dorsal setae enlarged, conical to lanceolate, about same size as cerariansetae22

- Dorsal setae either flagellate or conical to lanceolate, all noticeably slenderer than cerarian setae 24
22(21) Trilocular pores concentrated around setal collar of cerarian setae and enlarged dorsalsetae, much smaller than trilocular pores elsewhere on body Pedrococcus MametTrilocular pores all about the same size23
23(22) Dorsal cerarii absent .Nipaecoccus Sulc
- Dorsal cerarii present Dorsoceraricoccus Dong \& Wu
24(21) Cerarii numbering fewer than 6 pairs 25
Cerarii numbering more than 6 pairs 26
25(24) Circulus hour-glass-shaped. Minute disc pores present on derm around each hind coxa,in an area reaching almost as far forward as each second spiracle, minute duct-likepores absent from this area
\qquad Saccharicoccus Ferris
- Circulus, if present, round to oval, not hour-glass-shaped. Minute disc pores normallyabsent from derm around each hand coxa; if any are present, they do not extend as farforward as each second spiracle. Minute duct-like pores sometimes present aroundhind coxa
\qquad ..part of Palmicultor Williams
26(24) Minute duct-like pores numerous on derm next to hind coxa .part of Palmicultor Williams Minute pores duct-like pores absent from derm next to hind coxa27
27(26) Legs and spiracles located near lateral margins. Posterior abdominal cerarii eachsituated at apex of a sclerotized projection extending from margin, bearing more than2 conical setae but no trilocular pores..Extanticoccus Williams
- Legs and spiracles located sub medially, not near lateral margins. Posterior abdominalcerarii each not normally situated at apex of a sclerotized projection extending frommargin. If some cerarii extend from margin than projection is membranous andtrilocular pores present28
28(27) Claw with denticle present. part of Phenacoccus Cockerell
Claw without denticle 29
29(28) Anal lob bars present Mutabilicoccus Williams
Anal lob bars absent. 30
30(29) Cerarii numbering $8-17$ pairs, always distinct, never with intermediate cerarii;preocular cerarii (C_{2}) always absent. Abdominal cerarii often bearing 2 conical setaeeach; ventral margin of penultimate abdominal segment never sclerotized. Hind tibia +tarsus usually longer than trochanter + femur. Anal ring usually situated at or nearapex of abdomen
\qquad Dysmicoccus Ferris
- Cerarii numbering 5-18 pairs, intermediate cerarii often present or cerarii forming a continuous marginal zone; preocular cerarii (C_{2}) present. Abdominal cerarii often bearing more than 2 conical setae each; if with only 2 conical setae each, then ventral margin of penultimate abdominal segment always sclerotized. Hind tibia + tarsus usually shorter than trochanter + femur. Anal ring usually separated from apex of abdomen by at least its own length.
Paraputo Laing

Genus Dysmicoccus Ferris

Type species: Dactylopius brevipes Cockerell by original designation.
Genus diagnosis of adult female (adapted from Williams, 2004). Body normally broadly oval, $1.65-4.20 \mathrm{~mm}$ long, $0.90-2.89 \mathrm{~mm}$ wide. Antennae each normally with $6-8$ segments. Cerarii present, numbering 6-17 pairs (never 18), anal lobe cerarii each each bearing either 2 cerarian setae or as many as 8 , these usually conical, sometimes conical setae replaced by flagellate setae but cerarii always recognizable by concentrations of trilocular pores. Anterior cerarii each sometimes containing more than 2 setae. Circulus present or absent. Legs well developed, hind legs with translucent pores present or absent; tarsal digitules usually knobbed, occasionally setose. Claw usually stout, claw denticle absent. Anal lobes usually developed, either membranous or sclerotized, each lobe bearing a normal apical seta. Ventral
margin of abdominal segments anterior to anal lobes always membranous. Anal ring normally situated at apex of abdomen (rarely a short distance from apex), usually bearing 6 setae, occasionally with more setae present. Anterior and posterior ostioles present. Dorsal setae variously shaped, often flagellate. Ventral setae flagellate. Trilocular pores present on dorsum and venter. Multilocular disc pores usually present, at least on venter. Quinquelocular pores and oral rim tubular ducts always absent. Oral collar tubular ducts usually apparent, at least on venter, sometimes present on dorsum, rarely absent entirely. Discodial pores present, sometimes large and occasionally present next to each eye.

*Dysmicoccus arachidis Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Crassocephalum crepidioides (Benth.) S. Moore (Asteraceae), 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime}$ S, $102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 12.vi.2018, coll. A. Zarkani (AZ80-81), 6 웅.

Comments. This species is a new country record for Indonesia and only the second record of the species; Williams (2004) previously reported it from India (Tripura) on Arachis hypogaea L. (Fabaceae). There is very little information available on D. arachidis.

Dysmicoccus brevipes (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Slebar, on Syzygium aqueum Alston (Myrtaceae), 20 m a.s.l, $03^{\circ} 49^{\prime} 25.2^{\prime \prime} \mathrm{S}, 102^{\circ} 19^{\prime} 08.7^{\prime \prime} \mathrm{E}$, 10.vii.2018, coll. A. Zarkani (AZ210), 3 우.

Comments. The species is polyphagous on ornamental plants and fruits belonging to 62 plant families and 147 genera. It is cosmopolitan, being found in 126 countries; in Indonesia it has been recorded from Irian Jaya (Williams \& Watson 1988), Java (Betrem 1937; Ben-Dov 1994; Williams 2004) and Sumatra (Williams 2004).

*Dysmicoccus carens Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Sukaraja, on Psophocarpus tetragonolobus L. (Fabaceae), 10 m a.s.l, $03^{\circ} 59^{\prime} 07^{\prime \prime} \mathrm{S}, 102^{\circ} 25^{\prime} 37^{\prime \prime} \mathrm{E}$, 15.vi.2018, coll. A. Zarkani (AZ82-83), 3 아.

Comments. Dysmicoccus carens is a new country record for Indonesia. The species has been recorded previously on Poaceae, from Bangladesh (North) on Andropogon squarrosus L.; India, New Delhi on Setaria verticillata L., Orissa on grass, Tamil Nadu on Saccharum officinarum L., Cymbopogon sp. and Chloris barbata Sw.; Pakistan, Rawalpindi on Sorghum nitidum Pers. and S. sudanensis (Piper) Hitch, Mona on Arundo donax L., Lasbela, Ambagh on Panicum antidotale Retz.; and Sri Lanka, Uva Province, Wellawa, Kokagala on grass (Williams 2004).

Dysmicoccus lepelleyi (Betrem)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Slebar, on Manilkara zapota L. (Sapotaceae), 20 m a.s.l, $03^{\circ} 49^{\prime 25.2 " ~ S, ~} 102^{\circ} 19^{\prime} 08.7^{\prime \prime} \mathrm{E}$, 10.vii.2018, coll. A. Zarkani (AZ230), 3 웅.

Comments. This is polyphagous species on ornamentals and fruits within 17 plant families: Anacardiaceae, Annonaceae, Arecaceae, Asparagaceae, Clusiaceae, Euphorbiaceae, Fagaceae, Malvaceae, Meliaceae, Moraceae, Musaceae, Myrtaceae, Rubiaceae, Rutaceae, Sapindaceae, Sapotaceae, and Zingiberaceae (García Morales et al. 2016). In Indonesia, it has been recorded previously from Java (Betrem 1937; Ben-Dov 1994; Williams 2004), Lombok (Williams 2004) and Sumatra (Williams 2004). It is also found in neighboring countries such as Cambodia, Malaysia, Singapore, Thailand, and Vietnam (Williams 2004).

Dysmicoccus zeynepae Zarkani \& Kaydan sp. n.

Material examined, all deposited at MMUB.

Holotype: adult female, INDONESIA: left label: AZ205, Sumatra, Bengkulu on Durio zibethinus Murr. (Malvaceae), $03^{\circ} 34^{\prime} 54.4^{\prime \prime}$ S $102^{\circ} 38^{\prime} 33^{\prime \prime}$ E, 4.ii.2018, coll. A. Zarkani; right label: Holotype, Dysmicoccus zeynepae sp. n. Zarkani \& Kaydan.

Paratypes, 5 adult females, INDONESIA: same data as holotype (AZ205); 3 adult females, AZ206, Sumatra, Bengkulu on Lansium parasiticum Corr. (Meliaceae), $03^{\circ} 59^{\prime} 28.0^{\prime \prime}$ S, $102^{\circ} 25^{\prime} 50.4^{\prime \prime}$ E, 11.ii.2018, coll. A. Zarkani; 3 adult females, AZ207, Sumatra, Bengkulu on Manilkara zapota L. (Sapotaceae), $04^{\circ} 00^{\prime} 05.7^{\prime \prime}$ S, $102^{\circ} 26^{\prime} 52.1^{\prime \prime}$ E, 12.ii.2018, coll. A. Zarkani; 3 adult females, AZ208, Sumatra, Bengkulu, Coffea robusta Lindl. Ex De Will. (Rubiaceae), $03^{\circ} 36^{\prime} 15.4^{\prime \prime} \mathrm{S}, 102^{\circ} 36^{\prime} 30.8^{\prime \prime} \mathrm{E}, 19 . \mathrm{ii} .2018$, coll. A. Zarkani.

Description of adult female

Appearance in life (Fig. 11). Adult females secrete a thin powdery white wax covering over their bodies. Living on leaves, flowers and fruits of host plants, commonly attended by ants.

Slide-mounted adult female (based on holotype and 5 paratypes) (Fig. 2): Body oval, $1.95-2.54 \mathrm{~mm}$ long, $1.64-2.25 \mathrm{~mm}$ wide. Eyes situated on margins, each $42-45 \mu \mathrm{~m}$ wide. Antenna 8 segmented, $340-380 \mu \mathrm{~m}$ long, with 4 fleshy setae each $22.5-25.0 \mu \mathrm{~m}$ long; apical segment $75-80 \mu \mathrm{~m}$ long, $27.5-30.0 \mu \mathrm{~m}$ wide, with apical seta $30-35 \mu \mathrm{~m}$ long. Clypeolabral shield 200-220 $\mu \mathrm{m}$ long, 175-185 $\mu \mathrm{m}$ wide. Labium 3 segmented, 110-120 $\mu \mathrm{m}$ long, $80-85$ $\mu \mathrm{m}$ wide. Anterior spiracles each $85-90 \mu \mathrm{~m}$ long, $45-50 \mu \mathrm{~m}$ wide across atrium; posterior spiracles each $95 .-115 . \mu \mathrm{m}$ long, $55-60 \mu \mathrm{~m}$ wide across atrium. Circulus rounded-quadrate $80-110 \mu \mathrm{~m}$ wide. Legs well developed; segment lengths for each posterior leg: coxa 160-175 $\mu \mathrm{m}$, trochanter + femur $145-155 \mu \mathrm{~m}$, tibia + tarsus $175-180 \mu \mathrm{~m}$, claw $35.0-37.5 \mu \mathrm{~m}$. Ratio of length of tibia + tarsus to trochanter + femur, 1.77-1.78: 1 ; ratio of length of tibia to tarsus, $1.2-1.4: 1$; ratio of length of trochanter + femur to greatest width of femur, 2.41-2.60: 1 ; coxa with 30-50 translucent pores; tibia with numerous translucent pores. Tarsal digitules capitate, each 35-40 $\mu \mathrm{m}$ long. Claw digitules capitate, each about $27.5-30.0 \mu \mathrm{~m}$ long. Both pairs of ostioles present, anterior ostioles each with a total for both lips of 28-40 trilocular pores and 4-6 setae; posterior ostioles each with a total for both lips of 58-60 trilocular pores and $6-8$ setae. Anal ring about $70 \mu \mathrm{~m}$ wide, bearing 6 setae, each seta $80-90 \mu \mathrm{~m}$ long.

Dorsum. Derm membranous, with 16 pairs of cerarii around body margin, each cerarius with 4-7 enlarged conical setae and 3-5 auxiliary setae. Each anal lobe cerarius set on membranous cuticle and containing 5-7 enlarged conical setae $25-35 \mu \mathrm{~m}$ long, plus 40-45 trilocular pores and 3-5 hair-like auxiliary setae. Dorsal setae flagellate, each $15-75 \mu \mathrm{~m}$ long,

Dikomentari [GW2]: Please check that the data given here is exactly as it is written on the slide labels, with "/" indicating where the line breaks are
Dikomentari [AZ3R2]: We do not use "/"

Dikomentari [GW4]: Figures must be numbered in the order in which they are fererred to. I have re-numbered tha figures (see
scattered throughout dorsum. Trilocular pores, each 3-4 $\mu \mathrm{m}$ in diameter, scattered. Multilocular disc pores and tubular ducts absent.

Venter. Setae flagellate, each $30-110 \mu \mathrm{~m}$ long, longest setae located medially on head. Apical setae on anal lobes unusually short, each $80-90 \mu \mathrm{~m}$ long. Multilocular disc pores, each $7-8 \mu \mathrm{~m}$ in diameter, present only immediately around vulva, numbering $8-10$. Trilocular pores, each 2.5-3.0 $\mu \mathrm{m}$ across, scattered throughout venter. Oral collar tubular ducts absent.

Comments. Dysmicoccus zeynepae is most similar to D. finitimus in having anal lobe cerarii each containing a group of about 2-7 conical setae. However, D. zeynepae can be readily distinguished from D. finitimus in having: (i) no multilocular disc pores and oral collar tubular ducts on dorsum; (ii) a few multilocular disc pores without oral collar tubular ducts on venter. It is also closed to D. lepelleyi in term of small legs and having translucent pore on hind coxa and femur, but D. zeynepae have no oral collar tubular ducts from both dorsum and venter. It is also closed to D. castanopseus in lack of oral collar tubular duct on dorum and venter. However it can be readily distinguished in having: (i) stout and small legs; (ii) translucent pore on hind coxa and femur.

Etymology. This species is named after Zeynep Kaydan ("mother" of Kaydan's Laboratory), Zeynep Güleç and Zeynep Kaya who are good friends of the Kaydan's lab.

Host plants. Durio zibethinus (Malvaceae), L. parasiticum (Meliaceae), M. zapota (Sapotaceae) and C. robusta (Rubiaceae) (Figure 2).

Distribution. Indonesia (Sumatra I., Bengkulu Province).
Key to adult female Dysmicoccus found in Indonesia (adapted from Williams 2004).
1(0) Circulus present 2
Circulus absent

\qquad
(continue to Williams (2004: 162) key, couplet 19)
2(1) Cerarii numbering 7 pairs including frontal pair. Dorsal oral collar tubular ductsnumerous, present in rows across most segments
\qquad D. boninsis (Kuwana)Cerarii numbering more than 7 pairs. Dorsal oral collar tubular ducts, if present, neverforming rows across segments 3
3(2) Most cerarii without auxiliary setae 4
Most cerarii with auxiliary setae 5
4(3) Ventral oral collar tubular ducts sparse, a few present in medial area of abdomen andon lateral margins of abdominal segment VI and posterior segments only, absentfrom head and thoracic marginsD. carens (Williams)
Ventral oral collar tubular ducts numerous, present in rows across most abdominalsegments to lateral margin, and around lateral margins forwards to head and thoraxD. arachidis Williams
5(3) With series of large oral collar tubular ducts, each about twice as wide as a trilocularpore, present around dorsal lateral marginsD. lepelleyi (Betrem)
Without a series of large oral collar tubular ducts around dorsal lateral margins 6
6(5) Anal lobe cerarii each containing a group of about 2-7 conical setae 7

- Anal lobe cerarii each containing only 2 conical setae 8
7(6) Oral collar tubular ducts absent from both dorsum and venter. Venter with a fewmultilocular disc pores
\qquadD. zeynepae Zarkani \& Kaydan sp. n.
Oral collar tubular ducts absent from dorsum but present on venter. Venter withnumerous multilocular disc poresD. finitimus Williams
8(6) Abdominal cerarii anterior to anal lobe pair, each with 2 conical setae except for anoccasional cerarius with only a single conical seta 9
Some abdominal cerarii, anterior to anal lobe pair, usually containing more than 2conical setae10

Dikomentari [GW6]: I took your illustration through Williams's (2004: 161) key to Dysmicoccus to find the closest species. I think the closest fit is D. castanopseus. Your comparison should be to the taxonomically closest species, even if that species does not occur in Indonesia.
DEAR GILLIAN YOU ARE RIGHT BUT WE COULD NOT FIND ANY CLOSE ONES. WE THINK CERARIAN SETAE IS MOST IMPORTANT AT THE MOMENT. FURTHER STUDIES NEEDS TO BE DONE FOR THAT
I see your point. Maybe mention that it also has similarities with D. castanopseus? We will see what the reviewers say.
Dikomentari [AZ7]: We added some information.

9(8) Venter with marginal oral collar tubular duct present, at least as far anterior as thorax..
\qquad
Venter with marginal oral collar tubular duct confined to abdomen
.............................
D. orchidium Williams

10(8) Dorsal setae on abdominal segment VIII, anterior to anal ring, longer than other dorsal setae, almost as long as anal ring setae \qquad ..D. brevipes (Cockerell)
Dorsal setae on abdominal segment VIII, anterior to anal ring, shorter, about same size as other dorsal setae \qquad D. neobrevipes Beardsley

Ferrisia dasylirii (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Solanum torvum Swartz (Solanaceae) and Theobroma cacao L. (Sterculiaceae), 20 m a.s.l. $3^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}, 3$. vii.2019, coll. A. Zarkani (AZ245-246), 6 웅.

Comments. The species is polyphagous on ornamentals and fruits and has been recorded on host plants in 23 families and 52 genera (García Morales et al. 2016). In Indonesia, it has been recorded previously from Sumatra (Zarkani et al. 2020).

Ferrisia virgata (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Psidium guajava L. (Myrtaceae), 20 m a.s.l., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}$, 5.iii.2019, coll. A. Zarkani (AZ247), 3 우.

Comments. The species is polyphagous on ornamentals and fruits, and is known from 78 plant families and 207 genera (García Morales et al. 2016). It is cosmopolitan, having been recorded from 101 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Irian Jaya (Williams \& Watson 1988; Gavrilov-Zimin 2013), Java (Keuchenius 1915; Betrem 1937; Ali 1968; Ben-Dov 1994; Williams 2004) and Sulawesi (Williams 2004).

Nipaecoccus viridis (Newstead)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Kampung Melayu, on Citrus sp. (Rutaceae), 10 m a.s.l, $03^{\circ} 54^{\prime} 16.5^{\prime \prime} \mathrm{S}, 102^{\circ} 19^{\prime} 11.7^{\prime \prime} \mathrm{E}, 18.1 i .2018$, coll. A. Zarkani (AZ211), 3 웅.

Comments. The species is polyphagous on ornamentals and fruits, and has been recorded from 45 plant families and 114 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 63 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously in Irian Jaya (CABI, 1983; Ben-Dov 1994), Java (CABI, 1983; Ben-Dov 1994; Williams 2004) and Sulawesi (Williams 2004).

Palmicultor cryptic species complex, species near palmarum (Ehrhorn)

(Fig. 3)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Air Periukan, on Elaeis guineensis Jacq (Arecaceae), 8 m a.s.l., $03^{\circ} 59^{\prime} 07^{\prime \prime} \mathrm{S}, 102^{\circ} 25^{\prime} 37^{\prime \prime} \mathrm{E}$, 2.ii.2018, coll. A. Zarkani (AZ203), 3 우.

Appearance in life (Fig. 3). Body of adult female covered with fluffy white wax secretion. The mealybugs live mainly on the fruits and are attended by ants (Fig. 4).

Description of adult female (based on holotype and 2 paratypes) (Fig. 4): Body oval, $1.98-2.42 \mathrm{~mm}$ long, $1.38-1.48 \mathrm{~mm}$ wide. Eyes situated on margins, each $25-30 \mu \mathrm{~m}$ in diameter. Antenna 7 segmented, each $270-280 \mu \mathrm{~m}$ long, with 4 fleshy setae each $22.5-30.0$ $\mu \mathrm{m}$ long; apical segment $75-90 \mu \mathrm{~m}$ long, $22.5-30.0 \mu \mathrm{~m}$ wide, with apical seta $27.5-30.0 \mu \mathrm{~m}$ long. Clypeolabral shield $220-230 \mu \mathrm{~m}$ long, $175-185 \mu \mathrm{~m}$ wide. Labium 3 segmented, 110$120 \mu \mathrm{~m}$ long, $80-85 \mu \mathrm{~m}$ wide. Anterior spiracles each $60-65 \mu \mathrm{~m}$ long, $20-25 \mu \mathrm{~m}$ wide across atrium; posterior spiracles each $75-85 \mu \mathrm{~m}$ long, $40-45 \mu \mathrm{~m}$ wide across atrium. Circulus notched on each side with a strong middle constriction, $80-110 \mu \mathrm{~m}$ wide. Legs well developed; segment lengths for each posterior leg: coxa 115-135 $\mu \mathrm{m}$, trochanter + femur $205-220 \mu \mathrm{~m}$, tibia + tarsus $160-170 \mu \mathrm{~m}$, claw $27.5-30.0 \mu \mathrm{~m}$. Ratio of lengths of tibia + tarsus to trochanter + femur, $0.77-0.78: 1$; ratio of length of tibia to tarsus, $1.2-1.4: 1$; ratio of length of trochanter + femur to greatest width of femur, 3.41-3.60:1; derm surrounding each posterior coxa with 40-50 translucent pores; coxa with 30-50 translucent pores; tibia with numerous translucent pores. Tarsal digitules capitate, each 27.5-30.0 $\mu \mathrm{m}$ long. Claw digitules capitate, each about $22.5-25.0 \mu \mathrm{~m}$ long. Both pairs of ostioles present, anterior ostioles each with a total for both lips of 28-40 trilocular pores and 4-6 setae; posterior ostioles each with a total for both lips of 58-60 trilocular pores and 6-8 setae. Anal ring about $95 \mu \mathrm{~m}$ wide, bearing 6 setae, each seta $160-165 \mu \mathrm{~m}$ long.

Dorsum. Derm membranous, with 16 pairs of cerarii around body margin, each cerarius with $2-5$ enlarged conical setae and 3-5 auxiliary setae. Each anal lobe cerarius set on membranous cuticle and containing 3-6 enlarged setae $25-30 \mu \mathrm{~m}$ long, plus 55-57 trilocular pores and 3-5 hair-like auxiliary setae. Dorsal setae short and flagellate, each $30-110 \mu \mathrm{~m}$ long, scattered throughout dorsum. Trilocular pores, each 3-4 $\mu \mathrm{m}$ in diameter, scattered. A few multilocular disc pores present on thorax and abdomen.

Venter. Setae flagellate, each $30-110 \mu \mathrm{~m}$ long, longest setae located medially on head. Apical setae on anal lobe each $125-150 \mu \mathrm{~m}$ long. Multilocular disc pores, each $7-8 \mu \mathrm{~m}$ in diameter, present throughout venter, numbers on each abdominal segment as follows: I-III each with 60-70, IV 20-24, V 38-43, VI 100-110, VII 90-98, VIII + IX 36-38 and 125-145 on thorax and head. Trilocular pores, each $2.5-3.0 \mu \mathrm{~m}$ across, scattered throughout venter. Oral collar tubular ducts each $8-10 \mu \mathrm{~m}$ long, $4-5 \mu \mathrm{~m}$ wide, present throughout, but in bands across abdominal segments, as follows: VI 21, VII 15, VIII + IX 14.

Comments. The Indonesian specimen is a member of the P. palmarum cryptic species complex, which was discussed by von Ellenrieder et al. (2021). Members of this species complex have more than 12 pairs of cerarii; the derm surrounding each posterior coxa has $40-$ 50 duct-like pores, and each hind coxa and hind tibia have numerous translucent pores. The dorsal setae in the Indonesian specimen are up to twice as long as those recorded previously in P. palmarum by Williams and Watson (1988) and Williams (2004). Even though there have been some difference it is believed that some further studies must be none to decide this species complex. Especially further molecular studies will be useful to resolve the species concept.

Paracoccus evae Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Sukaraja, on Melastoma malabathricum L. (Melastomataceae), 50 m a.s.l, $03^{\circ} 52^{\prime} 00.4^{\prime \prime} \mathrm{S}, 102^{\circ} 22^{\prime} 51.2^{\prime \prime}$ E, 23.vii.2019, coll. A. Zarkani (AZ249), 3 웅.

Comments. This is the second report of P. evae from Indonesia; Williams (2004) recorded it from Java on Eupatorium sp. (Asteraceae).

Planococcus dischidiae (Takahashi)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Coffea robusta, 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}, 102^{\circ} 35^{\prime} 33$ " E, 12.vi.2018, coll. A. Zarkani (AZ235-239), 1 ㅇ.

Comments. Previously, P. dischidiae has been collected on Dischidia sp. (Apocynaceae) and Epipremnum (Araceae), and has been recorded from Indonesia (Sulawesi) (Cox 1989; BenDov 1994; Williams 2004) and Malaysia (Takahashi 1951; Ben-Dov 1994).

Planococcus lilacinus (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Saraca asoca (Roxb.) (Fabaceae), 20 m a.s.l., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}$, 10.ii. 2019 and 15.iii.2020, coll. A. Zarkani (AZ313), 1 ¢.

Comments. The species is polyphagous on ornamentals and fruits, and has been recorded from 73 plant families and 196 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 64 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Irian Jaya (Williams \& Watson 1988; Ben-Dov 1994), Java (Williams 2004), Kalimantan (Cox 1989; Ben-Dov 1994), Lombok (Williams 2004), Sulawesi (Williams 2004) and Sumatra (Cox 1989; Ben-Dov 1994; Williams 2004).

Pseudococcus jackbeardsleyi Gimpel \& Miller

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Selenicereus undatus (Haw.) DR Hunt (Cactaceae), 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime}$ S, $102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 10.vii.2018, coll. A. Zarkani (AZ227), 1 Q.

Comments. This neotropical species is polyphagous on ornamentals, fruits, vegetables and herbs; it has been reported from 52 plant families and 112 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 52 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Flores (Gavrilov-Zimin 2017), Irian Jaya (Gavrilov-Zimin 2013) and Java (Williams 2004).

*Pseudococcus leptotrichotus Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on C. robusta, 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}, 102^{\circ} 35^{\prime} 33^{\prime \prime} \mathrm{E}$, 12.vi.2018, coll. A. Zarkani (AZ235-239), 12 우아.

Comments. This is a new country record for Indonesia, and is the first mealybug species recorded from Indonesia that had been previously recorded in a leaf nest of Oecophylla sp.
ants in Malaysia (Sarawak). In Indonesia, P. leptotrichotus were collected in a leaf nest of Oecophylla sp. ants on coffee leaves and within a protective carton shelter of soil made by unidentified ants on coffee berries and trees.

Pseudococcus longispinus (Targioni Tozzetti)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Theobroma cacao L. (Sterculiaceae), 20 m a.s.1., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime}$ E, 5.iii.2019, coll. A. Zarkani (AZ247), 3 우.

Comments. The species is polyphagous on ornamentals and fruits, and has been recorded from 84 plant families and 167 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 115 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Irian Jaya (Williams \& Watson 1988; Ben-Dov 1994), Java (Betrem 1937; Ben-Dov 1994), Lombok (Williams 2004), Sulawesi (Watson et al. 2014) and Sumatra (Green 1930).

Rastrococcus chinensis Ferris

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Singaran Pati, on Nephelium lappaceum L. (Sapindaceae), 20 m a.s.l., $03^{\circ} 48^{\prime} 57.9^{\prime \prime} \mathrm{S}, 102^{\circ} 18^{\prime} 38.9^{\prime \prime} \mathrm{E}$, 12.vi.2018, coll. A. Zarkani (AZ168-170), 12 웅.

Comments. The species was recorded previously on Alocasia sp. (Araceae), Ardisia lindleyana D. Dietr. (Primulaceae), Eugenia sp. (Myrtaceae), Melastoma malabathricum L. (Melastomataceae), Morinda umbellata L. (Rubiaceae), Psychotria asiatica L. (Rubiaceae), Syzygium sp. (Myrtaceae), S. anomalum Lauterb. (Myrtaceae) and S. hancei Merr. \& Perry (Myrtaceae). It has been reported previously from Brunei, China and Malaysia (García Morales et al. 2016). In Indonesia, it has been recorded previously from Java (Williams 1989, 2004; Ben-Dov 1994).

Rastrococcus invadens Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Mangifera indica L. (Anacardiaceae), 600 m a.s.l., $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}, 102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 12.vi.2018, coll. A. Zarkani (AZ235-239), 12 웅.

Comments. The species is polyphagous on ornamentals and fruits; it has been recorded from 29 plant families and 54 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 32 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Bali and Java (Williams 1989, 2004; Ben-Dov 1994).

Rastrococcus tropicasiaticus Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Air Periukan, on Azadirachta excelsa (Jack) M. Jacobs (Meliaceae), 10 m a.s.l., $3^{\circ} 59^{\prime} 07.1^{\prime \prime} \mathrm{S}$, $102^{\circ} 25^{\prime} 37.4^{\prime \prime}$ E, 1.v.2019, coll. A. Zarkani, (AZ336), 1 q.

Comments. Zarkani et al. (2021) reported R. tropicasiaticus for the first time in Indonesia (Bengkulu) on A. excelsa (Meliaceae), Cerbera manghas L. (Apocynaceae), Dimocarpus
longan Lour. (Sapindaceae), Ficus sp. (Moraceae), and Tectona grandis L. (Lamiaceae). It is also known to live on woody plants and wild grass in parts of southern Asia such as Malaysia, Philippines, Thailand and Vietnam (Williams 2004).

Acknowledgements

The authors wish to thank Dr Takumasa Kondo (Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Colombia), for his kind help and critique of the manuscript. The project was financially supported by the Research and Community Service Centre, Lembaga Penelitan dan Pengabdian pada Masyarakat (LPPM), The University of Bengkulu with grants No. 2038/UN30.15/PP/2022. The writing of the manuscript was assisted by WCP Dikti Program 2021.

References

Ali, S.M. (1968) Coccids (Coccoidea: Hemiptera: Insecta) affecting fruit plants in Bihar (India). Journal of the Bombay Natural History Society, 65, 120-137.
Ben-Dov, Y. (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance. Intercept Limited, Andover, 686 pp.
Betrem, J.G. (1937) De morporphologie en systematiek van enkele vande vooraamste witteluizensoorten van Java. Archief voor de Koffiecultuur in Nederlandsch-Indie, 11, 1-118.
CABI (1983) Nipaecoccus viridis (Newstead). Distribution Maps of Pests, Series A, Agricultural, Map no. 446, 2 pp.
CBD Secretariat (2021) Indonesia - Country Profile: Biodiversity Facts. Available from: https://www.cbd.int/countries/profile/default.shtml?country=id\#facts (accessed 22 March 2021)
Cox, J.M. (1989) The mealybug genus Planococcus (Homoptera: Pseudococcidae). Bulletin British Museum (Natural History), Entomology, 58, 1-78.
Cox, J.M. \& Ben-Dov, Y. (1986) Planococcine mealybugs of economic importance from the Mediterranean Basin and their distinction from a new African genus (Hemiptera: Pseudococcidae). Bulletin of Entomological Research, 76, 481-489.
Daane, K.M., Almeida, R.P.P., Bell, V.A., Walker, J.T.S., Botton, M., Fallahzadeh, M., Mani, M., Miano, J.L., Sforza, R., Walton, V.M. \& Zaviezo, T. (2012) Biology and management of mealybugs in vineyards. In: Bostanian, N.J., Vincent, C. \& Isaacs, R. (Eds), Arthropod Management in Vineyards. Springer Netherlands Press, Dordrecht, pp. 271-307.
Dammerman, K.W. (1929) The agricultural zoology of the Malay Archipelago. The animals injurious and beneficial to agriculture, horticulture and forestry in the Malay Peninsula, the Dutch East Indies and Philippines. J.H. de Bussy I-XI, Amsterdam, 473 pp.
Ellenrieder, N.V., Kinnee, S.A \& Watson G.W. (2021) Review of the genus Palmicultor Williams, 1963 (Hemiptera: Coccomorpha: Pseudococcidae), with evidence of a cryptic species. The Pan-Pacific Entomologist, 97 (4), 240-260.
Franco, J.C., Zada, A \& Mendel, Z. (2009) Novel approaches for the management of mealybug pests. In: Ishaaya, I. \& Horowitz, A.R. (eds), Biorational Control of Arthropod Pests. Springer Science + Business Media, New York, pp 233-278.

García Morales, M., Denno, B., Miller, DR., Miller, G.L., Ben-Dov, Y. \& Hardy, N.B. (2016) ScaleNet: a literature-based model of scale insect biology and systematics. Available from: http://scalenet.info (accessed 18 October 2022)
Gavrilov-Zimin, I.A. (2013) New scale insects (Homoptera: Coccinea) from Sulawesi and New Guinea, with some other additions to the Indonesian fauna. Tropical Zoology, 26, 64-86.
https://doi.org/10.1080/03946975.2013.807570
Gavrilov-Zimin, I.A. (2016) Cytogenetic and taxonomic studies of some legless mealybugs (Homoptera, Coccinea, Pseudococcidae). Comparative Cytogenetics, 10 (4), 587-601.
Gavrilov-Zimin, I.A. (2017) Taxonomic and faunistic notes on scale insects (Homoptera: Coccinea) of Bali, Flores and New Guinea (Indonesia). In: Telnov, D. (Ed.), Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea. Entomological Society of Latvia, Salaspils, 3, pp. 141-149.
Gavrilov-Zimin, I.A. (2019) New Asterolecaniidae s.l. (Homoptera: Coccinea) from different regions of the world and some distributional records. Tropical Zoology, 32, 142-154. https://doi.org/10.1080/03946975.2019.1641673
Gavrilov-Zimin, I.A. (2020) Chromosomal and reproductive features of some Oriental and Australasian scale insects (Homoptera, Coccinea). Comparative Cytogenetics, 14, 339352. https://doi.org/10.3897/CompCytogen.v14i3.53367
Gavrilov-Zimin, I.A. (2021) New and poorly known giant scale insects (Homoptera: Coccinea: Margarodidae s. lat.) from the Oriental region with taxonomic and nomenclatural notes on the subfamily Monophlebinae. European Journal of Taxonomy, 746, 50-61. https://doi.org/10.1080/03946975.2019.1641673
Granara de Willink, M.C. (2009) Dysmicoccus de la Región Neotropical (Hemiptera: Pseudococcidae). Revista de la Sociedad Entomológica Argentina, 68, 11-95.
Granara de Willink, M.C. \& Szumik, C. (2007) Phenacoccinae de Centro y Sudamérica (Hemiptera: Coccoidea: Pseudococcidae): sistemática y filogenia. Revista de la Sociedad Entomológica Argentina, 66, 29-129.
Green, E.E. (1930) Fauna Sumatrensis (Bijdrag Nr. 65). Coccidae. Tijdschrift voor Entomologie, 73, 279-297.
Kalshoven, L.G.E. (1981) Coccoidea. Pests of crops in Indonesia. Ichtiar Baru, Jakarta, 701 pp.
Kaydan, M.B. \& Gullan, P.J. (2012) A taxonomic revision of the mealybug genus Ferrisia Fullaway (Hemiptera: Pseudococcidae), with descriptions of eight new species and a new genus. Zootaxa, 3543, 1-65.
Keuchenius, P.E. (1915) Onderzoekingen en beschouwingen over eenige schadlijke schildluizen van de Koffiekultuur op Java. Mededeelingen van het Besoekisch Proefstation. Djember, 16, 1-65.
Kosztarab, M. \& Kozár, F. (1988) Scale Insects of Central Europe. Akadémiai Kiadó, Budapest, 456 pp .
McNeely, J.A., Miller, K.R., Reid, W.V., Mittermeier, R.A. \& Werner, T.B. (1990) Conserving the World's Biological Diversity. IUCN, Gland, Switzerland, 193 pp.
Muniappan, R., Shepard, B.M., Watson, G.W., Carner, G.R., Sartiami, D., Rauf, A., Xiong, J.J. \& Hammig, M.D. (2008) First report of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), in Indonesia and India. Journal of Agricultural and Urban Entomology, 25, 37-40.
Muniappan, R., Shepard, B.M., Watson, G.W., Carner, G.R., Rauf, A., Sartiami, D., Hidayat, P., Afun, J.V.K., Goergen, G. \& Ziaur Rahman, A.K.M. (2011) New records of invasive
insects (Hemiptera: Sternorrhyncha) in Southeast Asia and West Africa. Journal of Agricultural and Urban Entomology, 26, 167-174. https://doi.org/10.3954/1523-5475-26.4.167
Muniappan, R., Watson, G.W., Evans, G.A., Rauf A. \& von Ellenrieder, N. (2012) Cycad Aulacaspis scale, a newly introduced insect pest in Indonesia. HAYATI Journal of Biosciences, 19, 110-114.
https://doi.org/10.4308/hjb.19.3.110
Reyne, A. (1954) Hippeococcus a new genus of Pseudococcidae from Java with peculiar habits. Zoologische Mededelingen Uitgegeven door het Rizksmuseum van Natuurlijke Historie te Leiden, 32, 233-257.
Reyne, A. (1957) Walkeriana tosariensis, a new monophlebine coccid from Casuarina junghununiana Miq. in east-Java. Beaufortia, Amsterdam, 6, 115-145.
Reyne, A. (1961) Scale insects from Dutch New Guinea. Beaufortia, Amsterdam, 8, 121-167.
Reyne, A. (1965) Observations on some Indonesian scale insects. Tijdschrift voor Entomologie, Amsterdam, 108, 145-188.
Sartiami, D., Watson, G.W., Mohamad Roff, M.N., Hanifah, M. \& Idris, A.B. (2015) First record of cassava mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae), in Malaysia. Zootaxa, 3957 (2), 235-238.
Sartiami, D., Watson, G.W., Mohamad Roff, M.N. \& Idris, A.B. (2016) New Indonesian country records and species information for mealybugs (Hemiptera Pseudococcidae) in Wirjati's historic collection. Redia, XCIX, 155-161.
Takahashi, R. (1951) Some mealybugs (Pseudococcidae, Homoptera) from the Malay Peninsula. Indian Journal of Entomology, 12, 1-22.
von Ellenrieder, N., Kinnee, S.A. \& Watson, G.W. (2022) Review of the genus Palmicultor Williams, 1963 (Hemiptera: Coccomorpha: Pseudococcidae), with evidence of a cryptic species. The Pan-Pacific Entomologist, 97 (4), 240-260.
Watson, G.W., Muniappan, R., Shepard, B.M., Sembel, D.T., Xiong, J.J. \& Rauf, A. (2014) Sap-sucking insect records (Hemiptera: Sternorrhyncha and Thysanoptera: Thripidae) from Indonesia. Florida Entomologist, 97, 1594-1597. https://doi.org/10.1653/024.097.0432
Williams, D.J. (1989) The mealybug genus Rastrococcus Ferris (Hemiptera: Pseudococcidae). Systematic Entomology, 14, 433-486. https://doi.org/10.1111/j.1365-3113.1989.tb00298.x
Williams, D.J. (2004) Mealybugs of southern Asia. The Natural History Museum, London. Southdene SDN BHD, Kuala Lumpur. 896 pp.
Williams, D.J. \& Granara de Willink, M.C. (1992) Mealybugs of Central and South America. CAB International, Wallingford, 635 pp .
Williams, D.J. \& Watson, G.W. (1988) The Scale Insects of the Tropical South Pacific Region. Pt. 2. The Mealybugs (Pseudococcidae). CAB International, Wallingford, 260 pp.
Wirjati (1958) On a small mealybug from a virgin forest. Idea, Journal of the Entomological Society of Indonesia, 11, 14-17.
Wirjati (1959) A new species of Trionymus found on rice-roots in Java. Idea, Journal of the Entomological Society of Indonesia, 12, 14-19.
Zarkani, A., Apriyanto, D., Turanli, F. \& Kaydan, M.B. (2020) New record of Ferrisia dasylirii (Cockerell) (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia. Serangga, 25, 93-100.
Zarkani, A., Sunardi, T., Nadrawati, Ercan, C. \& Kaydan, M.B. (2021a) First record of Rastrococcus tropicasiaticus Williams (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia. Serangga, 26 (3), 29-36.

Zarkani, A., Apriyanto, D., Turanli, F., Ercan, C. \& Kaydan, M.B. (2021b) A checklist of Indonesian scale insects (Hemiptera: Coccomorpha). Zootaxa, 5016 (2), 151-195. https://doi.org/10.11646/zootaxa.5016.2.1

Figure captions

FIGURE 1. Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. on: (A) Lansium parasiticum Corr.; (B) Coffea robusta Lindl. ex De Will; (C) Manilkara zapota L.; and (D) Durio zibethinus Murr.

FIGURE 2. Adult female Dysmicoccus zeynepae Zarkani \& Kaydan sp. n., holotype.
FIGURE 3. Palmicultor cryptic species group, species near palmarum (Ehrhorn) attacking Elaeis guineensis Jacq. fruits.

FIGURE 4. Adult female Palmicultor palmarum (Ehrhorn) cryptic species group, from Indonesia, Sumatra I., Bengkulu Province, Seluma district, Air Periukan, on Elaeis guineensis Jacq. (Arecaceae).

Studies on pseudococcid mealybugs (Hemiptera: CoccomorphaPseudococcidae) in Indonesia, with description of a new species and three new country records

AGUSTIN ZARKANI ${ }^{1,2^{*}}$, CANSU ERCAN ${ }^{4,5}$, DWINARDI APRIYANTO ${ }^{1,3}$ \& MEHMET BORA KAYDAN ${ }^{4,6}$
${ }^{1}$ Department of Plant Protection, Faculty of Agriculture, University of Bengkulu, 383711, Bengkulu, Indonesia.
${ }^{2}$ Email: agustinzarkani@unib.ac.id; https://orcid.org/0000-0001-9837-5019
${ }^{3}$ Email: dwinardi2018@gmail.com; https://orcid.org/0000-0002-5286-9010
${ }^{4}$ Biotechnology Development and Research Centre, Çukurova University, 01250, Adana, Turkey.
${ }^{5}$ Email: cansuercann01 @ gmail.com; https://orcid.org/0000-0003-3516-9183
${ }^{6}$ Email: bkaydan@cu.edu.tr; https://orcid.org/0000-0002-0677-255X
*Corresponding author

Abstract

Mealybugs -Pseudococcid mealybugs (Hemiptera: Coccomorpha: Pseudococcidae) include economically important insect pests worldwide; however, little is known about the species present in Indonesia. Samples were collected and identified from wild and cultivated plants in several regions of southern Sumatra, Indonesia between 2018 and 2020. Eighteen species of Pseudococcidae in 8 genera were identified, including one undescribed species. Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. is described and illustrated based on the morphology of the adult female, and a key is provided for the identification of all 18 species. Furthermore, Dysmicoccus arachidis Williams, D. carens Williams and Pseudococcus leptotrichotus Williams are recorded for the first time from Indonesia; new locality and host-plant data are given for these species.

Keywords: Biodiversity, host plant, pests, Sternorrhyncha, Pseudococcidae, Rhizoecidae, taxonomy

Introduction

The pseudococcid mealybugs are scale insects (Hemiptera: Coccomorpha: Pseudococcidae) which-that include many important sap-sucking insect pests of woody and herbaceous plants. As presently understood, the mealybugs include three families: Pseudococcidae, Rhizoecidae and Xenococcidae (Choi \& Lee 2022). These insects not only damage their host plants directly, by mechanical injury and extraction of sap, but also indirectly by promoting sooty mold growth on their sugary honeydew waste and by facilitating the transmission of plant virus diseases (Franco et al. 2009, Daane et al. 2012).

The Pseudococcidae, with 2041 species in 259 genera, is the second largest scale insect family after the Diaspididae, which contains about 2693 species in 418 genera (García Morales et al. 2016). In the Indonesian archipelago, 108 species of Pseudococcidae in 31 genera have been recorded so far, the second-largest family after the Diaspididae, which has 118 species in 46 genera recorded (García Morales et al. 2016). In the family Pseudococcidae, the most species-rich and damaging genera in Indonesia are: Rastrococcus Ferris (15 species), Pseudococcus Westwood (13 species), Paraputo Laing (13 species), Dysmicoccus Ferris (9 species), and Planococcus Ferris (7 species) (Williams 2004; García Morales et al. 2016).

As a tropical country located along major sea lanes connecting East Asia, South Asia and Oceania, it is not surprising that Indonesia has a very large number of indigenous plants,
vertebrates and invertebrates including great insect biodiversity (McNeely et al. 1990; CBD Secretariat 2021). The first documentation of Indonesian insect diversity, including mealybugs in Indonesia began in the British, Dutch and Japanese colonial eras and has continued to the present, resulted in the description of many new Indonesian native species and several additional records to the scale insect fauna (Dammerman 1929; Reyne 1954, 1957, 1961, 1965; Wiriati-Wirjati 1958, 1959; Kalshoven 1981; Muniappan et al. 2008, 2011, 2012; Sartiami et al. 2015, 2016; Gavrilov-Zimin 2013, 2016, 2017, 2019, 2020, 2021; and Zarkani et al. 2020, 2021a, b). However, the only comprehensive review of mealybugs recorded from Indonesia is in the monograph by Williams (2004). In the last 16 years the number of described scale insect species recorded in Indonesia has increased by 53 species (García Morales et al. 2016) but the knowledge of Indonesian scale insect species are still patchy and incomplete.

The present paper covers a new species and three new country records of Pseudococcidae from Indonesia. Identification keys to genera and Dysmicoccus species, and new locality records for the currently known Pseudococcidae species, are provided and discussed.

Materials and methods

Mealybugs (nymphs and adult females) were collected from tropical plants in several regions of southern Sumatra, Indonesia between April 2018 and October 2019. Infested plant parts (fruits, trunk and branches, and leaves) were cut, bagged, labeled and taken to the Laboratory of Plant Protection, University of Bengkulu for examination. For species determination, nymphs were reared on the relevant plant material (at $25 \pm 1^{\circ} \mathrm{C}, \sim 70 \%$ relative humidity and of 16:8 h light: dark photoperiod) until they reached the adult stage, A binocular dissection microscope, Leica EZ4HD, was used to sort specimens for preservation and slide mounting. Specimens were killed, labled and stored in 70% ethyl alcohol.

In the Plant Protection Department of the University of Bengkulu, adult female specimens were slide-mounted using the method of Kosztarab and Kozár (1988) with some modifications (using distilled water after KOH and cleaning the specimens using a fine brush). They were identified by light microscopy using a phase-contrast compound microscope (Olympus BX41) and were identified using the keys in Cox and Ben-Dov (1986), Williams (2004), Granara de Willink and Szumik (2007), Granara de Willink (2009), and Kaydan and Gullan (2012).

For description of the new species, the main taxonomic characters of the adult females were evaluated and quantified under a compound light microscope. The morphological terms used are those used by Williams and Granara de Willink (1992) and Williams (2004). All the measurements given are for the maximum dimensions (e.g., body width was recorded at the widest part) and are expressed as ranges. Tarsal length excludes the claw. Setal length includes the setal base. Cerarii are numbered as described by Williams and Granara de Willink (1992), with cerarius C_{1} on the head, anterior to the antenna, and cerarius C_{17} being on abdominal segment VIII. A taxonomic illustration is provided for each new species, and is based on the holotype used for the description. The illustration is split longitudinally, with the left half representing the dorsum and the right half, the venter. Structural details are shown as enlargements around the central drawing, and are not all drawn to the same scale. The translucent pores on the hind legs are mostly found on the dorsal surface, but they are illustrated ventrally on the main figure for convenience.

Type specimens of the new species described are deposited in the Mealybugs Museum, Department of Plant Protection, Faculty of Agriculture, University of Bengkulu, Bengkulu,

Indonesia (MMUB). In Material examined, the holotype data is listed as it is written on the slide label, with ""/" used to indicate line breaks., on the slide labels).

Results and discussion

Since Williams (2004) provided a key to the mealybugs-mealybug genera of southern Asia, an additional genus (Komodesia Gavrilov-Zimin) has (Komodesia Gavrilov Zimin) been described from Indonesia (Gavrilov-Zimin 2016). A key to the 2931 pseudococcid mealybug genera found in Indonesia is therefore provided below.

Key to adult females of mealybug genera occurring in Indonesia a_{2} (adapted from Williams and Watson (1988), Williams and Granara de Willink (1992) and Williams (2004).

1(0) Legs present.

- Legs absent

2(1) Anal ring normally situated on body surface or at base of very short tube, bearing at least 6 setae. Venter with duct-like pores in a group posterior to each second spiracle. Ventral disc-like pores absent from abdomen \qquad ..Chaetococcus Maskell
Anal ring situated at base of anal tube, normally bearing 6 setae (rarely without setae). Venter without duct-like pores posterior to each second spiracle, but disc-like pores or very short, button-like microtubular ducts present in this position, sometimes also in a wider distribution on submedian to submarginal areas of abdomen \qquad 3
3(2) Circuli numbering 5. Very short, button-like microtubular ducts present posterior to each second spiracle; disc-like pores absent from this position

Komodesia Gavrilov-Zimin
Circuli numbering $0-1$. Disc-like pores present behind each second spiracle; short, button-like microtubular ducts absent from this position, sometimes also in a wider distribution on submedian to submarginal areas of abdomen Antonina Signoret
4(3) Claw digitules each expanded widely, either from proximal end or nearer to distal end
... 5
Claw digitules either setose or only minutely dilated distally 8
5(4) Antennae each with 8 segments. .Archeomyrmococcus Williams
Antennae each with 6 or 7 segments. \qquad
6(5) Constriction present between head and thorax. Head sclerotized at anterior end, at least on venter. Each anterior ostiole with posterior lip larger than anterior lip, usually semi-circular and flap like, often bearing a few short setae .. Malaicoccus Takahashi
Constriction absent from between head and thorax. Head membranous on venter, except sometimes for small areas of sclerotization around basal antennal segments. Each anterior ostiole with posterior and anterior lips about same size, without any setae
... 7
7(6) Posterior of abdomen fork-like, with anal lobes prominent and elongate \qquad .. Dicranococcus Williams

- Posterior of abdomen pointed; anal lobes poorly developed, recognisable by presence of apical setae \qquad Hippeococcus Reyne
8(4) Dorsal tubular ducts large, each with orifice surrounded by a circular, sclerotized area containing 1 or more setae within its borders or just adjacent to the rim \qquad Ferrisia Cockerell

Dikomentari [AZ2]:

Dikomentari [AZ3R2]: We do not use line break (see attached picture)

Dikomentari [GW4R3]: Thanks for the photo. You DO use line breaks so I have left this wording in the manuscript.
Memformat: Warna font: Otomatis, Tidak Coretan
Memformat: Warna font: Otomatis, Tidak Sorot
Memformat: Warna font: Otomatis, Tidak Coretan
Memformat: Warna font: Otomatis, Tidak Sorot
Memformat: Warna font: Otomatis, Tidak Coretan
Telah Diformat: Inden: Baris Pertama: 0 cm
Memformat: Font: Tidak Tebal
Memformat: Font: Tidak Tebal
Dikomentari [GW5]: On ScaleNet at
http://scalenet.info/scaleplace/list/ there are 31 genera of Pseudococcidae [and 4 genera of Rhizoecidae and 2 genera of Xenococcidae mealybugs] listed for Indonesia. This figure for the Pseudococcidae needs to be changed from 29 to 31

Memformat: Coretan, Sorot
Memformat: Coretan
Memformat: Warna font: Merah
Memformat: Font: Tidak Tebal

9(8) Cerarii always conspicuous, each containing numerous truncate-conical cerarian setae (each seta with apex flat) \qquad Rastrococcus Ferris
Cerarii, if present, containing cerarian setae with pointed apices, setae never truncateconical10
10(9) Recognisable cerarii absent 11

- Recognisable cerarii present, sometimes on anal lobes only. 13
11(10) Dorsal ostioles usually represented by both anterior and posterior pairs, althoughsometimes poorly developedCrisicoccus Ferris
- Dorsal ostioles represented by posterior pair only 12
12(10) Anal ring oval or triangular, situated on venter a short distance from apex of abdomen.Cephalothorax dilated.
\qquad Leptorhizoecus Williams (family Rhizoecidae)
- Anal ring usually circular, rarely V-shaped, situated on dorsum. Cephalothorax not dilated. Mollicoccus Williams
13(10) Oral rim tubular ducts present, each with well-developed rim 14
Oral rim tubular ducts absent 16
14(13) Cerarii numbering no more than 6 pairs, present on abdomen only, except for frontalcerarii occasionally present
\qquad Maconellicoccus Ezzat
Cerarii numbering 9-18 pairs; present on abdomen and at least on thorax 15
15(14) Venter of each anal lobe with anal lobe bar; auxiliary setae present in anal lobe cerariionly
\qquad Paracoccus Ezzat \& McConnel Venter of each anal lobe with triangular to quadrate sclerotized area occupying much of lobe, never with a slender anal lobe bar only \qquad Pseudococcus Westwood
16(13) Quinquelocular pores present, at least on venter; if only few present, these situated near mouthparts only.

Brevennia Goux
Quinquelocular pores absent. .17
17(16) Anal lobe cerarii large, occupying most or all of lobe, each bearing multiple cerarian setae dispersed over entire sclerotized area. Dorsal setae, at least on abdomen, thick, conical or lanceolate, each situated on membranous cuticle \qquad
Lanceacoccus Williams
Anal lobe cerarii of various sizes, each bearing 2 or more cerarian setae situated on either on membranous or sclerotized cuticle; if on sclerotized cuticle, then cerarian setae occupying either marginal area of each lobe or area near centre, not dispersed over most of lobe. Dorsal setae all either slender or conical, if conical then sometimes situated on slightly sclerotized cuticle
.. 18
18(17) Venter of each anal lobe sclerotized, with inner edge of sclerotized area thick, bar-like, extending antero-medially; bar-like structure not connected to apical seta or bar seta. Cerarii numbering 16-18 pairs, each cerarius bearing multiple setae; preocular cerarii (C_{2}) always present \qquad .Exallomochlus Williams
Venter of each anal lobe membranous or sclerotized; if sclerotized, not as above. Cerarii numbering $1-18$ pairs, each cerarius bearing varying numbers of setae; preocular cerarii (C_{2}) present or absent.
19(18) Anal lobe bars present, always associated with bar setae, each bar either complete from apical seta or only present forwards from bar seta (note: occasional specimens of Formicococcus lingnani Ferris may lack anal lobe bars).20

Anal lobe bars absent. Anal lobes either membranous or variously sclerotized........... 21
20(19) Some or all abdominal cerarii bearing more than 2 cerarian setae each (note: occasional specimens or Formicococcus lingnani Ferris may lack anal lobe bars) Formicococcus Takahashi
Abdominal cerarii each bearing only 2 cerarian setae
Planococcus Ferris
21(19) Each eye associated with sclerotized patch containing discoidal pores, these poressometimes as large as a multilocular disc pore; other similar disc pores also present,dispersed, at least on venter. Cerarii always numbering 18 pairs HordeolicoccusIf eyes are associated with discoidal pores then these are few, small and inconspicuous.Cerarii numbering 1-17 pairs22
22(21) Some or most dorsal setae enlarged, conical to lanceolate, about same size as cerariansetae.23
Dorsal setae either flagellate or conical to lanceolate, all noticeably slenderer thancerarian setae.25
23(22) Trilocular pores concentrated around setal collars of cerarian setae and enlarged dorsalsetae, much smaller than trilocular pores elsewhere on body ... Pedrococcus MametTrilocular pores all about same size.24
24(23) Enlarged dorsal setae each closely associated with trilocular pores
\qquad Dorsoceraricoccus Dong \& Wu Enlarged dorsal setae not closely associated with trilocular pores Nipaecoccus Šulc

25(22) Anterior margin of hind coxa indistinct; spiracles and leg bases situated much closer to
margin than to midline

\qquad
Extanticoccus

- Anterior margin of hind coxa distinct; spiracles and leg bases situated submedially, about half way between margin and midline .. 26
26(25) Derm around hind coxa with numerous minute pores 27
Derm around hind coxa without minute pores 28
27(26) Circulus large and strongly constricted, hour-glass-shaped. Derm around each hind coxa with numerous minute disc pores, in an area reaching almost as far forward as each posterior spiracle; minute duct-like pores absent from this areaSaccharicoccus Ferris
Circulus smaller, square to oval, not strongly constricted. Derm around each hind coxawith numerous minute duct-like pores, these not extending as far forward as eachposterior spiracle; minute disc-like pores absent from derm around each hand coxaPalmicultor Williams
28(26) Claw with denticle present Phenacoccus Cockerell................................ 29
29(28) Anal lobe bars present Mutabilicoccus WilliamsAnal lobe bars absent.30
30(29) Cerarii numbering $8-17$ pairs, always distinct, never with intermediate cerarii;preocular cerarii $\left(\mathrm{C}_{2}\right)$ always absent. Abdominal cerarii often bearing 2 conicalsetae each; ventral margin of penultimate abdominal segment never sclerotized.Hind tibia + tarsus usually longer than trochanter + femur. Anal ring usuallysituated at or near apex of abdomen
\qquad Dysmicoccus Ferris
Cerarii numbering $5-18$ pairs, intermediate cerarii often present or cerarii forming a continuous marginal zone; preocular cerarii $\left(\mathrm{C}_{2}\right)$ present. Abdominal cerarii often bearing more than 2 conical setae each; if with only 2 conical setae each, then ventral margin of penultimate abdominal segment always sclerotized. Hind tibia + tarsus usually shorter than trochanter + femur. Anal ring usually separated from apex of abdomen by at least its own length
Paraputo Laing

From 149 mealybug samples collected from southern Sumatra, Indonesia, 18 species were identified, one of which is a new to science and three are new country records for Indonesia. The identified species belong to the genera Dysmicoccus (5 species), Ferrisia (2 species), Nipaecoccus (1 species), Palmicultor (1 species), Paracoccus (1 species), Planococcus (2

Memformat: Warna font: Otomatis
species), Pseudococcus (3 species) and Rastrococcus (3 species). The species marked below with an asterisk (*) are recorded for the first time from Indonesia.

Genus Dysmicoccus Ferris

Type species: Dactylopius brevipes Cockerell by original designation.
Genus diagnosis of adult female (adapted from Williams, 2004). Body normally broadly oval, $1.65-4.20 \mathrm{~mm}$ long, $0.90-2.89 \mathrm{~mm}$ wide. Antennae each normally with $6-8$ segments. Cerarii present, numbering 6-17 pairs (never 18), anal lobe cerarii each each bearing either 2 cerarian setae or as many as 8 , these usually conical, sometimes conical setae replaced by flagellate setae but cerarii always recognizable by concentrations of trilocular pores. Anterior cerarii each sometimes containing more than 2 setae. Circulus present or absent. Legs well developed, hind legs with translucent pores present or absent; tarsal digitules usually knobbed, occasionally setose. Claw usually stout, claw denticle absent. Anal lobes usually developed, either membranous or sclerotized, each lobe bearing a normal apical seta. Ventral margin of abdominal segments anterior to anal lobes always membranous. Anal ring normally situated at apex of abdomen (rarely a short distance from apex), usually bearing 6 setae, occasionally with more setae present. Anterior and posterior ostioles present. Dorsal setae variously shaped, often flagellate. Ventral setae flagellate. Trilocular pores present on dorsum and venter. Multilocular disc pores usually present, at least on venter. Quinquelocular pores and oral rim tubular ducts always absent. Oral collar tubular ducts usually apparent, at least on venter, sometimes present on dorsum, rarely absent entirely. Discodial pores present, sometimes large and occasionally present next to each eye.

*Dysmicoccus arachidis Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Crassocephalum crepidioides (Benth.) S. Moore (Asteraceae), 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime}$ S, $102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 12.vi.2018, coll. A. Zarkani (AZ80-81), 6 웅.

Comments. This species is a new country record for Indonesia and only the second record of the species; Williams (2004) previously reported it from India (Tripura) on Arachis hypogaea L. (Fabaceae). There is very little information available on D. arachidis.

Dysmicoccus brevipes (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Slebar, on Syzygium aqueum Alston (Myrtaceae), 20 m a.s.l, $03^{\circ} 49^{\prime} 25.2^{\prime \prime} \mathrm{S}, 102^{\circ} 199^{\prime} 08.7^{\prime \prime} \mathrm{E}, 10 . \mathrm{vii} .2018$, coll. A. Zarkani (AZ210), 3 웅.

Comments. The species is polyphagous on ornamental plants and fruits belonging to 62 plant families and 147 genera. It is cosmopolitan, being found in 126 countries; in Indonesia it has been recorded from Irian Jaya (Williams \& Watson 1988), Java (Betrem 1937; Ben-Dov 1994; Williams 2004) and Sumatra (Williams 2004).

*Dysmicoccus carens Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Sukaraja, on Psophocarpus tetragonolobus L. (Fabaceae), 10 m a.s. $1,03^{\circ} 59^{\prime} 07^{\prime \prime} \mathrm{S}, 102^{\circ} 25^{\prime} 37^{\prime \prime} \mathrm{E}$, 15.vi.2018, coll. A. Zarkani (AZ82-83), 3 아.

Comments. Dysmicoccus carens is a new country record for Indonesia. The species has been recorded previously on Poaceae, from Bangladesh (North) on Andropogon squarrosus L.; India, New Delhi on Setaria verticillata L., Orissa on grass, Tamil Nadu on Saccharum officinarum L., Cymbopogon sp. and Chloris barbata Sw.; Pakistan, Rawalpindi on Sorghum nitidum Pers. and S. sudanensis (Piper) Hitch, Mona on Arundo donax L., Lasbela, Ambagh on Panicum antidotale Retz.; and Sri Lanka, Uva Province, Wellawa, Kokagala on grass (Williams 2004).

Dysmicoccus lepelleyi (Betrem)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Slebar, on Manilkara zapota L. (Sapotaceae), 20 m a.s. $1,03^{\circ} 49^{\prime} 25.2^{\prime \prime} \mathrm{S}, 102^{\circ} 19^{\prime} 08.7^{\prime \prime} \mathrm{E}, 10 . \mathrm{vii} 2018$, coll. A. Zarkani (AZ230), 3 아.

Comments. This is polyphagous species on ornamentals and fruits within 17 plant families: Anacardiaceae, Annonaceae, Arecaceae, Asparagaceae, Clusiaceae, Euphorbiaceae, Fagaceae, Malvaceae, Meliaceae, Moraceae, Musaceae, Myrtaceae, Rubiaceae, Rutaceae, Sapindaceae, Sapotaceae, and Zingiberaceae (García Morales et al. 2016). In Indonesia, it has been recorded previously from Java (Betrem 1937; Ben-Dov 1994; Williams 2004), Lombok (Williams 2004) and Sumatra (Williams 2004). It is also found in neighboring countries such as Cambodia, Malaysia, Singapore, Thailand, and Vietnam (Williams 2004).

Dysmicoccus zeynepae Zarkani \& Kaydan sp. n.

Material examined, all deposited at MMUB.

Holotype: adult female, INDONESIA:-left label: AZ205-- / 4.ii. 2008 / Indonesia / Sumatra, Bengkulu / on Durio zibethinus Murr. (Malvaceae), $\mathbf{l}^{\circ} 03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}-102^{\circ} 38^{\prime} 33^{\prime \prime} \mathrm{E}_{\text {- }}$ I $03^{\circ} 34^{\prime} 54.4^{\prime \prime}$ S / $520 \mathrm{~m} 4 . \mathrm{ii} .2018$, coll. A. Zarkani; right label: Holotype, Dysmicoccus zeynepae sp. n. Zarkani \& Kaydan, $3 \mathrm{f} \# \mathrm{f} \#$ / coll. A. Zarkani / det. MB Kaydan. The holotype specimen is ringed with red ink on the coverslip.

Paratypes, 5 adult females\#f\#, INDONESIA: (AZ205) same data as holotype (AZ205); 3 adult femalesई\#£\#, AZ206, Sumatra, Bengkulu on Lansium parasiticum Corr. (Meliaceae), $03^{\circ} 59^{\prime} 28.0^{\prime \prime} \mathrm{S}, 102^{\circ} 25^{\prime} 50.4^{\prime \prime} \mathrm{E}, 11 . \mathrm{ii} .2018$, coll. A. Zarkani; 3 adult femalesf\#f\#, AZ207, Sumatra, Bengkulu on Manilkara zapota L. (Sapotaceae), $04^{\circ} 00^{\prime} 05.7^{\prime \prime} \mathrm{S}$, $102^{\circ} 26^{\prime} 52.1^{\prime \prime}$ E, 12.ii.2018, coll. A. Zarkani; 3 adult femalesf\#£\#, AZ208, Sumatra, Bengkulu, Coffea robusta Lindl. Exex De Will. (Rubiaceae), $03^{\circ} 36^{\prime} 15.4^{\prime \prime} \mathrm{S}, 102^{\circ} 36^{\prime} 30.8^{\prime \prime} \mathrm{E}$, 19.ii.2018, coll. A. Zarkani.

Description of adult female

Appearance in life (Fig. 1). Adult females secrete a thin powdery white wax covering over their bodies. Living on leaves, flowers and fruits of host plants, commonly attended by ants.

Slide-mounted adult female (based on holotype and 5 paratypes) (Fig. 2): Body oval, $1.95-2.54 \mathrm{~mm}$ long, $1.64-2.25 \mathrm{~mm}$ wide. Eyes situated on margins, each $42-45 \mu \mathrm{~m}$ wide. Antenna 8 segmented, 340-380 $\mu \mathrm{m}$ long, with 4 fleshy setae each $22.5-25.0 \mu \mathrm{~m}$ long; apical segment $75-80 \mu \mathrm{~m}$ long, $27.5-30.0 \mu \mathrm{~m}$ wide, with apical seta $30-35 \mu \mathrm{~m}$ long. Clypeolabral shield $200-220 \mu \mathrm{~m}$ long, 175-185 $\mu \mathrm{m}$ wide. Labium 3 segmented, 110-120 $\mu \mathrm{m}$ long, $80-85$

Telah Diformat: Kanan: -1 cm
Dikomentari [GW6]: Please check that the data given here is exactly as it is written on the slide labels, with """ indicating where the line breaks are
$\mu \mathrm{m}$ wide. Anterior spiracles each $85-90 \mu \mathrm{~m}$ long, $45-50 \mu \mathrm{~m}$ wide across atrium; posterior spiracles each $95 .-115 . \mu \mathrm{m}$ long, $55-60 \mu \mathrm{~m}$ wide across atrium. Circulus rounded-quadrate $80-110 \mu \mathrm{~m}$ wide. Legs well developed; segment lengths for each posterior leg: coxa 160-175 $\mu \mathrm{m}$, trochanter + femur $145-155 \mu \mathrm{~m}$, tibia + tarsus $175-180 \mu \mathrm{~m}$, claw $35.0-37.5 \mu \mathrm{~m}$. Ratio of length of tibia + tarsus to trochanter + femur 1.16-1.21:1; ratio of length of tibia to tarsus, 1.2-1.4: 1; ratio of length of trochanter + femur to greatest width of femur, 2.41-2.60: 1; coxa with $30-50$ translucent pores; tibia with numerous translucent pores. Tarsal digitules capitate, each $35-40 \mu \mathrm{~m}$ long. Claw digitules capitate, each about $27.5-30.0 \mu \mathrm{~m}$ long. Both pairs of ostioles present, anterior ostioles each with a total for both lips of 28-40 trilocular pores and 4-6 setae; posterior ostioles each with a total for both lips of 58-60 trilocular pores and 6-8 setae. Anal ring about $70 \mu \mathrm{~m}$ wide, bearing 6 setae, each seta $80-90 \mu \mathrm{~m}$ long.

Dorsum. Derm membranous, with 16 pairs of cerarii around body margin, each cerarius with 4-7 enlarged conical setae and 3-5 auxiliary setae. Each anal lobe cerarius set on membranous cuticle and containing 5-7 enlarged conical setae 25-35 $\mu \mathrm{m}$ long, plus 40-45 trilocular pores and 3-5 hair-like auxiliary setae. Dorsal setae flagellate, each $15-75 \mu \mathrm{~m}$ long, scattered throughout dorsum. Trilocular pores, each 3-4 $\mu \mathrm{m}$ in diameter, scattered. Multilocular disc pores and tubular ducts absent.

Venter. Setae flagellate, each $30-110 \mu \mathrm{~m}$ long, longest setae located medially on head. Apical setae on anal lobes unusually short, each $80-90 \mu \mathrm{~m}$ long. Multilocular disc pores, each $7-8 \mu \mathrm{~m}$ in diameter, present only immediately around vulva, numbering $8-10$. Trilocular pores, each $2.5-3.0 \mu \mathrm{~m}$ across, scattered throughout venter. Oral collar tubular ducts absent.

Comments. Dysmicoccus zeynepae is most similar to D. finitimus in having anal lobe and other abdominal cerarii each containing a group of about 2-7 conical setae. However, D. zeynepae can be readily distinguished from D. finitimus in having: (i) no multilocular disc pores and oral collar tubular ducts on dorsum; and (ii) a few multilocular disc pores without oral collar tubular ducts on venter. It is also closed to D. lepelleyi in term of small legs and having translucent pore on hind coxa and femur, but D. zeynepae have no oral collar tubular ducts from both dorsum and venter. Dysmicoccus zeynepae is also close to D. castanopseus Williams in lacking oral collar tubular ducts on dorsum and venter, however, it can be readily distinguished by having (character state for D. castanopseus given in parentheses): (i) small, stout legs with tibia + tarsus obviously shorter than trochanter + femur (large legs with tibia + tarsus very slightly longer than trochanter + femur); and (ii) translucent pores on the hind coxa and femur (translucent pores on hind femur and tibia).

Etymology. This species is named after Zeynep Kaydan ("mother" of Kaydan's Laboratory), Zeynep Güleç and Zeynep Kaya who are good friends of the Kaydan's lab.

Host plants. Durio zibethinus (Malvaceae), L. parasiticum (Meliaceae), M. zapota (Sapotaceae) and C. robusta (Rubiaceae) (Figure 2).

Distribution. Indonesia (Sumatra I., Bengkulu Province).

Key to adult female Dysmicoccus found in Indonesia (adapted from Williams 2004).

1(0) Circulus present 2
Circulus absent (continue to Williams (2004: 162) key, couplet 19)
2(1) Cerarii numbering 7 pairs including frontal pair. Dorsal oral collar tubular ductsnumerous, present in rows across most segments
\qquad D. boninsis (Kuwana)
Cerarii numbering more than 7 pairs. Dorsal oral collar tubular ducts, if present, neverforming rows across segments 3
3(2) Most cerarii without auxiliary setae 4
Most cerarii with auxiliary setae 5

4(3) Ventral oral collar tubular ducts sparse, a few present in medial area of abdomen and on lateral margins of abdominal segment VI and posterior segments only, absent from head and thoracic margins D. carens (Williams)

- Ventral oral collar tubular ducts numerous, present in rows across most abdominal segments to lateral margin, and around lateral margins forwards to head and thorax .. D. arachidis Williams
5(3) With series of large oral collar tubular ducts, each about twice as wide as a trilocular pore, present around dorsal lateral margins D. lepelleyi (Betrem)
- Without a series of large oral collar tubular ducts around dorsal lateral margins 6

6(5) Anal lobe cerarii each containing a group of about 2-7 conical setae 7

- Anal lobe cerarii each containing only 2 conical setae ... 8

7(6) Oral collar tubular ducts absent from both dorsum and venter. Venter with a few multilocular disc pores \qquad D. zeynepae Zarkani \& Kaydan sp. n.

Oral collar tubular ducts absent from dorsum but present on venter. Venter with numerous multilocular disc pores \qquad D. finitimus Williams

8(6) Abdominal cerarii anterior to anal lobe pair, each with 2 conical setae except for an occasional cerarius with only a single conical seta
Some abdominal cerarii, anterior to anal lobe pair, usually containing more than 2 conical setae 10
9(8) Venter with marginal oral collar tubular duct present, at least as far anterior as thoraxD. debregeasiae (Green)
Venter with marginal oral collar tubular duct confined to abdomen \qquad D. orchidium Williams

10(8) Dorsal setae on abdominal segment VIII, anterior to anal ring, longer than other dorsal setae, almost as long as anal ring setae \qquad .D. brevipes (Cockerell)
Dorsal setae on abdominal segment VIII, anterior to anal ring, shorter, about same size as other dorsal setae \qquad D. neobrevipes Beardsley

Ferrisia dasylirii (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Solanum torvum Swartz (Solanaceae) and Theobroma cacao L. (Sterculiaceae), 20 m a.s.l. $3^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}, 3 . \mathrm{vii} .2019$, coll. A. Zarkani (AZ245-246), 6 웅.

Comments. The species is polyphagous on ornamentals and fruits and has been recorded on host plants in 23 families and 52 genera (García Morales et al. 2016). In Indonesia, it has been recorded previously from Sumatra (Zarkani et al. 2020).

Ferrisia virgata (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Psidium guajava L. (Myrtaceae), 20 m a.s.l., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}$, 5.iii.2019, coll. A. Zarkani (AZ247), 3 우.

Comments. The species is polyphagous on ornamentals and fruits, and is known from 78 plant families and 207 genera (García Morales et al. 2016). It is cosmopolitan, having been recorded from 101 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Irian Jaya (Williams \& Watson 1988; Gavrilov-Zimin 2013), Java
(Keuchenius 1915; Betrem 1937; Ali 1968; Ben-Dov 1994; Williams 2004) and Sulawesi (Williams 2004).

Nipaecoccus viridis (Newstead)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Kampung Melayu, on Citrus sp. (Rutaceae), 10 m a.s.1, $03^{\circ} 54^{\prime} 16.5^{\prime \prime} \mathrm{S}, 102^{\circ} 19^{\prime} 11.7^{\prime \prime} \mathrm{E}, 18.1 i .2018$, coll. A. Zarkani (AZ211), 3 웅.

Comments. The species is polyphagous on ornamentals and fruits, and has been recorded from 45 plant families and 114 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 63 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously in Irian Jaya (CABI, 1983; Ben-Dov 1994), Java (CABI, 1983; Ben-Dov 1994; Williams 2004) and Sulawesi (Williams 2004).

Palmicultor cryptic species complex, species near palmarum (Ehrhorn)

(Fig. 3)
Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Air Periukan, on Elaeis guineensis Jacq (Arecaceae), 8 m a.s.l., $03^{\circ} 59^{\prime} 07^{\prime \prime} \mathrm{S}, 102^{\circ} 25^{\prime} 37^{\prime \prime} \mathrm{E}$, 2.ii.2018, coll. A. Zarkani (AZ203), 3 우.

Appearance in life (Fig. 3). Body of adult female covered with fluffy white wax secretion. The mealybugs live mainly on the fruits and are attended by ants (Fig. 4).

Description of adult female (based on holotype and 2 paratypes) (Fig. 4): Body oval, $1.98-2.42 \mathrm{~mm}$ long, $1.38-1.48 \mathrm{~mm}$ wide. Eyes situated on margins, each $25-30 \mu \mathrm{~m}$ in diameter. Antenna 7 segmented, each 270-280 $\mu \mathrm{m}$ long, with 4 fleshy setae each $22.5-30.0$ $\mu \mathrm{m}$ long; apical segment $75-90 \mu \mathrm{~m}$ long, $22.5-30.0 \mu \mathrm{~m}$ wide, with apical seta $27.5-30.0 \mu \mathrm{~m}$ long. Clypeolabral shield $220-230 \mu \mathrm{~m}$ long, $175-185 \mu \mathrm{~m}$ wide. Labium 3 segmented, 110$120 \mu \mathrm{~m}$ long, $80-85 \mu \mathrm{~m}$ wide. Anterior spiracles each $60-65 \mu \mathrm{~m}$ long, $20-25 \mu \mathrm{~m}$ wide across atrium; posterior spiracles each $75-85 \mu \mathrm{~m}$ long, $40-45 \mu \mathrm{~m}$ wide across atrium. Circulus notched on each side with a strong middle constriction, $80-110 \mu \mathrm{~m}$ wide. Legs well developed; segment lengths for each posterior leg: coxa 115-135 $\mu \mathrm{m}$, trochanter + femur $205-220 \mu \mathrm{~m}$, tibia + tarsus $160-170 \mu \mathrm{~m}$, claw $27.5-30.0 \mu \mathrm{~m}$. Ratio of lengths of tibia + tarsus to trochanter + femur, $0.77-0.78: 1$; ratio of length of tibia to tarsus, $1.2-1.4: 1$; ratio of length of trochanter + femur to greatest width of femur, 3.41-3.60:1; derm surrounding each posterior coxa with 40-50 translucent pores; coxa with 30-50 translucent pores; tibia with numerous translucent pores. Tarsal digitules capitate, each 27.5-30.0 $\mu \mathrm{m}$ long. Claw digitules capitate, each about $22.5-25.0 \mu \mathrm{~m}$ long. Both pairs of ostioles present, anterior ostioles each with a total for both lips of 28-40 trilocular pores and 4-6 setae; posterior ostioles each with a total for both lips of 58-60 trilocular pores and 6-8 setae. Anal ring about $95 \mu \mathrm{~m}$ wide, bearing 6 setae, each seta $160-165 \mu \mathrm{~m}$ long.

Dorsum. Derm membranous, with 16 pairs of cerarii around body margin, each cerarius with $2-5$ enlarged conical setae and 3-5 auxiliary setae. Each anal lobe cerarius set on membranous cuticle and containing 3-6 enlarged setae $25-30 \mu \mathrm{~m}$ long, plus $55-57$ trilocular pores and 3-5 hair-like auxiliary setae. Dorsal setae short and flagellate, each $30-110 \mu \mathrm{~m}$ long, scattered throughout dorsum. Trilocular pores, each $3-4 \mu \mathrm{~m}$ in diameter, scattered. A few multilocular disc pores present on thorax and abdomen.

Venter. Setae flagellate, each $30-110 \mu \mathrm{~m}$ long, longest setae located medially on head. Apical setae on anal lobe each $125-150 \mu \mathrm{~m}$ long. Multilocular disc pores, each $7-8 \mu \mathrm{~m}$ in diameter, present throughout venter, numbers on each abdominal segment as follows: I-III
each with 60-70, IV 20-24, V 38-43, VI 100-110, VII 90-98, VIII + IX 36-38 and 125-145 on thorax and head. Trilocular pores, each $2.5-3.0 \mu \mathrm{~m}$ across, scattered throughout venter. Oral collar tubular ducts each $8-10 \mu \mathrm{~m}$ long, $4-5 \mu \mathrm{~m}$ wide, present throughout, but in bands across abdominal segments, as follows: VI 21, VII 15, VIII + IX 14.

Comments. The Indonesian specimen is a member of the P. palmarum cryptic species complex, which was discussed by von Ellenrieder et al. (2021). Members of this species complex have more than 12 pairs of cerarii; the derm surrounding each posterior coxa has $40-$ 50 duct-like pores, and each hind coxa and hind tibia have numerous translucent pores. The dorsal setae in the Indonesian specimen are up to twice as long as those recorded previously in P. palmarum by Williams and Watson (1988) and Williams (2004). Even though there have been some difference it is believed that some further studies must be none to decide this species complex. Especially further molecular studies will be useful to resolve the species concept.

Paracoccus evae Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Sukaraja, on Melastoma malabathricum L. (Melastomataceae), 50 m a.s.l, $03^{\circ} 52^{\prime} 00.4^{\prime \prime} \mathrm{S}, 102^{\circ} 22^{\prime} 51.2^{\prime \prime}$ E, 23.vii.2019, coll. A. Zarkani (AZ249), 3 아.

Comments. This is the second report of P. evae from Indonesia; Williams (2004) recorded it from Java on Eupatorium sp. (Asteraceae).

Planococcus dischidiae (Takahashi)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Coffea robusta, 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}, 102^{\circ} 35^{\prime} 333^{\prime \prime} \mathrm{E}$, 12.vi.2018, coll. A. Zarkani (AZ235-239), 1 ㅇ.

Comments. Previously, P. dischidiae has been collected on Dischidia sp. (Apocynaceae) and Epipremnum (Araceae), and has been recorded from Indonesia (Sulawesi) (Cox 1989; BenDov 1994; Williams 2004) and Malaysia (Takahashi 1951; Ben-Dov 1994).

Planococcus lilacinus (Cockerell)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Saraca asoca (Roxb.) (Fabaceae), 20 m a.s.l., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime} \mathrm{E}$, 10.ii. 2019 and 15.iii.2020, coll. A. Zarkani (AZ313), 1 아.

Comments. The species is polyphagous on ornamentals and fruits, and has been recorded from 73 plant families and 196 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 64 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Irian Jaya (Williams \& Watson 1988; Ben-Dov 1994), Java (Williams 2004), Kalimantan (Cox 1989; Ben-Dov 1994), Lombok (Williams 2004), Sulawesi (Williams 2004) and Sumatra (Cox 1989; Ben-Dov 1994; Williams 2004).

Pseudococcus jackbeardsleyi Gimpel \& Miller

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Selenicereus undatus (Haw.) DR Hunt (Cactaceae), 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime}$ S, $102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 10.vii.2018, coll. A. Zarkani (AZ227), 1 q.

Comments. This neotropical species is polyphagous on ornamentals, fruits, vegetables and herbs; it has been reported from 52 plant families and 112 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 52 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Flores (Gavrilov-Zimin 2017), Irian Jaya (Gavrilov-Zimin 2013) and Java (Williams 2004).

*Pseudococcus leptotrichotus Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on C. robusta, 600 m a.s.l, $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}, 102^{\circ} 35^{\prime} 33^{\prime \prime} \mathrm{E}$, 12.vi.2018, coll. A. Zarkani (AZ235-239), 12 우아.

Comments. This is a new country record for Indonesia, and is the first mealybug species recorded from Indonesia that had been previously recorded in a leaf nest of Oecophylla sp. ants in Malaysia (Sarawak). In Indonesia, P. leptotrichotus were collected in a leaf nest of Oecophylla sp. ants on coffee leaves and within a protective carton shelter of soil made by unidentified ants on coffee berries and trees.

Pseudococcus longispinus (Targioni Tozzetti)

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Muara Bangkahulu, on Theobroma cacao L. (Sterculiaceae), 20 m a.s.1., $03^{\circ} 45^{\prime} 33.0^{\prime \prime} \mathrm{S}, 102^{\circ} 16^{\prime} 10.1^{\prime \prime}$ E, 5.iii.2019, coll. A. Zarkani (AZ247), 3 아.

Comments. The species is polyphagous on ornamentals and fruits, and has been recorded from 84 plant families and 167 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 115 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Irian Jaya (Williams \& Watson 1988; Ben-Dov 1994), Java (Betrem 1937; Ben-Dov 1994), Lombok (Williams 2004), Sulawesi (Watson et al. 2014) and Sumatra (Green 1930).

Rastrococcus chinensis Ferris

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Bengkulu city, Singaran Pati, on Nephelium lappaceum L. (Sapindaceae), 20 m a.s.l., $03^{\circ} 48^{\prime} 57.9^{\prime \prime} \mathrm{S}, 102^{\circ} 18^{\prime} 38.9^{\prime \prime} \mathrm{E}$, 12.vi.2018, coll. A. Zarkani (AZ168-170), 12 우․

Comments. The species was recorded previously on Alocasia sp. (Araceae), Ardisia lindleyana D. Dietr. (Primulaceae), Eugenia sp. (Myrtaceae), Melastoma malabathricum L. (Melastomataceae), Morinda umbellata L. (Rubiaceae), Psychotria asiatica L. (Rubiaceae), Syzygium sp. (Myrtaceae), S. anomalum Lauterb. (Myrtaceae) and S. hancei Merr. \& Perry (Myrtaceae). It has been reported previously from Brunei, China and Malaysia (García Morales et al. 2016). In Indonesia, it has been recorded previously from Java (Williams 1989, 2004; Ben-Dov 1994).

Rastrococcus invadens Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Kepahiang district, Kabawetan, on Mangifera indica L. (Anacardiaceae), 600 m a.s.l., $03^{\circ} 34^{\prime} 54.4^{\prime \prime} \mathrm{S}, 102^{\circ} 35^{\prime} 33^{\prime \prime}$ E, 12.vi.2018, coll. A. Zarkani (AZ235-239), 12 아아.

Comments. The species is polyphagous on ornamentals and fruits; it has been recorded from 29 plant families and 54 genera (García Morales et al. 2016). It is cosmopolitan, having been reported from 32 countries (García Morales et al. 2016). In Indonesia, it has been recorded previously from Bali and Java (Williams 1989, 2004; Ben-Dov 1994).

Rastrococcus tropicasiaticus Williams

Material examined. INDONESIA, Sumatra I., Bengkulu Province, Seluma district, Air Periukan, on Azadirachta excelsa (Jack) M. Jacobs (Meliaceae), 10 m a.s.1., $3^{\circ} 59^{\prime} 07.1^{\prime \prime} \mathrm{S}$, $102^{\circ} 25^{\prime} 37.4^{\prime \prime}$ E, 1.v.2019, coll. A. Zarkani, (AZ336), 1 ㅇ.

Comments. Zarkani et al. (2021) reported R. tropicasiaticus for the first time in Indonesia (Bengkulu) on A. excelsa (Meliaceae), Cerbera manghas L. (Apocynaceae), Dimocarpus longan Lour. (Sapindaceae), Ficus sp. (Moraceae), and Tectona grandis L. (Lamiaceae). It is also known to live on woody plants and wild grass in parts of southern Asia such as Malaysia, Philippines, Thailand and Vietnam (Williams 2004).

Acknowledgements

The authors wish to thank Dr Takumasa Kondo (Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Colombia), for his kind help and critique of the manuscript. The project was financially supported by the Research and Community Service Centre, Lembaga Penelitan dan Pengabdian pada Masyarakat (LPPM), The University of Bengkulu with grants No. 2038/UN30.15/PP/2022. The writing of the manuscript was assisted by WCP Dikti Program 2021.

References

Ali, S.M. (1968) Coccids (Coccoidea: Hemiptera: Insecta) affecting fruit plants in Bihar (India). Journal of the Bombay Natural History Society, 65, 120-137.
Ben-Dov, Y. (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance. Intercept Limited, Andover, 686 pp.
Betrem, J.G. (1937) De morporphologie en systematiek van enkele vande vooraamste witteluizensoorten van Java. Archief voor de Koffiecultuur in Nederlandsch-Indie, 11, 1-118.
CABI (1983) Nipaecoccus viridis (Newstead). Distribution Maps of Pests, Series A, Agricultural, Map no. 446, 2 pp.
CBD Secretariat (2021) Indonesia - Country Profile: Biodiversity Facts. Available from: https://www.cbd.int/countries/profile/default.shtml?country=id\#facts (accessed 22 March 2021)
Choi, J. \& Lee, S. (2022) Higher classification of mealybugs (Hemiptera: Coccomorpha) inferred from molecular phylogeny and their endosymbionts. Systematic Entomology,

Cox, J.M. (1989) The mealybug genus Planococcus (Homoptera: Pseudococcidae). Bulletin British Museum (Natural History), Entomology, 58, 1-78.
Cox, J.M. \& Ben-Dov, Y. (1986) Planococcine mealybugs of economic importance from the Mediterranean Basin and their distinction from a new African genus (Hemiptera: Pseudococcidae). Bulletin of Entomological Research, 76, 481-489.
Daane, K.M., Almeida, R.P.P., Bell, V.A., Walker, J.T.S., Botton, M., Fallahzadeh, M., Mani, M., Miano, J.L., Sforza, R., Walton, V.M. \& Zaviezo, T. (2012) Biology and management of mealybugs in vineyards. In: Bostanian, N.J., Vincent, C. \& Isaacs, R. (Eds), Arthropod Management in Vineyards. Springer Netherlands Press, Dordrecht, pp. 271-307.
Dammerman, K.W. (1929) The agricultural zoology of the Malay Archipelago. The animals injurious and beneficial to agriculture, horticulture and forestry in the Malay Peninsula, the Dutch East Indies and Philippines. J.H. de Bussy I-XI, Amsterdam, 473 pp.
Ellenrieder, N.V., Kinnee, S.A \& Watson G.W. (2021) Review of the genus Palmicultor Williams, 1963 (Hemiptera: Coccomorpha: Pseudococcidae), with evidence of a cryptic species. The Pan-Pacific Entomologist, 97 (4), 240-260.
Franco, J.C., Zada, A \& Mendel, Z. (2009) Novel approaches for the management of mealybug pests. In: Ishaaya, I. \& Horowitz, A.R. (eds), Biorational Control of Arthropod Pests. Springer Science + Business Media, New York, pp 233-278.
García Morales, M., Denno, B., Miller, DR., Miller, G.L., Ben-Dov, Y. \& Hardy, N.B. (2016) ScaleNet: a literature-based model of scale insect biology and systematics. Available from: http://scalenet.info (accessed 18 October 2022)
Gavrilov-Zimin, I.A. (2013) New scale insects (Homoptera: Coccinea) from Sulawesi and New Guinea, with some other additions to the Indonesian fauna. Tropical Zoology, 26, 64-86. https://doi.org/10.1080/03946975.2013.807570
Gavrilov-Zimin, I.A. (2016) Cytogenetic and taxonomic studies of some legless mealybugs (Homoptera, Coccinea, Pseudococcidae). Comparative Cytogenetics, 10 (4), 587-601.
Gavrilov-Zimin, I.A. (2017) Taxonomic and faunistic notes on scale insects (Homoptera: Coccinea) of Bali, Flores and New Guinea (Indonesia). In: Telnov, D. (Ed.), Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea. Entomological Society of Latvia, Salaspils, 3, pp. 141-149.
Gavrilov-Zimin, I.A. (2019) New Asterolecaniidae s.l. (Homoptera: Coccinea) from different regions of the world and some distributional records. Tropical Zoology, 32, 142-154. https://doi.org/10.1080/03946975.2019.1641673
Gavrilov-Zimin, I.A. (2020) Chromosomal and reproductive features of some Oriental and Australasian scale insects (Homoptera, Coccinea). Comparative Cytogenetics, 14, 339352. https://doi.org/10.3897/CompCytogen.v14i3.53367
Gavrilov-Zimin, I.A. (2021) New and poorly known giant scale insects (Homoptera: Coccinea: Margarodidae s. lat.) from the Oriental region with taxonomic and nomenclatural notes on the subfamily Monophlebinae. European Journal of Taxonomy, 746, 50-61. https://doi.org/10.1080/03946975.2019.1641673
Granara de Willink, M.C. (2009) Dysmicoccus de la Región Neotropical (Hemiptera: Pseudococcidae). Revista de la Sociedad Entomológica Argentina, 68, 11-95.
Granara de Willink, M.C. \& Szumik, C. (2007) Phenacoccinae de Centro y Sudamérica (Hemiptera: Coccoidea: Pseudococcidae): sistemática y filogenia. Revista de la Sociedad Entomológica Argentina, 66, 29-129.

Green, E.E. (1930) Fauna Sumatrensis (Bijdrag Nr. 65). Coccidae. Tijdschrift voor Entomologie, 73, 279-297.
Kalshoven, L.G.E. (1981) Coccoidea. Pests of crops in Indonesia. Ichtiar Baru, Jakarta, 701 pp.
Kaydan, M.B. \& Gullan, P.J. (2012) A taxonomic revision of the mealybug genus Ferrisia Fullaway (Hemiptera: Pseudococcidae), with descriptions of eight new species and a new genus. Zootaxa, 3543, 1-65.
Keuchenius, P.E. (1915) Onderzoekingen en beschouwingen over eenige schadlijke schildluizen van de Koffiekultuur op Java. Mededeelingen van het Besoekisch Proefstation. Djember, 16, 1-65.
Kosztarab, M. \& Kozár, F. (1988) Scale Insects of Central Europe. Akadémiai Kiadó, Budapest, 456 pp .
McNeely, J.A., Miller, K.R., Reid, W.V., Mittermeier, R.A. \& Werner, T.B. (1990) Conserving the World's Biological Diversity. IUCN, Gland, Switzerland, 193 pp.
Muniappan, R., Shepard, B.M., Watson, G.W., Carner, G.R., Sartiami, D., Rauf, A., Xiong, J.J. \& Hammig, M.D. (2008) First report of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), in Indonesia and India. Journal of Agricultural and Urban Entomology, 25, 37-40.
Muniappan, R., Shepard, B.M., Watson, G.W., Carner, G.R., Rauf, A., Sartiami, D., Hidayat, P., Afun, J.V.K., Goergen, G. \& Ziaur Rahman, A.K.M. (2011) New records of invasive insects (Hemiptera: Sternorrhyncha) in Southeast Asia and West Africa. Journal of Agricultural and Urban Entomology, 26, 167-174. https://doi.org/10.3954/1523-5475-26.4.167
Muniappan, R., Watson, G.W., Evans, G.A., Rauf A. \& von Ellenrieder, N. (2012) Cycad Aulacaspis scale, a newly introduced insect pest in Indonesia. HAYATI Journal of Biosciences, 19, 110-114. https://doi.org/10.4308/hjb.19.3.110
Reyne, A. (1954) Hippeococcus a new genus of Pseudococcidae from Java with peculiar habits. Zoologische Mededelingen Uitgegeven door het Rizksmuseum van Natuurlijke Historie te Leiden, 32, 233-257.
Reyne, A. (1957) Walkeriana tosariensis, a new monophlebine coccid from Casuarina junghununiana Miq. in east-Java. Beaufortia, Amsterdam, 6, 115-145.
Reyne, A. (1961) Scale insects from Dutch New Guinea. Beaufortia, Amsterdam, 8, 121-167.
Reyne, A. (1965) Observations on some Indonesian scale insects. Tijdschrift voor Entomologie, Amsterdam, 108, 145-188.
Sartiami, D., Watson, G.W., Mohamad Roff, M.N., Hanifah, M. \& Idris, A.B. (2015) First record of cassava mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae), in Malaysia. Zootaxa, 3957 (2), 235-238.
Sartiami, D., Watson, G.W., Mohamad Roff, M.N. \& Idris, A.B. (2016) New Indonesian country records and species information for mealybugs (Hemiptera Pseudococcidae) in Wirjati's historic collection. Redia, XCIX, 155-161.
Takahashi, R. (1951) Some mealybugs (Pseudococcidae, Homoptera) from the Malay Peninsula. Indian Journal of Entomology, 12, 1-22.
von Ellenrieder, N., Kinnee, S.A. \& Watson, G.W. (2022) Review of the genus Palmicultor Williams, 1963 (Hemiptera: Coccomorpha: Pseudococcidae), with evidence of a cryptic species. The Pan-Pacific Entomologist, 97 (4), 240-260.
Watson, G.W., Muniappan, R., Shepard, B.M., Sembel, D.T., Xiong, J.J. \& Rauf, A. (2014) Sap-sucking insect records (Hemiptera: Sternorrhyncha and Thysanoptera: Thripidae) from Indonesia. Florida Entomologist, 97, 1594-1597. https://doi.org/10.1653/024.097.0432

Williams, D.J. (1989) The mealybug genus Rastrococcus Ferris (Hemiptera: Pseudococcidae). Systematic Entomology, 14, 433-486. https://doi.org/10.1111/j.1365-3113.1989.tb00298.x
Williams, D.J. (2004) Mealybugs of southern Asia. The Natural History Museum, London. Southdene SDN BHD, Kuala Lumpur. 896 pp.
Williams, D.J. \& Granara de Willink, M.C. (1992) Mealybugs of Central and South America. CAB International, Wallingford, 635 pp .
Williams, D.J. \& Watson, G.W. (1988) The Scale Insects of the Tropical South Pacific Region. Pt. 2. The Mealybugs (Pseudococcidae). CAB International, Wallingford, 260 pp.
Wirjati (1958) On a small mealybug from a virgin forest. Idea, Journal of the Entomological Society of Indonesia, 11, 14-17.
Wirjati (1959) A new species of Trionymus found on rice-roots in Java. Idea, Journal of the Entomological Society of Indonesia, 12, 14-19.
Zarkani, A., Apriyanto, D., Turanli, F. \& Kaydan, M.B. (2020) New record of Ferrisia dasylirii (Cockerell) (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia. Serangga, 25, 93-100.
Zarkani, A., Sunardi, T., Nadrawati, Ercan, C. \& Kaydan, M.B. (2021a) First record of Rastrococcus tropicasiaticus Williams (Hemiptera: Coccomorpha: Pseudococcidae) in Indonesia. Serangga, 26 (3), 29-36.
Zarkani, A., Apriyanto, D., Turanli, F., Ercan, C. \& Kaydan, M.B. (2021b) A checklist of Indonesian scale insects (Hemiptera: Coccomorpha). Zootaxa, 5016 (2), 151-195. https://doi.org/10.11646/zootaxa.5016.2.1

Figure captions

FIGURE 1. Dysmicoccus zeynepae Zarkani \& Kaydan sp. n. on: (A) Lansium parasiticum Corr.; (B) Coffea robusta Lindl. ex De Will; (C) Manilkara zapota L.; and (D) Durio zibethinus Murr.

FIGURE 2. Adult female Dysmicoccus zeynepae Zarkani \& Kaydan sp. n., holotype.
FIGURE 3. Palmicultor cryptic species group, species near palmarum (Ehrhorn) attacking Elaeis guineensis Jacq. fruits.

FIGURE 4. Adult female Palmicultor palmarum (Ehrhorn) cryptic species group, from

[^0]: Ventral oral collar tubular duct numerous, present in rows across most abdominal segments to lateral margin, and around lateral margins forwards to head and thorax D. arachidis Williams

 5 With series of large oral collar tubular ducts around dorsal lateral margins, each about twice as wide as trilocolar pore, present around dorsal lateral margins
 ... D. lepelleyi (Betrem)
 Without a series of large oral collar tubular ducts, around dorsal lateral margins... 6
 6 Anal lobe cerarii each containing a group of about 27 conical setae 7
 Anal lobe cerarii each containing 2 conical setae ... 9
 7 Oral collar tubular ducts absent on both dorsum and venter. A few multilocular dise pores on venter ...D. zeynepae Zarkani \& Kaydan, sp.n
 Oral collar tubular ducts present on venter. Many multilocular disc pores on venter …... 8
 8 Multilocular dise pore present entirely on dorsum. Translucent pore present on anterior surface of hind coxa.
 ...D. sosromarsөnөae Zarkani \& Kaydan, sp.n
 Multilocular disc pore absent entirely from dorsum. Translucent pore absent on anterior surface of hind coxa. .. D. finitimus Williams
 9 Abdominal cerarii anterior to anal lobe pair, with 2 conical setae except for an occasional cerarius with only a single conical seta.. 10
 Some abdominal cerarii, anterior to anal lobe pair, ustally containing more than 2 conical setae ... 11
 10 Dorsal setae flagellate, never thick or conical
 D. debregeasiat (Green)

 Dorsal marginal setae, including auxiliary setae, about same length as other dorsal setae or only slightly longer...D. Drchidium Williams
 11 Dorsal setae on abdominal segment VIII, anterior to anal ring, longer than other dorsal setae, almost as long as anal ring setae.D. brevipes (Cockerell) Dorsal setae on abdominal segment VII, anterior to anal ring, short, about same size as other dorsal setae.. D. neobrevipes Beardsley

 ## Dysmicoccus sosromarsonoae Zarkani \& Kaydan sp. n.

 (Figure-Fig. 1)Dikomentari [GW8]: These features are not directly comparable. Use opposite conditions of the same character. Williams (2004: 161) separates these using the distribution of marginal oral collar ducts (see his couplet 10)

 Material examined. Holotype: adult female, INDONESIA: left label: AZ203 / Sumatra/
 Zarkani; right label: Holotype / Dysmicoccus sosromarsonoae sp. n. Zarkani \& Kaydan. MMUB.

 Paratypes, 2 adult females, same data as holotype (AZ203), deposited in the Mealybugs Museum, Department of Plant Protection, Faculty of Agriculture, University of Bengkulu, Bengktulu, Indonesia (MMUB).

 Appearance in life. The body of an adult female is covered with a fluffy white wax secretion. The species of D-ysmicoccus sosromarsonoae $\mathbf{s p}$. \boldsymbol{n}. lives, on the fruit of the host plants and it symbioses withis attended by, ants.

 ## Species diagnosis:

 Description- of Adult adult female (based on holotype and 2 paratypes): Body oval, $1.98-2.42 \mathrm{~mm}$ long, $1.38-1.48 \mathrm{~mm}$ wide. Eyes situated on margins, each $25-30 \mu \mathrm{~m}$ widein diameter. Antenna 7-_segmented, each 270-280 $\mu \mathrm{m}$ long, with 4 fleshy setae each $22.5-30.0$ $\mu \mathrm{m}$ long; apical segment $75-90 \mu \mathrm{~m}$ long, $22.5-30.0 \mu \mathrm{~m}$ wide, with apical setae $27.5-30.0 \mu \mathrm{~m}$ long. Clypeolabral shield $220-230 \mu \mathrm{~m}$ long, $175-185 \mu \mathrm{~m}$ wide. Labium 3-segmented, $110-$ $120 \mu \mathrm{~m}$ long, $80-85 \mu \mathrm{~m}$ wide. Anterior spiracles each $60-65 \mu \mathrm{~m}$ long, $20-25 \mu \mathrm{~m}$ wide across

 Dikomentari [GW9]: See my comments about your genus assignment and species identification below. I do not think this is a species new to science.
 Memformat: Sorot
 Telah Diformat: Kanan: -1 cm , Spasi Sebelum: 0 pt
 Telah Diformat: Kanan: -1 cm
 Telah Diformat: Kanan: -1 cm, Spasi Setelah: 0 pt
 Memformat: Font: Tebal
 Telah Diformat: Kanan: -1 cm
 Memformat: Font: Tebal
 Telah Diformat: Inden: Baris Pertama: 1 cm , Kanan: -1 cm
 Memformat: Font: 12 pt
 Memformat: Font: 12 pt
 Memformat: Font: 12 pt
 Memformat: Font: 12 pt
 Dikomentari [GW10]: A diagnosis is a brief list of the most useful diagnostic characters, used for species that have been described before. A new species requires a full, detailed description.

 Memformat: Coretan
 Memformat: Coretan

