PROSIDING SEMINAR
Bidang Kimia

SEMINAR DAN RAPAT TAHUNAN
BIDANG ILMU MIPA 2013
BKS PTN BARAT

Universitas Lampung, 10-12 Mei 2013

Didukung oleh:

Universitas Lampung

Didukung oleh:

FEI

amb1value

PHENOMWORLD

PANalytical
PROSIDING SEMINAR

Bidang Kimia

SEMINAR DAN RAPAT TAHUNAN
BIDANG ILMU MIPA 2013
BKS PTN BARAT

Universitas Lampung, 10-12 Mei 2013
Prosiding Seminar dan Rapat Tahunan Bidang MIPA BKS PTN Wilayah Barat Tahun 2013
Bandar Lampung, 10 – 12 Mei 2013
ISBN

Dewan Penyunting
Warsito
Sutopo Hadi
Tati Suhartati
Simon Sembiring
Mulyono
Muslim Ansori
Mustofa Usman
Kumia Muludi
Endang Linirin W
Sumardi
Buhan
Suripto Dwi Yuwono
Jani Master
Sugeng Sutiarso
Abdurrahman
Nismah Nukmal

Penyunting Pelaksana
Heri Satria
Kamisah D Pandiangan
Elly Lestari
Febriandi Hasibuan
Rifqi Almusawi R

Diterbitkan oleh FMIPA Universitas lampung
Bandar Lampung
Penyunting: Warsito dkk.
ISBN
Cetakan Pertama, Tahun 2013
©copyright FMIPA Unila
DAFTAR ISI

<table>
<thead>
<tr>
<th>KATA PENGANTAR</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR ISI</td>
<td>ii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISOLASI ANTOSIANIN DARI BUAH PUCUK MERAH (SYZYGIUM CAMPAANULATUM KORTH.) SERTA PENGUJIAN ANTIOKSIDAN DAN APLIKASI SEBAGAI PEWARNA ALAMI</th>
<th>1-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adlis Santoni, Djusairi Darwis, dan Sukmanting Syahri</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KESTABILAN EKSTRAK METANOL DAUN SONCHUS ARVENSIS PADA PENYIMPANAN</th>
<th>11-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrizal Iram, Amin Malik Shah Abdul Majid, dan Zhari Ismail</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALISIS BESI (FE) DAN ALUMINUM (AL) DALAM TANAH LEMPUNG SECARA SPECTROFOTOMETRI SERAPAN ATOM</th>
<th>17-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amrin, Dita Ardilla</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PENGARUH VARIASI KOMPOSISI GLISEROL, PEG1000 DAN MDI TERHADAP SIFAT MEKANIK PEREKAT POLIURETAN</th>
<th>23-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ani Sutianti & Kartika Rizki Bidza</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POTENSI LEMPUNG ALAM DESA PALAS KECAMATAN RUMBAI PEKANBARU SEBAGAI POROGEN PENGGANTI POLIETILEN GLIKOL PADA PEMBUATAN MEMBRAN HIBRID POLISULFONLEMPUNG</th>
<th>29-36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asmara Satria Akbar 1, Amilia Linggawati 2, T. Arifuddin Amri 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PANDANGAN SISWA TERHADAP INTERNALISASI NILAI TAUHIDMELALUI MATERI TERMOKIMIA</th>
<th>37-44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayi Darmana 1, Anna Permana 1, Sofyan Sa'ari 1, Yayun Sunarya 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POLIMER SUPERABSORBEN BERBASIS AKRILAMIDA (AAM) TERCANGKOK PATI BONGGOL PISANG (MUSA PARADISIACA)</th>
<th>45-54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azidi Irwan 1, Sumardi 1, Aminisa Syabartini 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KINETIKA DEGRADASI LIMBAH MINYAK BUMI MENGGUNAKAN SINERGI BAKTERI KONSORSIUM (MICROCOCCUS SP, PSEUDOMONAS PSEUDOMALLEI, PSEUDOMONAS PSEUDOLCALIGENES DAN BACILLUS SP) DAN RUMPUT ELEUSINE INDICA (L.) GAERTN</th>
<th>55-60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bambang Yudono 1, Sri Pertwi Estumingsih 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISOTERM ADSORPSI ION NI(III) DALAM LARUTAN OLEH BIOMASSA ALGA NANNOCHELOROPSIS SP YANG DIMODIFIKASI DENGAN SILIKA-MAGNET</th>
<th>61-68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buhani, Suharto, dan Albert Ferdinand Partogi</td>
<td></td>
</tr>
</tbody>
</table>
SINTESIS MIKRO PARTIKEL ZNO TERDOPING SULFUR ALAM (ZNO-S) MELALUI METODE MECHANOCHMICAL
Evi Maryanti, Sal Prima Yudha S, Fadli

STUDI KONDUKTIVITAS IONIK POLIMER ELEKTROLIT PEO - BENTONIT - LICLO4 DAN PEO – GETAH DAMAR - LICLO4
Ghufira⁴, Sal Prima Yudha, Eka Angasa, Febdani TRIYOGO, Endang Fitrianingsih

EFEKTVITAS MEMBRAN HIBRID NILON6,6-KAOLIN PADA PENYARINGAN ZAT WARNA BATIK PROCIION
G. Yosephani, A. Linggawati, Muhdarina, P. Helzyanti, H. sophie, T. Ariful Amri

DYE SENSITIZED SOLAR CELLS (DSSC) BERBASIS NANOPORI TIO2 MENGGUNAKAN ANTOSIANIN DARI BERBAGAI SUMBER ALAMI
Hardeli, Suardani, Riki, Fernando T, Maulidais, Silvia Ridwan

PENGARUH Penggunaan LABORATORIUM VIRTUAL TERHADAP PSIKOMOTOR SISWA PADA PRAKTIKUM LAJU REAKSI KELAS XI IPA SMAN 7 SAROLANGUN
Haryanto

ISOLASI DAN KARAKTERISASI FLAVONOID PADA FRAKSI AKTIF ANTIKSIDAN DARI DAGING BUAH MAHKOTA DEWA (PHALERIA MACROCARPA (SCHEFF) BOERL)
Hasnirwan¹, Sanusi Ibrahim², dan Meldia Yanti³

THE ISOLATION OF CAROTENOID FROM GREEN LEAFY VEGETABLES
Hazli Nurdin, Sri Benti Etika, Ikhlas Armin

PENGUNAAN BIJI ASAM JAWA (TAMARINDUS INDICA L.) DAN BIJI KECIPIR (PSOPHOCARPUS TETRAGONOLOBUS L.) SEBAGAI KOAGULAN ALAMI DALAM PERBAIKAN KUALITAS AIR TANAH
Hendrawati¹, Delsy Syamsumanisih¹, Nurhasmi¹

STUDI HIDROGENASI SENYAWA HIDROKARBON GOLONGAN ALKENA DAN ALKUNA SECARA KOMPUTASI
Nyoman Candra

KARAKTERISASI KINERJA MEMBRAN SELULOSA BAKTERI MENGGUNAKAN IN TAKE PDAM KOTA BENGKULU SEBABAI MODEL
Irfan Gustian¹, Morina Adfa¹, Yoste Andriani¹, Elya Roza²

PEMBUATAN ION SELEKTIF ELEKTRODA MENGGUNAKAN IONOFORE DTODC UNTUK PENENTUAN MERKURI (ISE-HG)

173-188
189-192
199-206
207-212
Studi Hidrogenasi Senyawa Hidrokarbon Golongan Alkena Dan Alkuna Secara Komputasi

Nyoman Candra

Program Studi Pendidikan Kimia FKIP UNIB

Keywords: Hidrogenasi, alkena, alkuna, efek sterek

PENDAHULUAN

Reaksi hidrogenasi merupakan reaksi reduksi yang menghasilkan penambahan atom hidrogen ke dalam suatu molekul (biasanya sebagai H₂). Reaksi ini termasuk ke dalam reaksi adisi karena terjadi penambahan atom. Senyawa yang bisa dihidrogenasi adalah senyawa yang kurang jenuh (unsaturated) yaitu golongan alkena dan alkuna. Penambahan hidrogen ke dalam senyawa tersebut akan menambah tingkat kejenuhannya.

Pemanfaatan reaksi hidrogenasi yang paling terkenal adalah pada pembuatan minyak cair menjadi lemak padat atau semi padat. Pada aplikasinya, reaksi hidrogenasi berlangsung dengan bantuan katalis karena reaksinya cukup sulit terjadi. Katalis yang banyak dipakai adalah logam-logam golongan transisi seperti Nickel (Ni), platinum (Pt), Palladium (Pd) dan logam transisi lain atau bisa juga menggunakan gabungan dari logam-logam tersebut.

Panaskan atau energi hidrogenasi beberapa golongan alkene dan alkuna bisa diperbandingkan dengan menghitung panas hidrogenasi melalui data panas pembentukan, yaitu panas pembentukan produk (ΔH_{produk}) dikurangi panas pembentukan reaktan (ΔH_{reaktan})

ΔH_{hidrogenasi} = ΔH_{produk} - ΔH_{reaktan}

Reaktainya dalam hal ini adalah senyawa yang dihidrogenasi yaitu alkene atau alkuna dan gas hidrogen. Sedangkan produknya adalah hasil reaksi yaitu bisalika atau alkena. Dengan mengganggap nilai panas pembentukan gas hidrogen adalah nol atau tetap, maka panas hidrogenasi bisa dihitung dari panas pembentukan produk dan reaktan yang lain.

Dalam penelitian ini, panas pembentukan dihitung dengan memanfaatkan program HyperChem 7 dengan metode semiempirik PM3.

METODE PENELITIAN

Alat dan Bahan
Penelitian ini menggunakan satu set komputer yang dilengkapi dengan program prograrn kimia yaitu Hyperchem 7 dan juga ChemDraw. Pengukuran dilakukan dengan metode semiempirik PM3.

Cara Kerja

HASIL DAN PEMBAHASAN

Dari hasil pengukuran panas hidrogenasi seperti yang disajikan di tabel 1, terlihat, pasangan senyawa 5-6 dan 7-8, di mana pasangan senyawa tersebut punya panjang rantai yang sama, tetapi panas hidrogenasinya berbeda. Sedangkan untuk pasangan senyawa nomor 6-7 dan pasangan senyawa 4-6, pasangan tersebut punya panjang rantai berbeda, tetapi panas hidrogenasinya berbeda. Hal ini menunjukkan bahwa panas hidrogenasi secara termodinamika tidak ditentukan oleh panjang rantainya. Faktor yang paling berpengaruh adalah posisi ikatan rangkapnya. Misalnya bisa kita lihat pada senyawa no 3-4 dan 5-6. Posisi ikatan rangkap yang berada di ujung, cenderung tidak stabil sehingga mudah berubah menjadi produk. Dengan kata lain bentuk produk lebih disukai secara termodinamika dibandingkan bentuk reaktan. Pada senyawa nomor 1, posisi ikatan rangkapnya berada di ujung, akan tetapi posisinya simetri yaitu sisi gugus sebelah kiri sama dengan sisi gugus sebelah kanan sehingga senyawa ini secara termodinamik lebih stabil dibandingkan senyawa lain yang memiliki ikatan rangkap di ujung.
Tabel 1: Panas pembentukan dan Panas hidrogenasi beberapa golongan alkena rantai lurus

<table>
<thead>
<tr>
<th>No</th>
<th>Struktur Reaktan</th>
<th>Panas pembentukan Reaktan (kcal/mol)</th>
<th>Struktur Produk</th>
<th>Panas pembentukan Produk (kcal/mol)</th>
<th>Panas hidrogenasi (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-16.36</td>
<td></td>
<td>-18.23</td>
<td>-1.75</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-6.96</td>
<td></td>
<td>-23.76</td>
<td>-16.8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-1.63</td>
<td></td>
<td>-29.24</td>
<td>-27.61</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-3.28</td>
<td></td>
<td>-34.7</td>
<td>-31.02</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-3.68</td>
<td></td>
<td>-34.7</td>
<td>-25.73</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-5.97</td>
<td></td>
<td>-40.16</td>
<td>-26.3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-13.842</td>
<td></td>
<td>-40.16</td>
<td>-31.23</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-8.93</td>
<td></td>
<td>-40.16</td>
<td></td>
</tr>
</tbody>
</table>

Di samping tinjauan termodynamis di mana ikatan rangkap yang berada di ujung yang cenderung kurang stabil dibandingkan senyawa dengan ikatan rangkap lebih ke tengah, yang menyebabkan panas hidrogenasi yang dilepas lebih besar (lebih stabil), kita juga bisa mengkastrinya dari tinjauan kinetis. Posisi ikatan di ujung memungkinkan tidak adanya rintangan yang berarti dari gugus lain bagi hidrogen yang akan masuk. Di sinilah, faktor steriliklah yang sangat berperan.

Akan tetapi, kenaikan kestabilan lebih besar terjadi pada reaktan sehingga adanya penambahan cabang akan menyebabkan panas hidrogenasi yang dilepaskan semakin kecil (produk dengan cabang lebih banyak akan semakin kurang stabil dibanding dengan produk dengan cabang sedikit).

Semakin banyaknya cabang akan menyebabkan kemungkinan terjadinya hiperkonjugasi semakin besar sehingga akan semakin menjadi lebih stabil.

Studi hidrogenasi alkena rantai bercabang

Tabel 2 memaparkan pengukuran dan perhitungan panas reaksi beberapa golongan alkena rantai bercabang. Dari hasil tersebut terlihat bahwa baik pada reaktan yaitu golongan alkena, dan produk (golongan alkana), adanya cabang justru akan semakin meningkatkan kestabilannya.

Studi hidrogenasi senyawa golongan alkuna

Pada bagian ini dikaji hidrogenasi senyawa golongan alkuna menjadi senyawa golongan alkena. Tabel 3 menunjukkan data tentang panas pembentukan alkuna (reaktannya), panas pembentukan alkena (produknya) dan panas hidrogenasinya. Dari data tersebut dapat kita lihat bahwa panjang rantai tidak berpengaruh secara
signifikant terhadap panas hidrogenasi yang dilepaskan. Misalnya terlihat pada senyawa nomor 4, 5, 6, 7 dan 8, panjang rantai dan posisi ikatan rangkapnya berbeda akan tetapi panas hidrogenasinya hampir sama. Panas hidrogenasi yang jauh berbeda terlihat pada senyawa nomor 1 dan 2. Pada kedua senyawa tersebut, bentuk alkenanya memang lebih stabil dibandingkan bentuk alkunanya.

Tabel 2: Panas pembentukan beberapa golongan alkena rantai bercabang

<table>
<thead>
<tr>
<th>No</th>
<th>Struktur reaktan</th>
<th>Panas pembentukan reaktan (kcal/mol)</th>
<th>Struktur produk</th>
<th>Panas pembentukan produk (kcal/mol)</th>
<th>Panas hidrogenasi (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-2.23</td>
<td></td>
<td>-29.71</td>
<td>-27.48</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-11.716</td>
<td></td>
<td>-34.38</td>
<td>-22.64</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-8.29</td>
<td></td>
<td>-44.38</td>
<td>-21.48</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-30.64</td>
<td></td>
<td>-48.82</td>
<td>-18.18</td>
</tr>
</tbody>
</table>

Tabel 3: Panas pembentukan beberapa golongan alkuna, alkena dan panas hidrogenasi

<table>
<thead>
<tr>
<th>No</th>
<th>Struktur reaktan</th>
<th>Panas pembentukan reaktan (kcal/mol)</th>
<th>Struktur produk</th>
<th>Panas pembentukan produk (kcal/mol)</th>
<th>Panas hidrogenasi (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>50,66</td>
<td></td>
<td>-46.56</td>
<td>-87.22</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>40,122</td>
<td></td>
<td>-6.96</td>
<td>-46.8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>33,8</td>
<td></td>
<td>-1.63</td>
<td>-37.28</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>29,6</td>
<td></td>
<td>-5.28</td>
<td>-32.88</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>50,07</td>
<td></td>
<td>-5.65</td>
<td>-55.75</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>25,86</td>
<td></td>
<td>-5.97</td>
<td>-34.83</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>19,59</td>
<td></td>
<td>-15.842</td>
<td>-55.45</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>24.65</td>
<td></td>
<td>-5.93</td>
<td>-35.58</td>
</tr>
</tbody>
</table>
KESIMPULAN

1. Pada hidrogenasi alkena rantai lurus, panas hidrogenasi tidak ditentukan secara signifikan oleh panjang rantai tetapi oleh posisi ikatan rangkap.
2. adanya penambahan cabang pada senyawa alkena akan menyebabkan panas hidrogenasi yang dilepaskan semakin kecil sehingga secara termodinamis semakin sulit berlangsung.
3. Pada alkuna, panjang rantai tidak berpengaruh secara signifikan pada tingkat mudah atau tidaknya hidrogenasi berlangsung secara termodinamis.

SARAN

Perlu ada penelitian yang lain tentang adisi selain dengan hidrogen misal dengan golongan halida.

DAFTAR PUSTAKA

Anonim, 2002, HyperChem Release 7, USA.