

ISSN 0216-2393

GRADIEN

Vol. 8 No. 1 Januari 2012

JURNAL MIPA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS BENGKULU

Gradien	Vol. 8	No. 1	Hal. 716-779	Bengkulu, Januari 2012	ISSN 0216-2393
---------	--------	-------	--------------	---------------------------	----------------

GRADIEN

Vol. 8 No. 1 Januari 2012

JURNAL MIPA

Cakupan Jurnal Ilmiah Gradien meliputi artikel ilmiah hasil penelitian dalam bidang Matematika, Fisika, Kimia dan Biologi. Jurnal ini terbit pertama kali pada tahun 2005 dengan frekuensi penerbitan dua kali setahun yaitu pada bulan januari dan juli.

Pembina

Dekan FMIPA Unib

Ketua Redaksi

Suhendra, S.Si, M.T

Sekretaris Redaksi

Eka Angasa, S.Si, M.Si

Bendahara Redaksi

Supiyati, S.Si, M.Si

Anggota

Sipriadi, S.Si Yulian Fauzi, S.Si, M.Si

Dewan Penyunting

Prof. Siti Salmah (Unand)

Prof. Dahyar Arbain (Unand)

Prof. Sigit Nugroho (Unib)

Dr. Hilda Zulkifli, DEA (Unsri)

Dr. Gede Bayu Suparta (UGM)

Imam Rusmana, Ph.D (IPB)

Dr. Mudin Simanuhuruk (UNIB)

Dr. rer.nat. Totok Eka Suharto, MS (Unib)

Dr. Agus Martono MHP, DEA (Unib)

Choirul Muslim, Ph. D (Unib)

Dra. Rida Samdara, M.S (Unib)

Alamat Redaksi:

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Bengkulu Gedung T, Jl. W.R. Supratman 38371 Bengkulu Telp/Fax. (0736) 20919 www.gradienfmipaunib.wordpress.com

GRADIEN

Vol. 8 No. 1 Januari 2012

JURNAL MIPA

DAFTAR ISI

1	Optimasi Tekanan Deposisi dalam Simulasi Efisiensi Sel Surya Berbasis	/10-/21
	Material a-Si:H (Endhah P)	
2	Efisiensi tumbuhan dalam meredam Gelombang elektromagnetik (studi kasus	722-727
	di sutt Kota Bengkulu) (Arif I.H)	#00 # 2 2
3	Robot Pembaca Jalur Busway Berbasis Mikrokontroler AVR ATmega 16	728-733
	(Irkhos)	724 720
4	Sintesis Senyawa Analog Kurkumin Simetri (1E, 3E, 8E, 10E)-1, 11-difenil-	734-738
	undeka-1,3,8,10 tetraena-5,7-dion (Agus S)	500 545
5	Aplikasi Ekstrak Umbi Ubi Jalar Ungu (Ipomoea batatas var ayamurasaki)	739-745
	Sebagai Pengawet dan Pewarna Alami Tahu (Devi R)	546 561
6	Metoda Ekstraksi Cair-Cair Sebagai Alternatif untuk Pembersihan	746-751
	Lingkungan Perairan dari Limbah Cair Industri Kelapa Sawit (Agus M.H.P)	750 755
7	Pengujian Ekstrak Daun Jambu Biji (Psidium guajava Linn.) Terhadap	752-755
	Penyembuhan Luka Bakar Pada Mencit (Mus musculus) (Dwita O)	FEC 5 (0)
8	Kajian Pemilihan Model Semivariogram Terbaik Pada Data Spatial	756-762
	(Studi Kasus: Data Ketebalan Batubara Pada Lapangan Eksplorasi X)	
	(Fachri F)	762 774
9	Pembauran (Confounding) Pada Percobaan Faktorial Tiga Taraf (Nur A)	763-774
10	Peneranan Aliahar Max-Plus Pada Sistem Produksi Meubel Rotan (<i>Ulfa S.R</i>)	775-779

PENGANTAR REDAKSI

Memasuki tahun penerbitan ke-8 (Delapan), alhamdulillah penerbitan jurnal Gradien ini masih konsisten meskipun untuk Vol. 8 No. 1, Januari 2012 sedikit agak tersendat karena tulisan yang diharapkan masuk ke redaksi di luar jadwal yang ditentukan. Diharapkan kepada calon-calon penulis untuk edisi yang akan datang dapat memasukkan jurnalnya jauh lebih awal. Redaksi mengucapkan terima kasih, dan terus berharap semoga untuk volume berikutnya lebih banyak lagi penulis yang berasal dari luar Universitas Bengkulu.

Redaksi menyadari jurnal ini masih jauh dari kesempurnaan, oleh karena itu kritik dan saran masih tetap diperlukan guna perbaikan penerbitan jurnal ini di masa yang akan datang. Akhir kata redaksi berharap semoga pembaca dapat memanfaatkan tulisan ilmiah yang telah dimuat dalam edisi ini

Bengkulu, Januari 2012

Dewan Redaksi

Jurnal Gradien Vol 8 No 1 Januari 2012: 756-762

Kajian Pemilihan Model Semivariogram Terbaik Pada Data Spatial (Studi Kasus: Data Ketebalan Batubara Pada Lapangan Eksplorasi X)

Fachri Faisal dan Jose Rizal

Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia

Diterima 05 Oktober 2011; Disetujui 15 Desember 2011

Abstrak - Semivariogram merupakan alat statistik untuk menggambarkan, memodelkan, dan menjelaskan korelasi spasial antar observasi. Penelitian ini bertujuan memilih model semivariogram terbaik dari model semivariogram teoritis Spherical, Exponential dan Gaussian berdasarkan uji kenormalan dari residu terbakukan, uji Q_1 dan uji Q_2 . Sebagai penerapan kasus, pada penelitian ini data yang digunakan adalah data ketebalan cadangan batubara dari 41 titik sampel yang diperoleh dari skripsi Heryanti (2007). Dari hasil dan pembahasan diperoleh model semivariogram teoritis Gaussian yang terbaik karena untuk uji kenormalan menggunakan SPSS diperoleh nilai sig. > 0.05 (0.340 > 0.05) dianggap residual terbakukannya berdistribusi normal. Berdasarkan uji Q_1 (|0.026| < 0.316) dan uji Q_2 (0.61 < 1.335 < 1.48) dapat ditarik kesimpulan model Gaussian tersebut cocok atau valid digunakan untuk melakukan pengestimasian pada lokasi yang belum diketahui nilainya.

Kata kunci: semivariogram, spherical, exponential, gaussian.

1. Pendahuluan

Semivariogram merupakan alat statistik untuk menggambarkan, memodelkan, dan menjelaskan korelasi spasial antar observasi. Semivariogram didefinisikan sebagai berikut [10]:

$$2\gamma(h) = Var[\vec{Z}(s+h) - \vec{Z}(h)] = E[\vec{Z}(s+h) - \vec{Z}(h)]^{2}$$
 (1)

dengan $\gamma(h)$ adalah semivariogram. Semivariogram di atas disebut juga semivariogram teoritik. Ada dua jenis semivariogram yaitu: Semivariogram isotropik ($\gamma(h)$ hanya bergantung pada jarak h), Semivariogram anisotropik ($\gamma(h)$ tergantung pada jarak h dan arah). Menurut [1], semivariogram teoritis memenuhi sifat-sifat berikut:

- a. Semivariogram non negatif $\gamma(h) \ge 0$.
- b. Semivariogram pada lag jarak h = 0 bernilai 0, ditulis $\gamma(0) = 0$.
- c. Merupakan fungsi simetri atau $\gamma(s_1, s_2) = \gamma(s_2, s_1)$.
- d. Merupakan fungsi genap atau $\gamma(h) = \gamma(-h)$.

Jika terdapat data observasi lapangan maka semivariogram pada persamaan (1) dapat diestimasi oleh semivariogram eksperimental yang dirumuskan sebagai berikut:

$$\gamma^*(h) = \frac{1}{2|N(h)|} \sum_{i=1}^{N(h)} \left[z(s_i + h) - z(s_i) \right]^2$$
 (2)

Keterangan

Si : lokasi-lokasi sampel

z(si): nilai observasi pada lokasi si

 $\gamma^*(h)$: semivariogram eksperimental pada jarak h

N(h): banyaknya pasangan data (si, si + h) yang

berjarak h

Persamaan (2) dapat diterapkan jika sampel terletak pada posisi yang berjarak tetap dalam satu dimensi. Sebaliknya jika tidak, maka semivariogram dihitung untuk kelas-kelas jarak dengan toleransi tertentu. Jika data berada pada ruang dua dimensi, maka semivariogram eksperimental dihitung paling sedikit untuk empat arah yaitu: Barat-Timur (B-T), Utara-Selatan (U-S), Barat Laut-Tenggara (BL-TG), dan

Timur Laut-Barat Daya (TL-BD). Semivariogram eksperimental disebut juga semivariogram empirik. Dalam setiap model semivariogran, terdapat tiga parameter semivariogram yang perlu dilakukan estimasi yaitu:

- a. Efek acak (nugget effect, C_0) merupakan kesalahan pengukuran dimana semivariogram yang diukur pada lag jarak nol (pada lokasi itu sendiri), nilainya tidak nol.
- b. Jarak kritis (range, a) adalah jarak lag hingga nilai semivariogram konstan atau jarak maksimum antara titik-titik yang masih memiliki korelasi spasial. Jarak kritis ini menunjukkan zona pengaruh antar titik-titik observasi.
- c. Nilai batas (sill, C₀+C) adalah nilai semivariogram yang tidak berubah (konstan) untuk h yang tidak terbatas. Hal ini menunjukkan bahwa sill adalah nilai batas dimana tidak ada lagi korelasi antar sampel dan umumnya nilai sill mendekati variansi data [7].

Beberapa model semivariogram teoritis yang sering digunakan (Armstrong, 1998):

➤ Model Spherical:

$$\gamma(h) = \begin{cases} C_0 + C \left(\frac{3h}{2a} - \frac{1}{2} \left(\frac{h}{a} \right)^3 \right) & , 0 < h \le a \\ C_0 + C & , h > a \end{cases}$$
 (3)

➤ Model Exponential:

$$\gamma(h) = C\left(1 - exp\left(-\frac{h}{a}\right)\right); \ a, C > 0$$
 (4)

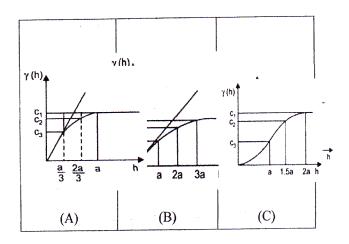
Model Gaussian:

$$\gamma(h) = \left(1 - exp\left(-\frac{h^2}{a^2}\right)\right); \ a, C > 0$$
 (5)

 \triangleright Model Linear: $\gamma(h) = \alpha h$,

$$\alpha$$
 = kemiringan garis. (6)

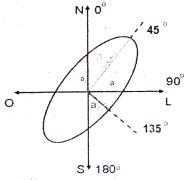
Hubungan antara semivariogram dan kovariansi spatial dinyatakan dalam :


$$\gamma(h) = C(0) - C(h) \tag{7}$$

Dari kovariansi spatial C(h) dapat dibentuk struktur korelasi spatial $\rho(h)$ dengan perumusan,

$$\rho(h) = \frac{C(h)}{C(0)} \tag{8}$$

Sebelumya telah dilakukan penelitian oleh [2] yang mengunakan model semivariogram isotropik untuk 11 Data Ketebalan Batubara lapangan X. Dalam penelitian tersebut diperoleh model semivariogram Gaussian yang akan digunakan dalam metode kriging lokasi menginterpolasi yang untuk terobservasi. Berdasarkan hal di atas peneliti tertarik melakukan penelitian lanjutan dengan menambahkan 30 data baru dan jenis semivariogram yang akan digunakan adalah model semivariogram experimental Model semivariogram teoritis yang anisotropik. digunakan pada peneltian ini adalah model Spherical, Exponential dan Gaussian. Adapun tujuan dari penelitian ini adalah memilih model semivariogram terbaik dari ketiga model tersebut berdasarkan uji kenormalan dari residu terbakukan, uji Q_1 dan uji Q_2 .


Pada geostatistika, terdapat suatu perangkat dasar dan menggambarkan, memodelkan, untuk menjelaskan korelasi spasial antar observasi dari variabel teregionalisasi yang biasa dikenal sebagai semivariogram. Sedangkan semivariogram adalah setengah dari variogram, dengan simbol γ. Sesuai dengan namanya, Variogram adalah ukuran dari variansi. Variogram digunakan untuk menentukan iarak dimana nilai-nilai data pengamatan menjadi tidak saling tergantung atau tidak ada korelasinya. Simbol dari variogram adalah 2y. Semivariogram ini digunakan untuk mengukur korelasi spasial berupa variansi eror pada lokasi s dan lokasi s + h. Berikut ini, dapat dilihat pada Gambar 1 beberapa model semivariogram teoritis yang sering digunakan:

Gambar 1. Model Variogram yang umum digunakan:
(A) (Model Spherical), (B) Model
Exponential, (C) Model Gaussian [8]

Diagram Mawar

Diagram mawar memiliki dua sumbu utama yaitu sumbu mayor dan sumbu minor. Berikut ini(Gambar 2) merupakan visualisasi dari contoh diagram mawar dengan pemilihan arah 0° , 45° , 90° , dan 135° dimana garis berwarna hijau menunjukkan sumbu mayor dan garis warna *orange* menunjukkan sumbu minor. Penentuan sumbu mayor dan minor didapat dapat dari perbedaan *range* yaitu a_1, a_2, a_3 dan a_4 . Sumbu mayor memiliki range terpanjang sebaliknya sumbu minor memiliki range terpendek. Untuk lebih jelasnya, dapat dilihat pada Diagram Mawar sebagai berikut [9]:

Gambar 2. Diagram Mawar

Menurut Waller dan Gotway [6] metode ordinary kriging merupakan metode estimasi suatu peubah acak pada suatu titik (lokasi) tertentu dengan mengamati data yang sejenis dilokasi kar pengammean data diasumsikan konstan tetapi tidak diceramu nilainya. Pada metode ordinary kriging tila-tila sampel yang diketahui dijadikan kombinasi mengestimasi titik-titik disekitar daerat (lokasi) sampel. Dengan kata lain, mengestimasi sembarang titik yang tidak tersampe (s_0) dapat menggunakan kombinasi linier dari peubah acak $Z(s_i)$ dan nilai bobot kriging masing, secara matematis dapat ditulis dengan :

$$\hat{Z}(s_0) = \sum_{i=1}^n \lambda_i Z(s_i)$$

Keterangan

 $\hat{Z}(s_0)$: nilai dugaan perubah acak pada titik s_1

 $Z(s_i)$: nilai peubah acak Z(s) pada titik ke - i

 λ_i : bobot kriging pada titik ke - i.

Validasi model

Tujuan dilakukan cross validasi adalah untuk memperkirakan atau memprediksi seberapa kuan sebuah model prediktif akan berpengaruh terhadap penelitian. Pada implementasian terhadap model semivariogram, cross validasi bertujuan untuk memeriksa model semivariogram berlaku intrinsik dan memastikan kecocokan model semivariogram terhadap data sampel dari penelitian. Pada proses cross validasi, model-model semivariogram diuji dengan statistik Q_1 dan statistik Q_2 . Selain itu, selisih dari nilai nilai yang diketahui pada suatu titik dengan nilai estimasinya atau lazim disebut residual (sampling error) yang akan digunakan untuk memeriksa valid tidaknya model semivariogram vang nantinya berguna pada saat mengestimasi nilai pada titik-titik yang tidak tersampel. Adapun prosedur pengujian hipotesis dari uji statistik ini adalah:

1. Prosedur Pengujian

$$H_0: |Q_1| < \frac{2}{\sqrt{n-1}}$$
 (Model teoritis cocok)

$$H_1: |Q_1| \ge \frac{2}{\sqrt{n-1}}$$
 (Model teoritis tidak cocok)

2. Besaran yang diperlukan

n, ε_k , U (nilai batas atas untuk statistik uji Q_2), L (nilai batas bawah untuk statistik uji Q_2),

3. Statistik Uji

Statistik uji untuk Q₁ adalah

$$Q_1 = \frac{1}{n-1} \sum_{k=2}^{n} \varepsilon_k \sim \mathcal{N}\left(0, \frac{1}{n-1}\right)$$

Statistik uji untuk

adalah

$$Q_2 = \frac{1}{(n-1)} \sum_{k=2}^{n} \varepsilon_k^2$$
, $(n-1)Q_2 \sim \chi_{n-1}^2$

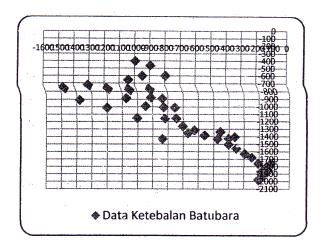
4. Kriteria Pengujian

Model Semivariogram $\gamma(h)$ ditolak jika

$$|Q_1| > \frac{2}{\sqrt{n-1}}$$

Model semivariogram $\gamma(h)$ ditolak jika $Q_2 > U$ dan $Q_2 < L$ [4].

2. Metode Penelitian

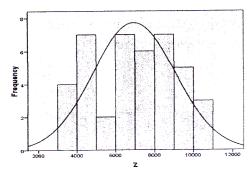

Data yang digunakan dalam penelitian berasal dari data skunder yang terdiri dari 41 data titik eksplorasi batubara yang merupakan data ketebalan cadangan batubara [2]. Adapun tahap-tahap analisis data pada penelitian ini adalah sebagai berikut:

- a. Membuat statistik deskriptif data.
- b. Menentukan semivariogram eksperimental untuk 4 arah (anisotropik geometri) dengan Surfer 9
- Fitting semivariogram eksperimental (poin b) dengan salah satu model semivariogram teoritis untuk menentukan nilai parameter-parameternya (C = Sill dan a = range).
- d. Menentukan model semivariogram teoritis Spherical, Exponsial dan Gaussian (poin c) untuk dua arah yang berdasarkan sumbu terpendek (minor) dan terpanjang (mayor).
- e. Menentukan model semivariogram teoritis Spherical, Exponsial dan Gaussian (poin d) yang distandarisasi dengan merotasi koordinat

- data dan dibagi dengan sumbu terpendek dan terpanjang (a = range).
- f. Menentukan model semivariogram yang terbaik dengan mengikuti tahapan cross validasi, yaitu dengan menghitung residu terbakukan dan menguji asumsi kenormalan dan menguji model semivariogram yang digunakan dengan statistik statistik uji Q₁ dan Q₂.

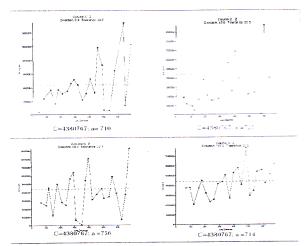
3. Hasil Dan Pembahasan

Z yang menyatakan ketebalan cadangan batubara dinyatakan dalam satuan meter. Berikut ini data lokasi 41 titik sampel. Adapun plot lokasi 41 titik sampel ketebalan cadangan batubara tersebut sebagai berikut:

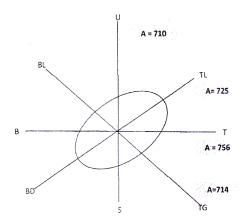

Gambar 3. Lokasi 41 titik sampel data ketebalan batubara

Penghitungan Statistika Deskriptif

Setelah dilakukan penghitungan statistika deskriptif untuk data ketebalan batubara (Z), diperoleh suatu kesimpulan bahwa data yang tersebut mendekati distribusi normal. Perhitungan statistika deskriptifnya dapat dilihat pada Tabel 1 dan histogram dengan kurva normalnya pada Gambar 2.


Tabel 1. Statistika deskriptif data ketebalan batubara

Descriptive Statistics (Z)							
N Valid	41						
Mean	6951.95						
Median	7070.00						
Mode	4650						
Std. Deviation	2119						
Skewness	091						
Std. Error of Skewness	.369						
Kurtosis	-1.236						
Std. Error of Kurtosis	.724						
Range	6850						
Minimum	3600						
Maximum	10450						



Gambar. 2 Histogram

Berikut ini merupakan fitting semivariogram eksperimental dengan salah satu model semivariogram teoritis untuk menentukan nilai parameter-parameternya (C = Sill dan a = range). Oleh karena digunakan semivariogram anisotropik maka nilai Sill setiap arah sama sedangkan nilai rangenya berbeda (Gambar 3).

Gambar 5. Semivariogram Experimental Batubara untuk 4 arah

Gambar 6. Diagram Mawar Semivariogram Anisotropik

Oleh karena sudut yang terbentuk 90° antara arah Utara (0°) yang mempunyai range a= 710 dengan arah Timur (90°) yang merupakan sumbu terpanjang (range a= 756). Maka besarnya sudut yang digunakan untuk menentukan model semivariogram teoritis Spherical, Exponential dan Gaussian yang distandarisasi dengan merotasi koordinat data dan dibagi dengan sumbu terpendek dan terpanjang (a = range) adalah 90°. Kemudian untuk masing-masing dengan menguji model model, dilanjutkan semivariogram yang digunakan dengan statistik statistik uji Q_1 , Q_2 menggunakan excel dan pengujian kenormalan menggunakan bahasa pemograman SPSS. Sehingga diperoleh model semivariogram yang terbaik dengan mengikuti tahapan cross validasi.

Pengujian Q_1 dan Q_2

Dengan menggunakan persamaan (2), (3), (4), (5), (9), (10), (11), (12) dan bantuan Microsoft Excel diperoleh nilai-nilai uji Q_1 dan uji Q_2 seperti tertera pada Tabel 2.

Tabel 2. Uji Validasi Model

			WOR 5	HERELL			3.41.25	- 10	6 9690	MERCHALL .	40.00				W100000	2000
77				300					整 二條		42027	WE'2	500	200	1	5
1	6953															
2	5400	660	201.0	-6%	4,2186	00617	50.	26311	-800	42722	(0.99	960	276182	-450,00		933
2	500	83-5	18181	207511	45-%	0.0000	6739.04	2251.65	2160.96	2,5425*	1.82	67 tt. 56	266.55	2509.41	C86511	3,501
4	\$100	7312	ME.C	149017	2"1"66	0.5150	7253	2246,14	1844.62	3,82124	104	7566,28	237166	1731,72	075064	3,523
5	7510	7309	200.00	154	3.00071	0,0000	7434.25	2223.36	575.708	3,16862	6.035	76345	2254.25	175,50	607518	0,005
ε	5400	7565	301.25	1735.56	4948	0.6995	7294	377.55	2006.6	-09:54	(.095	762 12	2200.45	1.71.83	25454	2.88
7	7370	333	198E 15	-59951	(433)	0.208	ಡಿಯಿತ	2146.43	-661.277	-0.2624	£.0589	855.60	242	-181.52	-2,4258	0,18
8	E/30	7370	1762.81	-120	₹,7931	84540	751235	1325,16	表型	-0.4582	1,2100	7855,39	2212	1 21 39	4,5477	3,29
ç	1120	7538	1764.16	-31.17 5	-1981"	87514	2.3K	1535.7	-8302.46	-17589	1.099	7,36,32	25293	3(11,00	4.7589	3,39
10	5700	7157	1544.45	-945° ±	-1733	326	60205	2009.84	417204	-15:78	; 2039	7236.95	286,3	3134.55	-1611	2.59
11	-190	7755	30.12	-3422.5	-1594	2547	554E	1918.06	-234.00	-12225	1,527	6866,73	205C B	2121,73	13194	173
12	900	723	15% 8	-525	-1553	27677	625.0	912.3	-2726.40	-14209	1,0791	6601.49	240.3	-3901,42	4,65	2,14
15	650	7255	1752.84	-5794	-(2)等	00464	66-14E	1869.22	348,525	3.18347	1.037	6730,49	2000,59	59.50	00777	3,20
14	7070	73.75	1756.55	407.5	5,98%	0.0000	\$44 6	מי,פרפו	120,220	0201	1,03	\$150.12		731/5	1,152	02
15	560	7317	1655	122255	1 17845	121	9932		168.175	10573	1.30	6541.15		165",88	C92781	0.9
16	45	776	XSLS	-3221	3.73	142036	13:291	12201	41625"	15460	125765	上經里	227.58	- 15.33	4,316	53
17	250	7359	1050.54	14:05	67181	0.5085	7528.56	1323,18	-1278.55	154522	4,1173	7090,59	1721.01	3:4160	-4,8281	13
18	320	75	T'53	139.765	3 1250	.005	734	1357.31	550CE	164021	106	7304.30	171603	195,55	011413	0.0
15	53	7379	WEG	236	1000	00004	3576	1992.82	-896.76	3,52548	1.671	7031.04		258 DE	4,509	2.2
z	56	733	1025	-258	-: 223	30486	22932	(352,98)	1514.22	1,17781	1.3972	7215.00	171675	1764.32	122867	1:
71	53	723	20.00	2214	1441	5350	3305	1365.13	3410,61	1,77078	5.00	771E E	171455	2531.00	14258	
Ė	520	732		2028	1574	1364	33945	250	1.850 DE	150633	1.361	7215,41	171£75	1574,50	C91719	33
2	950	-	KC5	-515	4.53	340	95-50C	232	-57'9.45	-0.4674	ė. 1640	7209.88	171E.71	-3638,19	2 1254	- 44
54	922	96	1012	-548	< 55	07.48	16225C	1359.35	-536,016	-0472	1,225	6614,05	1480,03	404,2	0.550	2.1
3	130	96	2012	-555	4,527	01:57	62Z	1363,04	F M	0.4543	1,208	6591.1	1884 18	63.0	0312	11
36	35	8	CHE	523	1,800	514	杨章报	1962.56	-1112.77	3,558	1.29	657.5	9843	187.3	3.55%	1.0
5	790	95	177187	18-E	1485	9724	4577.57	1960.52	136,620	3,54565	1,3977	6589.3	168475	794,70	1482	2.2
2	5750	66	£15	35.2	128	17274	1545	1362,55	150242	1,16516	1,3576	65517	1954.81			23
5	30		でいる	32	2014	6677	16.594	1962,65	MET.	2,06601	1,67	65K.25	18KH	301.75		- 5
x	80	25	1018	-55	4.25	0.0635	657.37	1360.86	-153C	-0.007.1	£,000±	6615.25	1553	12.35	1.06	- 2
71	1015	67	KISE	-309	0.38	9,0806	6641.5	1360,98	\$492.61	257634	(87	6554 14	125.5			1 44
=	Œ.C	35	1015	754	1,732	2905	65223	1961,05	1966.4	1,49898	1.0589	6816.25	85	1992.73	1923	1 1
=	-		200	-336	<250	0.0622	6649.2	1361,28	151771	1,13515	1.377	5610,50	地名	194.3	1500	- 6
2	342		225	-1801	-1,4036	20615	95-845	1961,28	-1215.5	-0.8951	F.011	6611.28	19差	4.8.2		1 2
2	=	5	TES	50£	452	04:35	65150	1361,37	428.00	6302	£312	行業の	雅	-35,3		2
ž	- 53	82	TES.	43.1	-ζ631°	03990	46:345	1361.95	-2861,56	-20678	138	6661.72	1569	23,7		1 2
=	-			423	-0.511	05758	6567.35	1952,37	-1883,49	-13631	1 556	617.27	1000	432		1
z	£	96	TE		-0.5494	03630	65727t	1362,35	-1967.25	-13546	1.595	保知 是	1805	1151.5	4.507	
5	32		TUR	-262:	-21928	15/88	668243	1556.9	3167,02	1 E145	163	523,2	168	123	1999	1.
E	546	53	TEE	-33:	4112	44616	45.7.55	1957.68	\$767,50	28504	£ 853	611.2	167.01	333.5	213465	5:
÷	1232	+	223		-1993	_	5009.4		390A	1,785.84	14.3842	5633.59	150.0	363£.71	21852	4
-			1	1.	-0.56	676635			0.911	142'08	1.59		17.7		1923	22
	-	1			43817	1.69209				1,3577*	2,5%				M257	9
		-	_		QI	¥	_	-	-	21	Qt ·				9	2

Model-model Semivariogram (sumbu mayor dan minor) serta model semivariogram distandarisasi yang digunakan untuk uji Q_1 dan uji Q_2 :

a. Model Spherical

$$\gamma_{T-B}(h) = \begin{cases} 4380767 \left(\frac{|h|}{2(756)} - \frac{|h|^3}{2(756)^3} \right), & |h| < 756 \\ 4380767 & , |h| \ge 756 \end{cases}$$

$$\gamma_{U-S}(h) = \begin{cases} 4380767 \left(\frac{|h|}{2(710)} - \frac{|h|^3}{2(710)^3} \right), & |h| < 710 \\ 4380767 & , |h| \ge 710 \end{cases}$$

Adapun model semivariogram Spherical yang distandarisasinya sebagai berikut:

$$\gamma(h_1) = \begin{cases} 3\sqrt{\left(\frac{\cos(90)h_x + \sin(90)h_y}{710}\right)^2 + \left(\frac{\cos(90)h_y - \sin(90)h_x}{756}\right)^2} - \\ \sqrt{\left(\sqrt{\left(\frac{\cos(90)h_x + \sin(90)h_y}{710}\right)^2 + \left(\frac{\cos(90)h_y - \sin(90)h_x}{756}\right)^2}\right)^3} \\ h_1 < 1 \end{cases}$$

b. Model Exponential

$$\gamma_{T-B}(h) = \begin{cases} 4380767 \left(1 - exp\left(-\frac{h}{756} \right) \right), & |h| < 756 \\ 4380767 & , |h| \ge 756 \end{cases}$$

$$\gamma_{U-S}(h) = \begin{cases} 4380767 \left(1 - exp\left(-\frac{h}{710} \right) \right), & |h| < 710 \\ 4380767 & , |h| \ge 710 \end{cases}$$

Adapun model semivariogram Exponential yang distandarisasinya sebagai berikut:

$$\begin{aligned} \gamma(h_1') \\ &= \begin{cases} 4380767 \left(1 - exp\left(-\sqrt{\left(\frac{\cos(90)h_x + \sin(90)h_y}{710}\right)^2 + \left(\frac{\cos(90)h_y - \sin(90)h_x}{756}\right)^2}\right)\right), & h_1' < 1 \\ &4380767 \end{cases}, & h_2' \ge 1 \end{aligned}$$

c. Model Gaussian

$$\gamma_{T-B}(h) = \begin{cases} 4380767 \left(1 - exp \left(-\frac{h^2}{756^2} \right) \right), & |h| < 756 \\ 4380767 & , |h| \ge 756 \end{cases}$$

$$\gamma_{U-S}(h) = \begin{cases} 4380767 \left(1 - exp \left(-\frac{h^2}{710^2} \right) \right), & |h| < 710 \\ 4380767 & , |h| \ge 710 \end{cases}$$

Adapun model semivariogram Gaussian yang distandarisasinya sebagai berikut:

$$\begin{aligned} & \gamma(\vec{h_1}) \\ & = \begin{cases} 4380767 \left(1 - exp \left(-\left(\sqrt{\frac{\cos(90)h_x + \sin(90)h_y}{710}} \right)^2 + \left(\frac{\cos(90)h_y - \sin(90)h_x}{756} \right)^2 \right) \right), & h_1 < 1 \\ & 4380767 \end{cases} , \quad h_2 \ge 1 \end{aligned}$$

Tabel 3. Rangkuman Uji Kenormalan, Uji Q_1 dan Uji Q_2

Model	Uji Kenorma lan	Kesim pulan	Uji Q1	Kesimpulan	Uji Q2	Kesim pulan
Spherikal	0.399 >	Norma	- 0.342	Model	1.692	Model
	0.05	1	> 0.316	ditolak	> 1.48	ditolak
Eksponen	0.353 >	Norma	0.358	Model	2. 070 > 1.48	Model
sial	0.05	I	> 0.316	ditolak		ditolak
Gaussian	0.340 > 0.05	Norma I	0.026 < 0.316	Model tidak ditolak	0.61 < 1.335 < 1.48	Model tidak ditolak

Dari uji Kenormalan residual terbakukan menggunakan SPSS diperoleh nilai Sig. > 0.05 untuk ketiga model tersebut, jadi dapat disimpulkan residual terbakukan dari ketiga model tersebut

dianggap berdistribusi normal (Tabel 3 & Tabel 4.). Sedangkan untuk Uji Q_1 dan Q_2 dapat dilihat pada Tabel 3 di atas, yaitu hanya model Semivariogram Gaussian yang layak digunakan dalam metode kriging untuk menginterpolasi lokasi yang belum terobservasi atau layak digunakan untuk melakukan pengestimasian pada lokasi yang belum diketahui nilainya.

Uji Kenormalan

Pengujian kenormalan data menggunakan SPSS, diperoleh:

Model	Kolmogoro	v-Sm	Shapiro-Wilk				
Spherical	Statistic	df	Sig.	Statistic	df	Sig.	
Residu	.113	40	.200*	.971	40	.399	
Model	Kolmogoro	v-Sm	Shapiro-Wilk				
Exponential	Statistic	df	Sig.	Statistic	df	Sig.	
Residu	.083	40	.200*	.970	40	.353	
Model	Kolmogoro	v-Sm	irnov ^a	Shapiro-Wilk			
Gaussian	Statistic	df	Sig.	Statistic	df	Sig.	
Residu	.087	40	.200*	.969	40	.340	

Tabel 4. Uji Kenormalan

- a. Lilliefors Significance Correction
- *. This is a lower bound of the true significance.

Dari hasil uji kenormalan (Tabel 4) dengan SPSS diperoleh ke-3 residu terbakukan model semivariogram tersebut memiliki nilai sig > 0.05, baik dengan menggunakan uji Kolmogorov- Smirnov mupun uji Shapiro-Wilk. Jadi dapat disimpulkan residu terbakukan model semivariogram tersebut berdistribusi normal.

4. Kesimpulan

Dari ketiga model yang digunakan, yaitu model spherical, eksponensial dan Gaussian yang diaplikasikan pada data ketebalan cadangan batubara diperoleh model semivariogram terbaik adalah model Gaussian. Hal ini dapat dilihat dari residual terbakukannya Karena pada uji Q_1 , nilai dari

 $|Q_1|<rac{2}{\sqrt{n-1}}$ yaitu 0.02557461< 0.316227766 maka Model Gaussian tidak ditolak. Pada uji Q_2 , diperoleh nilai Q_2 hitung ($|Q_2|=1.335$) yang terletak antara batas bawah dan atas (tabel Q_2) yaitu: L=0.61<1.335<1.48=U maka model Gaussian Gaussian tidak ditolak, sehingga model semivariogram yang terbaik adalah model Gaussian.

Daftar Pustaka

- [1] Cressie, N. A. C., 1993, Statistics for Spatial Data, Resived Edition, John Wiley & Sons, New York.
- [2] Heryanti, D., 2007, Analisis Kriging Penaksiran Cadangan Batubara di Provinsi Bengkulu (Studi Kasus Pertambangan Batubara Kabupaten Seluma Kecamatan Seluma), Skripsi. Universitas Bengkulu.
- [3] Isaaks, E.H. and R.M. Srivastava, 1989, *Applied Geostatistics*. Oxford University Press: New York.
- [4] Kitanidis, P.K., 1999, Introduction To Geostatistics: Applications to Hydrogeology, Cambridge University Press, New York.
- [5] Oliver, M.A. 2010, Geostatistical Applications for Precision Agriculture. United Kingdom
- [6] Pfeiffer, D.U dan T. P. Robinson, 2008, Spatial Analysis in Epidemiology. Oxford University.
- [7] Sari, K.N., 2009, Model Semivariogram dan Estimasi Ordinary Kriging untuk Nilai Ujian Nasional SMP di Kota Bandung dan Cimahi, Tesis. Institut Teknologi Bandung.
- [8] Sarma, D.O. 2001, Geostatistics with Applications In Earth Sciences. Formerly at National Geophysical Research Institute (Council of Scientific and Industrial Research) Hyderabad, India.
- [9] Webster, R and M.A.Oliver, 2007, Geostatistics for Environmental Scientists, Second Edition. University of Reading, UK.
- [10] Wackernagel, H., 2003, *Multivariate Geostatistics*, 3rd ed ,Springer, Berlin, Heidelberg.