About NCBI

National Center for Biotechnology Information

<table>
<thead>
<tr>
<th>About NCBI</th>
<th>NCBI at a Glance</th>
<th>A Science Primer</th>
<th>Databases and Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Genome Resources</td>
<td>Model Organisms Guide</td>
<td>Outreach and Education</td>
<td>News</td>
</tr>
</tbody>
</table>

NCBI News

NCBI 20th Anniversary

GenBank 25th Anniversary

Subscribe to NCBI-Announce

Suggestions or Feedback

Text Only Page

NCBI
Privacy Statement

NLM
Disclaimer

NIH
Accessibility

21/09/2010
Board of Scientific Counselors

Introduction

The Board of Scientific Counselors of the National Center for Biotechnology Information (NCBI) advises the NIH Director, Deputy Director for Intramural Research, the NLM Director, and the NCBI Director about the intramural research and development programs of the NCBI. Regularly scheduled visits are held by the Board members for assessment of NCBI research and development programs in progress, assessment of proposed programs, and evaluation of the productivity and performance of staff scientists. Meetings are held twice a year at the National Library of Medicine.

Members

Chair
GINSBURG, David, M.D.
Professor
Life Sciences Institute
University of Michigan
210 Washtenaw Avenue, Room 5036
Ann Arbor, MI 48109

ALLEWELL, Norma M., Ph.D.
Dean and Professor
Department of Chemistry and Biochemistry
College of Life Sciences
University of Maryland
2300 Symons Hall
College Park, MD 20742

BABBITT, Patricia, Ph.D.
Professor and Vice Chair, Department of Bioengineering & Biotherapeutic Sciences
Department of Pharmaceutical Chemistry
California Institute for Quantitative Biosciences
University of California, San Francisco
Byers Hall Room 508E
1700 4th Street
San Francisco, CA 94158-2330

BENHAM, Craig, Ph.D.
University of California, Davis Genome Center
Department of Biomedical Engineering
Department of Mathematics
University of California
One Shields Avenue
Davis, CA 95616

LIE, Christopher, Ph.D.

21/09/2010
Science Counselors

Department of Biochemistry & Molecular Biology
Molecular Biology Institute
University of California, Los Angeles
Los Angeles, CA 90095

LEVINE, Arthur S., M.D.
Senior Vice Chancellor for Health Sciences
Dean, School of Medicine
University of Pittsburgh
3550 Terrace Street, Suite 401
Pittsburgh, PA 15261

LYNCH, Michael R., Ph.D.
Distinguished Professor
Department of Biology
Indiana University
Jordan Hall
1001 East Third Street
Bloomington, IN 47405

WENG, Zhiping, Ph.D.
Associate Professor
Department of Biomedical Engineering
Boston University
24 Cummington Street, Room 1002
Boston, MA 02215

Executive Secretary
LIPMAN, David J., M.D.
Director
National Center for Biotechnology Information
National Library of Medicine
Bethesda, MD 20894

Revised: August 4, 2009.

21/09/2010
Contact Information

To obtain further information about any of our databases, services, or programs, contact NCBI:

PubMed Customer Service:
- E-mail the PubMed Help Desk
- Call the NLM Customer Service desk: 1-888-FIND-NLM (1-888-346-3656)

General Information: info@ncbi.nlm.nih.gov
- Questions about NCBI and its programs and services
- Technical support
- Request to be added to the mailing list for NCBI News

BLAST: blast-help@ncbi.nlm.nih.gov
- Technical questions on running or interpreting BLAST sequence comparison searches

GenBank Help: gb-admin@ncbi.nlm.nih.gov
- Comments or questions about a sequence
- E-mail simple updates to submissions
- E-mail a completed update prepared with Sequin

GenBank Submissions: gb-sub@ncbi.nlm.nih.gov
- E-mail completed Sequin submission files

Entrez Gene and Reference Sequences (RefSeq)
- Feedback for suggestions or to submit updates or corrections

Telephone:
Voice: (301)496-2475

Postal Address:

21/09/2010
National Center for Biotechnology Information
National Library of Medicine
Building 38A
Bethesda, MD 20894

Directions:
Detailed directions to the NLM and NIH campus are available.
The NCBI is located in the Lister Hill building.

Revised: November 18, 2009.

NCBI NLM NIH
Privacy Statement Disclaimer Accessibility

Welcome to NCBI

The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.

More about the NCBI | Mission | Organization | Research | RSS

3D Structures

Explore three-dimensional structures of proteins, DNA, and RNA molecules. Learn about the three-dimensional structures of important biologic and diagnostic molecules.

How To...

- Determine conserved synteny between the genomes of two organisms
- Find a homolog for a gene in another organism
- Obtain the full text of an article
- Design PCR primers and check them for specificity

See all...

Popular Resources

- BLAST
- Bookshelf
- Gene
- Genome
- Nucleotide
- OMIM
- Protein
- PubMed
- PubMed Central
- SNP

NCBI News

Personalized settings in My NCBI
30-Aug-2010
Personalized preferences such as record format and results display

Featured articles: Updated Entrez Sequence Database Interfaces
30-Aug-2010

The July NCBI News is available online.

More...
Results: 2

1. A teratoproteomics analysis: heat shock protein 70 is upregulated in mouse forelimb bud by methoxyacetic acid treatment.
 Ruyani A, Sudarwati S, Sutaryura LA, Sumarsono SH, Kim DJ, Chung JH.
 PMID: 15988979 [PubMed - indexed for MEDLINE]

2. The lamrin binding protein p40 is involved in inducing limb abnormality of mouse fetuses as the effects of methoxyacetic acid treatment.
 Ruyani A, Sudarwati S, Sutaryura LA, Sumarsono SH, Glee T.
A teratoproteomics analysis: heat shock protein 70 is upregulated in mouse forelimb bud by methoxyacetic acid treatment.

Rayanti A, Sudarwati S, Subrasya LA, Sumarsono SH, Kim DJ, Chung JH.
Program Studi Pendidikan Biologi, Universitas Bengkulu, Jalan Raya Kandang Limun, Bengkulu, Indonesia.

Abstract

BACKGROUND: Methoxyacetic acid (MAA) causes fetal limb abnormalities when the substance is administrated on gestation day (GD) 11 in mice. Limb abnormalities are caused mainly by extensive cell death in the mesoderm of the limb plate. This investigation focused on identifying a protein that is linked with mouse limb teratogenicity.

METHODS: A single dose of MAA at 10 mmol/kg body weight was administrated by gavage on GD 11; controls were administrated vehicle only. Dams were killed by cervical dislocation 4 hr after treatment and forelimb buds were isolated from both the control and treated embryos. Proteins in forelimb buds GD 11 + 4 hr were precipitated out using 40-60% ammonium sulfate and were then analyzed by 2D SDS-PAGE. Excised protein spots were identified by mass spectrometry and amino acid internal sequence analysis. Identified protein was further confirmed by Western blotting.

RESULTS: Two-dimensional gel analysis indicated that 1 protein spot of 81.7 kDa (pI 7.3) was overexpressed, and the protein matched heat shock protein 70 (HSP70; accession no. P06109, SwissProt).

CONCLUSIONS: The results suggest that MAA, when administrated to pregnant mice, upregulates HSP70 in the forelimb buds.
A teratoproteomics analysis: Heat shock protein 70 is upregulated in...

Keywords: methopsin acid, 2D SDS PAGE; HS70; limb teratogenicity

Abstract

BACKGROUND

Methopsin acid (MNA) causes fetal limb abnormalities when the substance is administered on gestation day (GD) 11 in mice. Limb abnormalities are caused mainly by extensive cell death in the mesenchymal of the limb plate. This investigation focused on identifying a protein that is linked with mouse limb teratogenicity.

METHODS

A single dose of MNA at 40 mg/kg body weight was administered by gavage on GD 11; controls were administered vehicle only. Dams were killed by cervical dislocation 4 hr after treatment and forelimb buds were isolated from both the control and treated embryos. Proteins in forelimb buds (GD 11 + 4 hr) were precipitated out using 40–45% ammonium sulfate and were then analyzed by 2D SDS-PAGE. Exposed protein spots were identified by mass spectrometry and amino acid internal sequence analysis. Identified protein was further confirmed by Western blotting.

RESULTS

Two-dimensional gel analysis indicated that 1 protein spot of 81.7 kDa (pI 7.3) was overexpressed, and the protein matched heat shock protein 70 (HS70); accession no. P06189, SwissProt.

CONCLUSIONS

The results suggest that MNA, when administered to pregnant mice, upregulates HS70 in the forelimb buds. Birth Defects Research (Part A), 2005. © 2005 Wiley-Liss, Inc.
A Teratoproteomics Analysis: Heat Shock Protein 70 is Upregulated in Mouse Forelimb Bud by Methoxyacetic Acid Treatment

Aceng Ruyani,† Sri Sudarwati,‡ Lien A. Sutawarya,‡ Sony H. Sumarsono,§ Dong-Jo Kim,ǁ and Jun Ho Chung‡

1Program Studi Pendidikan Biologi, Universitas Bengkulu, Jalan Raya Kandang Limun, Bengkulu, Indonesia
2Departemen Biologi, Institut Teknologi Bandung, Bandung, Indonesia
3Department of Biochemistry, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea

Received 4 January 2005; Accepted 7 February 2005

BACKGROUND: Methoxyacetic acid (MAA) causes fetal limb abnormalities when the substance is administered on gestation day (GD) 11 in mice. Limb abnormalities are caused mainly by extensive cell death in the mesoderm of the limb plate. This investigation focused on identifying a protein that is linked with mouse limb teratogenicity. METHODS: A single dose of MAA at 10 mmol/kg body weight was administered by gavage on GD 11; controls were administered vehicle only. Dams were killed by cervical dislocation 4 hr after treatment and forelimb buds were isolated from both the control and treated embryos. Proteins in forelimb buds GD 11 + 4 hr were precipitated out using 40–60% ammonium sulfate and were then analyzed by 2D SDS-PAGE. Excised protein spots were identified by mass spectrometry and amino acid internal sequence analysis. Identified protein was further confirmed by Western blotting. RESULTS: Two-dimensional gel analysis indicated that 1 protein spot of 81.7 kDa/pl 7.3 was overexpressed, and the protein matched heat shock protein 70 (HSP70; accession no. P08109, SwissProt). CONCLUSIONS: The results suggest that MAA, when administered to pregnant mice, upregulates HSP70 in the forelimb buds. Birth Defects Research (Part A) 73:517–521, 2005. © 2005 Wiley-Liss, Inc.

Keywords: methoxyacetic acid; 2D SDS PAGE; HSP70; limb teratogenicity

INTRODUCTION

2-Methoxyethanol (2-ME) is intensively used in the manufacture of semiconductors and other industrial applications. The teratogenic effects of 2-ME have been attributed to its primary metabolite, methoxyacetic acid (MAA), which is produced by alcohol dehydrogenase and aldehyde dehydrogenase in the rat dam’s liver (Cheever et al., 2001). MAA and 2-ME have similar biological activities in mice; therefore, their dose-response characteristics for producing developmental toxicity are nearly indistinguishable (Sleet et al., 1988). MAA treatment may interfere with the availability of purine and pyrimidine bases, which are believed to affect DNA and/or RNA synthesis, in turn influencing normal cellular proliferation and differentiation in the developing mouse embryo (Mebus and Weisbl, 1969). The inhibition of RNA or protein synthesis in certain cells can increase apoptotic cell death (Umansky, 1996). It has been clarified that MAA treatment causes an increase in intracellular free calcium, which will activate certain endonuclease enzymes to cut DNA into 180–200-bp fragments in rat testis (Li et al., 1997), and which is a prelude to apoptotic cell death (Takagi et al., 2002).

Mouse limb development has been used as a model in investigating embryotoxicity and teratogenicity of 2-ME (Sleet et al., 1988) and MAA (Rajad et al., 1991) in mice. A single dose of MAA at 10 mmol/kg body weight (bw) causes fetal limb abnormalities such as ectrodactyly, brachydactyly, and syndactyly when the substance is administered on GD 11 in mice. Limb abnormalities are caused mainly by extensive cell death in the mesoderm of the limb plate (Sudarwati et al., 1995). The same dose of MAA, administered orally by gavage on GD 11 to Swiss

Webster mice, reduced limb weight and its total protein and DNA content at GD 11 +6, +12, +24, and +48 hr (Surjono et al., 1999). A similar experimental design showed that a protein band of 66.3–97.4 kDa intensifies at GD 11 + 4 hr in treated mouse forelimb buds versus controls (Ruyani et al., 2001b). Therefore, we used a proteomics approach in this limb teratogenicity study to further investigate the identity of such regulated proteins.

MATERIALS AND METHODS

Experimental Animals

Swiss Webster mice were used as experimental animals. Animals were reared in a room at 22–27°C and 85% humidity. Food and water were given ad libitum. When female mice achieved their sexual maturity (10–12 weeks old) they were mated with a male (1:1). The presence of a vaginal plug detected the following morning, defined GD 0 (Sudarwati et al., 1995).

Materials, Dosage, and Sample Collection

MAA (CH₂CH₂COOH), a liquid, was produced by Wako Pure Chemical Industries, Osaka, Japan (CAS Number: 135-07-762). MAA diluted with sterilized distilled water was administered by gavage at a single dose of 10 mg/kg bw on GD 11. The control animals received sterilized distilled water (Sudarwati et al., 1995).

Pregnant mice were killed by cervical dislocation 4 hr after MAA treatment (Ruyani et al., 2001a). Forelimb buds were isolated and stored at −85°C until required for further analysis.

Protein Precipitation

Forelimb bud samples were homogenized at 4°C in 3 volumes of 40 mM sodium phosphate, pH 8. Cellulose debris was removed by centrifugation at 4500g, 4°C, for 20 min (Beckman J-2-HS, Midland, Canada). The supernatants were isolated as crude protein extract.

A part of the crude protein extract was precipitated out over 30 min using 45–60% ammonium sulfate at 4°C. Precipitates were collected by centrifugation at 17,400g, 4°C, for 20 min (Beckman J-2-HS); the protein fraction was solubilized completely using 40 mM sodium phosphate, pH 8, dialyzed on cellulose membranes (Klotz, 1989), and stored at −20°C prior to 2D electrophoresis.

2D Electrophoresis

2D SDS-PAGE was performed in mini format. The separation of proteins in the first dimension was performed according to their pIs, using 2 kinds of ampholines (pH 3.5–10 and pH 5–7), and separation the second dimension according to their molecular weights, using 5–20% SDS-PAGE (Gestern, 1996). Control and treated protein samples, each 75 μg (Garto et al., 1999), were separated in accordance with the instructional manual (BioRad, Hercules, CA).

Before running the second dimension, the first-dimension gels were equilibrated in SDS buffer for 15 min and then transferred onto a separating gel in mini format with 10% pl. A broad range protein marker (6.5–200 kDa) was used as a standard. The gels were run at 120 V and finally stained with Coomassie Brilliant Blue R-250 (CBB R-250) (Gestern, 1996).

Mass Spectrometry and Internal Sequence Analysis

Excised spots from 2D SDS-PAGE gels were digested with trypsin and extracted according to the procedures described by Fernandez et al. (1998). Extracted peptides were dried and solubilized in 50 μl of 0.1% trifluoroacetic acid (TFA). One microliter of the 10-μl preparation was used for mass spectra, and the remaining 9 μl was used for further analysis.

Mass spectra were obtained by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF-MS). A total of 1 μl of the solution was deposited on the sample probe of a Voyager Elite mass spectrometer (PerSeptive Biosystems, Framingham, MA) operated in the delayed extraction and reflection modes. The spectra were internally calibrated using the matrix dimmer (379.19), and one of the tryptic autolytic peaks (2165.05, 2273.15) (Fernandez et al., 1998). Peptide masses were used for tentative protein identification by a peptide mass database searching (ProFound; http://129.85.10.102/profound_bin/Web/ProFound.exe?FORM=1).

The remaining 9 μl of solution was purified by HPLC. The amino acid (AA) internal sequence of the HPLC-purified peptide was determined by Edman sequence analysis (Fernandez et al., 1998) and was used for definitive protein identification by primary sequence database searching (ScanProsite; http://www.ca.expasy.org/tools/scanprosite).

Western Blotting

An equal amount of control and treated crude protein extract was separated by 1-dimensional (1D) SDS-PAGE and then transferred onto a PVDF membrane. Nonspecific binding of the PVDF membrane was blocked with 2% gelatin TBS (10 mM Tris-HCl, pH 7.5; 150 mM NaCl, 0.02% Tween-20) at room temperature for 1 hr. The blot was then incubated with the monoclonal antibody against 1E570 (Kim et al., 2000) at dilution 1:1000 as primary antibody. Antigen-antibody reaction was determined by anti-immunoglobulin G (anti-IgG) mouse at dilution 1:5000 as the secondary antibody (gift from Jason C. Young, Max Planck Institute, Germany). Furthermore, the secondary antibody was detected using 5-bromo-4-chloro-3-indol phosphate (BCIP) and Nitroblue Tetrazolium (NBT; Sigma Chemical Co., St. Louis, MO) as substrate and staining, respectively.

RESULTS

Both control and treated forelimb buds were collected from fetuses of 65 pregnant mice. The 2D gel analyses (9 replicates) indicated that 1 protein of 81.7 kDa/pl 7.3 protein was upregulated in the forelimb buds by MAA treatment (Fig. 1). This significant differential protein pattern between the control and treated groups suggests that the protein level was influenced by MAA treatment. Further protein characterization was performed using MALDI TOF-MS and AA internal sequence analysis.

MALDI TOF-MS spectra were obtained from tryptic digests of the 81.7 kDa/pl 7.3 protein (data not shown). A total of 17 peptide masses were used for tentative protein identification by peptide mass database searching, with ProFound. The search results reveal that the AA sequence of the matched peptide masses with minimal coverage 21% of the protein, a molecular chaperone beta 73-mouse (accession no. JQ4853, National Center for Biotechnology)
TERAPROTEOMICs: HSP70 UPREGULATED BY MAA

A. Control

B. Treated

Figure 1. Two-dimensional SDS-PAGE of the protein fraction of 40-60% trichloroacetic acid-ammonium sulfate extracted from Swiss Webster mouse forelimb buds GD 11 + 4 hr. Detection was done by CBB R-250 staining. The arrow indicates a 81.7 kDa/7.3 protein with increased expression in the forelimb buds after MAA treatment. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]

Information (NCBI): http://www.ncbi.nlm.nih.gov/Database/; Table 1)

The digested protein mixture was purified using HPLC, and one fragment of the HPLC-purified peptide was sequenced using an Edman micro sequencer (Applied Biosciences, Foster City, CA) at 2 cycles, and showed the presence of an ITITNDKGK internal sequence (sequence position 501-502). This internal sequence was applied for definitive protein identification via a primary sequence database search using the ScanProsite program. The results obtained indicated that the 81.7 kDa/7.3 protein matched HSP70 (accession no. P08109, SwissProt). JCA653 and P08109 are highly homologous proteins. It is known that HSP70 (P08109) is encoded by Hspal gene at 24.0 cM of chromosome-9 in the mouse (MGU305384; http://www.informatics.jax.org). Its identity was further confirmed by Western blotting in triplicate with HSP70 monoclonal antibody (Fig. 2). The results obtained indicated that MAA administration to pregnant mice upregulates HSP70 in the forelimb buds.

DISCUSSION

It is well established that the level of mRNA expression does not represent the amount of active protein in the cell. Therefore, the change of biological functions that are caused by developmental processes or certain pathological and toxicological conditions were studied effectively through protein rather than mRNA profile. Global analyses of cellular proteins are termed as proteomics. Proteomics is rapidly growing in accordance with a series of innovations of 2D SDS-PAGE, mass spectrometry (MS), and bioinformatics databases. Although numerous toxicological studies have used proteomics tools such as 2D SDS-PAGE and MS, the potential of proteomics in routine toxicology has yet to be realized (Andersen et al., 2000). Proteomics has been applied in our developmental toxicology investigations (Ruyani et al., 2001a, 2001b, 2003), and the applications are proposed as "teratoproteomics analysis" (Ruyani and Muktininggih dan Barlian, 2006). In the present study we used not only 2D SDS-PAGE and MS but also the AA internal sequence analysis (Fernandez et al., 1996) and the established monoclonal antibody (Kim et al., 2000). It is hoped that this brief report could be used as a model for improving molecular teratology research.

This teratoproteomics analysis revealed that HSP70 is expressed in the forelimb bud 4 hr after MAA treatment. The finding is in accord with an observation that the MAA concentration peaks 2 hr after MAA treatment when a single dose of 2-ME is administered orally on GD 11 to mice (Terry et al., 1996). Moreover, a MAA dosimetry study indicated that the half-elimination time of MAA in mouse is 6 hr (Welsh et al., 1996). It has been reported that HSPs can be detected at 2-4 hr after stress induction (Goering et al., 1993). Furthermore, the expression level of HSF72 (a member of the HSP70 family)

Table 1

<table>
<thead>
<tr>
<th>Measured mass (M)</th>
<th>Avg/mono</th>
<th>Computed mass</th>
<th>Error (Da)</th>
<th>Residues</th>
<th>Start</th>
<th>To</th>
<th>Percent</th>
<th>Missed cut</th>
<th>Peptide sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1196.753</td>
<td>M</td>
<td>1198.666</td>
<td>0.087</td>
<td>160</td>
<td>171</td>
<td>0</td>
<td>DAGTACGLNYVR</td>
<td>TIPSYVADTIDER</td>
<td></td>
</tr>
<tr>
<td>1250.798</td>
<td>M</td>
<td>1250.611</td>
<td>0.177</td>
<td>237</td>
<td>246</td>
<td>0</td>
<td>MNYNHFAR</td>
<td>LRSQCHQIYVLGGKSTR</td>
<td></td>
</tr>
<tr>
<td>1479.895</td>
<td>M</td>
<td>1479.746</td>
<td>0.169</td>
<td>300</td>
<td>311</td>
<td>1</td>
<td>ARFEELNADLFR</td>
<td>INEPTAAAIAGVLKK</td>
<td></td>
</tr>
<tr>
<td>1484.855</td>
<td>M</td>
<td>1484.693</td>
<td>0.162</td>
<td>37</td>
<td>49</td>
<td>0</td>
<td>TIPSYVADTIDER</td>
<td>NQQAMNYTVTPOXAKR</td>
<td></td>
</tr>
<tr>
<td>1787.157</td>
<td>M</td>
<td>1786.982</td>
<td>0.175</td>
<td>172</td>
<td>188</td>
<td>1</td>
<td>LRSQCHQIYVLGGKSTR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1804.970</td>
<td>M</td>
<td>1804.888</td>
<td>0.082</td>
<td>57</td>
<td>72</td>
<td>1</td>
<td>LRSQCHQIYVLGGKSTR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1837.133</td>
<td>M</td>
<td>1837.005</td>
<td>0.148</td>
<td>326</td>
<td>342</td>
<td>1</td>
<td>DNNLQKEFELTCPPAAPR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951.297</td>
<td>M</td>
<td>1951.052</td>
<td>0.245</td>
<td>452</td>
<td>469</td>
<td>0</td>
<td>TYTIALKTVTPAYNSGQ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Candidate: dnaK-type molecular chaperone box: 75 mouse (accession no. JCA653, NCBI).
remains elevated at 48 hr after stress induction, whereas the HSFP2-mRNA increases after 1-2 hr and remain elevated for 6 hr (Sartor et al., 2000). The hall mark of HSPs in human epidermoid cells was determined to be 48 hr after stress induction (Kiang and Tsokos, 1998). Using the ProtParam program (http://ca.expasy.org/tools/protparam.html) can be estimated that the half-life of HSFP70 (accession no. P08310, SwissProt) in mammalian reticulocytes is 30 hr. Extensive research indicates that a major function of HSFP70 is as a molecular chaperone, which is importantly required for cell division in normal embryos (Sconzo et al., 1999). The protein plays also a role in development, differentiation, and apoptosis (Morau et al., 1998).

HSFP70, a protein upregulated during cellular stress, is a molecular chaperone that facilitates protein folding and antigen presentation within the cell. Recently in vitro and in vivo studies have shown that when released by necrotic cells, HSFP70 acts as a danger signal and enhances the maturation of dendritic cells, the most potent type of antigen-presenting cells (Gazza et al., 2000; Miller et al., 2003). HSFP70 also plays an important role in longevity determination, demonstrated by the extended longevity phenotypes observed in transgenic flies overexpressing it (Aligi et al., 2002). In addition, HSFP70 acts as a strong suppressor of apoptosis, downstream of the cytokine c releases and upstream of the caspase-9 activation (Li et al., 2000). Furthermore, HSFP70 has been reported to block apoptosis by binding apoptosis protease activating factor-1 (Apaf-1), thereby preventing constitution of the apoptosome, the Apaf-1/cytokine c/caspase-9 activation complex (Beere et al., 2000). Moreover, HSFP70 can also inhibit apoptosis by interfering with target proteins other than Apaf-1, one of which is apoptosis-inducing factor (Ravagnan et al., 2001). Thus, an overexpression of HSFP70 can be presumed to increase the chance of survival of proliferating cells. In addition, the half-life of HSFP70 is 30–48 hr; therefore the overexpression of HSFP70 at 4 hr after MAA treatment, as found in the present study, probably reflects its upregulation 24–48 hr after MAA treatment. Meanwhile, histological examinations have clarified that apoptosis predominates in MAA-induced cell death (Surojono and Haryono, 2002). Thus, we hypothesize that the observed overexpression of HSFP70 inhibits MAA-induced apoptosis and thereby increases the chance of survival of proliferating cells in the mesoderm of the limb plate. However, additional research is needed to test this hypothesis.

ACKNOWLEDGMENTS

Protein sequence analysis was provided by the Rockefeller University Protein/DNA Technology Center, with the help of Joseph Fernandez; the Center is supported in part by funds provided by the U.S. Army and Navy for purchase of equipment. We gratefully acknowledge Jason C. Young, Ph.D. (Max Planck Institute, Germany) for his materials and valuable suggestions.

REFERENCES

Sudarwati S, Surjono TW, dan Yone AT. 1995. Kelainan pembekuan

Suyama YY, Hayashi A. 2002. Cellular proliferation methoxyacetic acid-induced histone modification in Swiss Webster mice. Faculty of Mathematics and Natural Sciences, Department of Biology, Institute of Technology Bandung.