Table of Content

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Amorphous Coating of Iron Nickel Alloy</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Suryanto</td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Characterization of Electroplated Nanocrystalline NiFe Alloy Films</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Yusrini Marita and Iskandar I. Yaacob</td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Suryanto</td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Development of Carbon Doped TiO₂ Photocatalyst for Pigment Degradation</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Muh Rafiq Mirza Julaihi, Asep Sofwan Faturrohman Alqap and Iis Sopyan</td>
<td></td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Dynamic Mechanical Analysis of Carbon Fibre Composites</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid</td>
<td></td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Koay Mei Hye and Iskandar I. Yaacob</td>
<td></td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ' Precipitates</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Roslina Ismail and Iskandar I. Yaacob</td>
<td></td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Effect of Sintering Temperature on Protein Foaming-consolidation Porous Alumina-tricalcium Phosphate Composites</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Ahmad Fadli and Iis Sopyan</td>
<td></td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Electrical Property of ITO Thin Film Deposited by Rf Magnetron Sputtering</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana</td>
<td></td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Electrochemical Study of Zinc Selenide Thin Films Prepared for Photovoltaic Applications</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Souad. A. Mohamad, A. K. Arof</td>
<td></td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Electrodeposited CdS / CdTe Solar Cells</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Souad. A. Mohamad</td>
<td></td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Fabrication of Biomass Pellet from Mesocarp Fiber</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Zahirin Halim and NurshazanaMohamad</td>
<td></td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Fabrication of Kenaf Sandwich Panel</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Siti Khadijah Abdul Rahman and Zahirin Halim</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 14
Foam Impregnation Method for Artificial Bone Graft Application
: Study on the Effect of Drying Time 78
Fariza Abdul Rahman and Zuraida Ahmad

Chapter 15
Foam Impregnation Method for Artificial Bone Graft Application
: Study on the Effect of Sintering Temperature 84
Zuraida Ahmad and Fariza Abdul Rahman

Chapter 16
FTIR Analysis – Aluminium Hydroxide Treated with Silane Coupling Agent 89
Noorasikin Samat, Nor Suhaila Nor Saidi and Muhammad Saffuan Sahat

Chapter 17
Inorganic / Organic /Inorganic Double Junction Thin Film Solar Cells 92
Souad. A. Mohamad

Chapter 18
Investigation on The Effect of Ultra Violet on Cotton Albumen Composite 96
Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 19
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent 100
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Natural Dye Coated Nanocrystalline Tio2 Electrode Films for DSSCs 106
Souad. A. Mohamad and Iraj Alaei

Chapter 21
Normal Deposition to Anomalous Deposition 109
Suryanto

Chapter 22
Polymer Clay Nanocomposites: Part II- Synthesis of Polymer Nanocomposites 115
Noor Azlina Hassan, Norita Hassan

Chapter 23
Production of Porous Calcium Phosphate Ceramics through Polymeric Sponge Method 120
Asep Sofwan Faturohman Alqap, Nur Ain Rakman, and Iis Sopyan

Chapter 24
Silicone Doped Calcium Phosphate Powder Synthesized via Hydrothermal Method 126
Asep Sofwan Faturohman Alqap, Iis Sopyan and Zuria Farhana Kushaili

Chapter 25
Stress Analysis of Backend Metallization 132
Iskandar I. Yaacob and Goh Chia Lan

Chapter 26
Study on Metal Removing from Alumina Ceramics 137
Agus Geter Edy Sutjipto and Muhyiddin Bin Budah@Udah
Chapter 27
Surface Quality of *Dipterocarpus Spp* under Tropical Climate Change: Effect of Pre-Weathering
Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed

Chapter 28
Surface Topography of Sulphuric Treated Carbon Fibre
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 29
Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films
Scoh Hian Teh and Iskandar I. Yaacob

Chapter 30
Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions
Iskandar I. Yaacob

Chapter 31
The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 32
The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 33
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition
Agus Geter Edy Sutjipto, Sugrib Kumar Shah

Chapter 34
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized Zirconia Thin Film in Aqueous Acid Hydrofluoric
Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita

Chapter 35
ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications
Souad. A. Mohamad
Silicone Doped Calcium Phosphate Powder Synthesized via Hydrothermal Method

Asep Sofwan Faturohman Alqap1, Isy Sopyan1 and Zuria Farhana Kushaili2
1,2: Faculty of Engineering – International Islamic University Malaysia
Email: sopyan@iium.edu.my; asepsofwan4@gmail.com

Keywords: Hydroxyapatite, Octacalcium Phosphate, Silicone, Hydrothermal, Synthesis.

Abstract. Synthetic pure hydroxyapatite have excellent biocompatibility and a little osseous inductivity, however, there are still some shortcomings such as the high degree of crystallinity and the quite stability of the structure. It is known also that Si is incorporated in biological body and improved bone remodeling. 0.5, 1, 2, 5 and 10% mol Si dope have been attempted to incorporate in calcium phosphate trough hydrothermal synthesis method. After calcination of 700°C Ca-deficient hydroxyapatite transformed to octacalcium phosphate for 2 and 5% Si only while the others transformed to β-tricalcium phosphate. Crystallinity of the samples reduced with Si mol increases and calcination temperature increases as well.

Introduction
A standard strategy applied when a bone loss occur is bone grafts which include autografts, allografts, and xenografts. However those are with some critical disadvantages, with such critical arguments on applications of naturally derived bone grafts, development of artificial bone substitution materials made from metals, ceramics, polymers, and composites are of a great importance [1]. It is important to note that the synthetically produced hydroxyapatite and other calcium phosphates have long been considered as potential bioceramics due to the similarity to the inorganic component of bone [2]. Amongst bioceramics, hydroxyapatite, HA (Ca$_{10}$(PO$_4$)$_6$(OH)$_$_$_2$), is the most important calcium phosphate used for bone replacement [3]. It was reported that hydroxyapatite (HA) has excellent biocompatibility due to its similarity to the inorganic tissue of the matrix of bone and its chemical and crystallographic structure. Moreover, HA is a bioactive material which means it can be integrated into bone structures, supporting bone in-growth without breaking down or dissolving, and it interacts with the living tissue due to the presence of free calcium and phosphate compounds. This property makes HA extremely attractive and widely used as a material for bone implants [4].

The synthetic pure HA have excellent biocompatibility and a little osseous inductivity, however, there are still some shortcomings such as the high degree of crystallinity and the quite stability of the structure. From the point of view of the biocompatibility, HA shows an excellent performance, due to its similarity with the mineral component of the bone. However its bioactive behavior, that is, the ability to join to the living bone when they are implanted, is lower compared to other biomaterials such as bioactive glasses. One of the alternatives to improve the bioactivity of HA is to incorporate silicon into the apatite structure [5]. Silicon (~5 wt%) was observed in active growth areas, such as the osteoid of the young bone of mice and rats and that silicon deficiency in a rat model led to skull deformations, resulting in nodular poorly defined mineral crystals, indicative of a primitive type of bone. Studies have also demonstrated a relationship between the level of