PROCEEDINGS

THE 3rd INTERNATIONAL SYMPOSIUM FOR SUSTAINABLE HUMANOSPHERE [ISSH]-A Forum of the Humanosphere Science School [HSS] 2013

The Dynamic Interaction between People and Ecosystems for the Future of Human Sustainability

September, 2013 Gedung Rektorat, University of Bengkulu - Bengkulu INDONESIA

Organized by

Research and Development Unit for Biomaterials – LIPI
Research Institute for Sustainable Humanosphere – Kyoto University
Faculty of Agriculture – University of Bengkulu

Supported by

Center for South East Asian Studies (CSEAS) – Kyoto University
International Center for Interdisciplinary and Advanced Research (ICIAR)

– LIPI

Published by
Research and Development Unit for Biomaterials - LIPI
2014

SCIENTIFIC COMMITTEE AND EDITORS OF ISSH BENGKULU 2013

Chief

Dr. Wahyu Dwianto, M.Agr. (LIPI, Indonesia)

Atmospheric Sciences

Prof. Dr. Mamoru Yamamoto (RISH Kyoto University, Japan)

Biosphere Sciences

Prof. Dr. Priyono Prawito (UNIB, Indonesia)

Dr. Marwanto, M.Sc. (UNIB, Indonesia)

Dr. Chaisit Preecha (Rajamangala University of Technology Srivijaya, Thailand)

Geosphere Sciences

Dr. Munasri (LIPI, Indonesia)

Social Economic Sciences

Dr. Motoko Shimagami (CSEAS Kyoto University, Japan)

Forest Sciences

Dr. Haris Gunawan (Riau University, Indonesia)

Dr. Soo Min Lee (CIFOR, Indonesia)

Wood Science and Technology

Prof. Dr. Subyakto (LIPI, Indonesia)
Dr. Euis Hermiati, M.Sc. (LIPI, Indonesia)
Dr. Ridwan Yahya (UNIB, Indonesia)

Wood and Urban Pest Management

Prof. Dr. Tsuyoshi Yoshimura (RISH Kyoto University, Japan)
Prof. Dr. Chow-Yang Lee (USM, Malaysia)

Firda Aulia Syamani, S.TP., M.Si.
Deni Zulfiana, S.Si., M.Si.
Fitria, M.Food.Sc.
Ika Wahyuni, S.Si., M.T.
Ismail Budiman, S.Hut., M.Si.
Ikhsan Guswenrivo, S.T., M.Sc.
Lucky Risanto, S.Si.
Ari Kusumaningtyas, S.T.

PREFACE

The 3rd International Symposium for Sustainable Humanosphere 2013 attracted the interest of scientists from Indonesia and Japan. The symposium covered the disciplines of community-based development and social economic science (climate change and society; ecosystem and community; the economical of natural resources; the role of traditional knowledge and values in managing ecosystems; women and natural resources), atmospheric science (airpollution; equatorial atmosphere; global climate change models; land-ocean weather systems; radar observations; solar activities; space environment; weather patterns), biosphere science (agricultural in changing world; animal ecology and animal husbandry; anthropological approach; bio-indicator; ethnobotany; food security; human development index), geosphere science (earth geological dynamics and natural disasters; earth carbon cycle dynamics; heat, water and CO; hydrology and water management system; land resource management), wood science and technology (biomass conversion; carbonized wood based composites; cellulose; chemical, physical and mechanical properties of wood; timber structure; wood for energy; wood cell formation; wood biochemistry; wood anatomy and plant physiology; wood deteriorating organisms; wood preservation; wooden construction; wood-based material; wood adhesive), wood and urban pest management (insect pest management, ecology and biology of urban pests, control of urban pest including biological, cultural, mechanical, physical and chemical controls), and forest science (biodiversity and society; biodiversity in tropical plantation forests; climate change and biodiversity; forest biomass dynamics; forest carbon accounting and monitoring; forest fire; invasive species; intensive silviculture; structure, growth and function; tree biotechnology). The technical program consisted of 38 oral presentations under 11 sessions and 19 poster presentations.

This publication is a compilation of presented papers. Every effort has been carried out to retain the original meaning and views of authors during the editing processes. All claims on trade products and processes and views expressed do not necessarily imply endorsement by the editors.

We believe that this publication will be a useful source of information and achieved its primary objective of disseminating new experiences and information to researchers, academics, policy makers and students.

The organization of this international gathering and compilation of the proceedings could not have been achieved without the combined effort of all members of the organizing committee and the supports of Research Institute for Sustainable Humanosphere (RISH), Center for South East Asian Studies (CSEAS) Kyoto University, International Center for Interdisciplinary and Advanced Research (ICIAR) – LIPI, University of Bengkulu (UNIB). The editors hereby wish to acknowledge the contributions of all parties.

Editors March , 2014

TABLE OF CONTENTS

cientifi	c Committee		ii
reface			iv
able of	Content	8	v
Ceynote	s Paper		
No	Author	Title	Page
1.	Siti Nuramaliati Prijono	BIODIVERSITY FOR SUSTAINABLE DEVELOPMENT	xii
2.	Soekotjo	INDONESIA GREEN BUSINESS STRATEGY	xiii-xxiii
3.	Bambang Subiyanto, Firman Tria Ajie, Ferianto, Syafrizal Maulana, Kimihiro Tanaka, Tsuyoshi Tokunaga, Yukio Kawamoto, Fumihiko Sugiyama, dan Ken	SUPER SWEET Sorghum (Sorghum bicolor (L.) Moench) POTENTIAL AS A RAW MATERIAL INDUSTRY IN INDONESIA	xxiv
4.	Ikehata Motoko Shimagami	LEARNING FROM COMMUNITIES, BRIDGING GENERATIONS: INDONESIA- JAPAN COLLABORATIVE PROJECT FOR DOCUMENTING COMMUNITY'S ECOLOGICAL KNOWLEDGE	xxv
5.	Herry Purnomo, Agus Djoko Ismanto and Bayuni Shantiko	COMMUNITY DEVELOPMENT MODELS IN HANDLING CONFLICTS IN FORESTED LANDSCAPE: TOWARDS HORIZONTAL AND VERTICAL EQUITY	xxvi -xl
6.	Munasri	THE USE OF MODIFIED MERCALLI INTENSITY (MMI) SCALE FOR THE GUIDANCE OF PREPAREDNESS IN EARTHOUAKE ANTICIPATING	xli
7.	Chaisit Preecha, Wethi Wisutthiphaet and Pornsil Seephueak	OCCURRENCE OF SILENCE DEAD, WHITE ROOT DISEASE (Rigidoporus microporus) ON PARA RUBBER (Hevea brasiliensis) AT SOUTHERN PART OF THAILAND	xlii-xlviii
8.	Wiryono and Yansen	THE CHALLENGES FOR SUSTAINABLE FOREST MANAGEMENT IN BENGKULU PROVINCE: A BROAD REVIEW	xlix-lvii
9.	Soo Min Lee, Byeong-Ill Na, Byoung-Jun Ahn and Jae-Won Lee	MESOCARP, OIL PALM RESIDUES AND TORREFACTION FOR IMPROVING ITS ENERGY CONTENT	lviii-lxvii
10.	Chow-Yang Lee	SUSTAINABLE URBAN PEST MANAGEMENT IN SOUTHEAST ASIA – CHALLENGES AND FEASIBILITIES	lxviii

11,	Mamoru Yamamoto	OVERVIEW OF RADAR STUDIES OF EQUATORIAL ATMOSPHERE AND IONOSPHERE IN INDONESIA	
Participa	nts Paper	v.	
Commun	ity-based Development a	and Social Economic Science	
A - 03	Savitri Dyah and	APPROPRIATE TECHNOLOGY DIFFUSION IN	1-5
	Rachmini Saparita	SUPPORT FOR SUSTAINABLE DEVELOPMENT	
lo van		IN BORDER LINE EAST NUSA TENGGARA	
A - 04	Ema Septaria	FROM FISHERIES CONSERVATION TO	6-12
		COMMUNITY SUSTAINABILITY (STUDY ON BENGKULU GOVERNMENT'S POLICY ON	
		FISHERIES)	
Atmosph	eric Science		
B-03	Muhamad Nur and	COMPARISON OF MONTHLY PRECIPITATION	13-19
	Iskhaq Iskandar	FROM RAIN-GAUGE AND TRMM SATELLITE	
		OVER PALEMBANG DURING 1998-2008	
B-04	Fikri Bamahry,	ANALYSES ON SPATIAL DISTRIBUTION OF	20-24
	Khomsin, Susilo, and	ATMOSPHERIC WATER VAPOR OVER EAST	
	Joni Efendi	JAVA REGION, INDONESIA USING	
D 06	VI M. TGl.	CONTINUOUS GPS ANALYSIS OF SEA SURFACE HEIGHT USING	25-30
B-05	Khomsin, M. Taufik, Yuwono, and	WAVEFORMS RETRACKING IN THE COASTAL	23-30
	Dewangga Eka	AREA (CASE STUDY: JAVA SEA)	
Geosphe	re Science		
C-01	Gusta Gunawan,	ASSESSING WATER DISCHARGE IN	31-37
	Besperi, M. Khairul	MANJUNTO WATERSHED-INDONESIA USING	
	Amri Rosa, and Melli	GIS AND SWAT MODEL	
223 (1929)	Suryanty		
C-02	Fahrudin and Drajat	PALEOSEISMOLOGY STUDY AT KALIGARANG	38-45
	Agung Permana	FAULT ZONE RESULT EARTHQUAKE IN THE PAST, SEMARANG, INDONESIA	
C-03	Diyan	CALCULATION OF DISASTER RISK VALUE IN	46-55
C-03	Parwatiningtyas,	THE PROSPECT MINING AREA, BLITAR	40-55
	Erlin Windia	DISTRICT, EAST JAVA USING MICROTREMOR	
	Ambarsari, and Dwi	ANALYSIS	
	Marlina, Yogi		
	Wiratomo		
C - 04	Sonny Aribowo and	GEOMORPHIC FEATURES ALONG THE MANNA	56-62
	Indah Pratiwi	FAULT SEGMENT OF SUMATRAN FAULT	
		ZONE BASED ON REMOTE SENSING	
	o	INTERPRETATION	60.60
C = 05	Qurna Wulan Sari,	CHARACTERISTICS OF TEMPERATURE AND	63-69
	Udrekh, Azhar K. Affandi, and Emi	PRESSURE ON GAS HYDRATE STABILITY ZONE USING SEISMIC 2D-MULTI CHANNEL	
	Analui, alu cilli	IN SIMELLIE FORE ARC RASIN SUMATRA	

Forest Sc			222-277
E-02	Haris Gunawan, Shigeo Kobayashi, Kosuke Mizuno, Yasuyuki Kono, Wahyu Dwianto, and Sukma Surya Kusumah	THE PROMOTION OF RURAL COMMUNITIES PARTICIPATION TO CONSERVE BIOMASS AND CARBON FUNCTIONS OF PEATLAND ECOSYSTEM IN RIAU BIOSPHERE RESERVE	137-144
E-03	Hanifa Marisa, Nita Aminasih, and Muharni	THE PROVING OF POWERLESS MYSTIC OF AKAR NYILUM (Millettia pachycarpa) IN KEMELAK FOREST AREA, BATURAJA, SOUTH SUMATERA	145-148
E-04	Siti Latifah	POTENTIAL OF BIOMASS AND SPATIAL DISTRIBUTION OF FOREST PLANTATION OF HYBRID EUCALYPTUS	149-155
E-05	Widyatmani Sih Dewi, Sumarno, and MTh. Sri Budiastuti	TREES CHARACTERIZATION POTENTIALLY TO REHABILITATION OF WATER CATCHMENT AREAS AFTER 2010 th MOUNT MERAPI ERUPTION	156-162
E-06	Septri Widiono, Ketut Sukiyono, and Enggar Apriyanto	POPULATION PRESSURE ON THE VILLAGES AROUND KERINCI SEBLAT NATIONAL PARK (TNKS) OF LEBONG DISTRICT, PROVINCE OF BENGKULU, INDONESIA	163-169
E-07	Yansen, Robert A. Congdon, and Paul R. Williams	THE ESTABLISHMENT OF Alstonia muelleriana, A RAINFOREST SPECIES IN WET SCLEROPHYLL FOREST IN NORTH QUEENSLAND FAVOURED BY FIRE: IMPLICATIONS FOR ITS MANAGEMENT	170-175
Wood Sc	ience and Technology		
F-01	Wahyu Dwianto, Fitria, Ika Wahyuni, and Sri Hartati	A STUDY ON THE MECHANISM OF CELLULOSE DEGRADATION BY ENZYME	176-180
F – 04	Irfan Gustian, Eka Angasa, Ghufira, and Hairulumah	POLYELECTROLYTE MEMBRANE BASED ON FIBER OF WASTE OF PALM OIL INDUSTRY	181-186
F-05	Euis Hermiati, Widya Fatriasari, Dede Heri Yuli Yanto, Faizatul Falah, and Lucky Risanto	NATURAL RUBBER-BASED WOOD ADHESIVE TO SUPPORT GREEN BUILDINGS	187-194
Wood an	d Urban Pest Manageme	ent	
G-01	Kazuko Ono, Toshimitsu Hata, Tsuyoshi Yoshimura, and Kazuhiko Kinjo	DECAY PERFORMANCE OF TERMITE MUSHROOM, Termitomyces eurrhizus AND THE SEM OBSERVATION OF DECAYED WOOD	195-198

		3.	
G-02	Suswati, Asmah Indrawati, and Deddi Prima Putra	THE USE OF COCONUT FIBRE AND ARBUSCULAR MYCORRHIZAL FUNGI TO ENHANCE PISANG BARANGAN SEEDLING RESISTANCE TO BLOOD DISEASE BACTERIUM AND Fusarium Oxysporum F SP. CUBENSE	199-204
G-03	Munadian, Yuiji Nakada, Yoshida Makoto, Ridwan Yahya, Mucharromah, and Tsuyoshi Yoshimua	ANALYSIS OF FUNGAL DIVERSITY EXISTING IN NATURAL AGARWOOD (JINKOU) OF Aquilaria malacensis FROM BENGKULU, SUMATERA USING DENATURING GRADIENT GEL ELECTROPHORESIS	205-208
G-04	S. Khoirul Himmi, Tsuyoshi Yoshimura, Yoshiyuki Yanase, Masao Oya, Toshiyuki Torigoe, and Setsuo Imazu	EVALUATION OF NEST-FOUNDING BEHAVIOR OF PRIMARY REPRODUCTIVES OF THE INVASIVE DRYWOOD TERMITE Incisitermes minor (Hagen) (Isoptera: Kalotermitidae) BY X-RAY TOMOGRAPHY	209-212
G-05	Titik Kartika, Tsuyoshi Yoshimura, and Nobuhiro Shimizu	AGGREGATION BEHAVIOR OF THE POWDER POST BEETLE, Lyctus africanus (LESNE)	213-216
G-06	Asmah Indrawati and Suswati	THE STUDY OF SUPPRESSIVE EFFECT BIOFUMIGANT BRASSICACEAE AND MYCORRHIZAE FUNGI INDIGENOUS TO BLOOD DISEASE BACTERIUM ON PISANG BARANGAN SEEDLING	217-222
G-07	Siti Herlinda, Rafika Dewi, Triani Adam, Suwandi, Rosdah Thalib, and Khodijah	SPECIES ABUNDANCE AND DIVERSITY OF PREDATORY SPIDERS FOR INSECT PEST OF RATOONING RICE APPLIED BY MYCOINSECTICIDE AND WITHOUT MYCOINSECTICIDE	223-230
G – 09	Fanani Haryo Widodo, Chairil Anwar, Ngudiantoro, Dwi Setyawan, and Darmawijoyo	MALARIA TRANSMISSION AS A PROBLEM OF DYNAMIC INTERACTION BETWEEN PEOPLE AND ECOSYSTEM AND ITS SOLUTION THROUGH QUANTITATIVE APPROACH CASE STUDY ON MALARIA TRANSMISSION IN BENGKULU CITY	231-239
Poster Pr	esentation		
P-01	Savitri Dyah	TECHNOLOGY TRANSFER FOR EMPOWERMENT OF SMALL SCALE FOOD PROCESSING ENTERPRISE	240-244
P-03	Bandi Hermawan	DEVELOPING REMOTE SOIL MOISTURE MONITORING TECHNIQUES FOR IMPROVED DECISION MAKING ON IRRIGATION	245-250
P-04	Muhammad Fauzi, Dwi Setyawan, Budhi Setiawan, and Ridhah Taqwa	ANALYSIS OF THE SOIL BEARING CAPACITY FOR SETTLEMENT IN THE CONSTRUCTED AREA IN WETLANDS (CASE STUDY IN SUB- DISTRICT OF MUARA BANGKAHULU, BENGKULU CITY)	251-258

P-05	Sunarti, Heri Junedi, and Refliaty	SOIL CARBON STOCK AS AFFECTED CONSERVATION FARMING SYSTEM	259-263
		APPLICATION ON SOYBEAN FARMING	
P - 08	Marulak Simarmata,	INITIAL DETECTION OF SENSITIVITY OF	264-271
	Dwi Wahyuni	UPLAND RICE CULTIVARS UNDER	
	Ganefianti, and	ALUMINUM STRESS	
	Rinova C. Manurung		
P-09	Deni Zulfiana and	THE EFFECTIVENESS OF Metarhizium anisopliae	272-275
	Anis Sri Lestari	AND Nomuraea rileyi EXTRACT TOWARDS	
		Spodoptera litura ON LABORATORY SCALE	
P-10	Efratenta Katherina	THE EFFECT OF GROWTH SITE FACTORS AND	276-283
	Depari, Istomo, and	SILVICULTURAL TREATMENTS ON	
	Omo Rusdiana	PRODUCTIVITY OF KAYU BAWANG (Dysoxylum	
		mollissimum Blume) IN PRIVATE FOREST IN	
		BENGKULU	
P-13	Danang Sudarwoko	ANATOMICAL AND PHYSICAL PROPERTIES	284-291
	Adi, Lucky Risanto,	OF FAST GROWING WOOD SPECIES FROM	
	Ratih Damayanti, Sri	CENTRAL KALIMANTAN AS STRUCTURAL	
	Rullyati,	MATERIAL	
	Ruliyana Susanti,		
	Euis Hermiati, and		
	Takashi Watanabe		
P-16	Wida	FIBRILLATION PROCESS DEVELOPMENT OF	292-299
	B.Kusumaningrum,	FIBERS FROM MILLED EMPTY FRUIT BUNCH	
	Ismadi, and Sasa	(EFB) AND CHARACTERISTICS OF POLYVINYL	
	Sofyan M	ALCOHOL/ EFB FIBERS COMPOSITES	
P-17	Kurnia Wiji	PHYSICAL AND MECHANICAL PROPERTIES OF	300-304
	Prasetiyo, Lisman	POLYLACTIC ACID-FILLED CHITIN OR	
	Suryanegara, and	CHITOSAN COMPOSITES	
	Subyakto		
P - 18	Yusup Amin and	ANATOMICAL CHARACTERISTICS OF	305-310
	Imam Wahyudi	WANGKAL WOOD (Albizia procera (Roxb.) Benth)	
P-19	Didi Tarmadi, S.	LARVICIDAL ACTIVITY OF Cerbera manghas	311-316
	Khoirul Himmi, and	EXTRACT AGAINST TWO MOSQUITO	
	Sulaeman Yusuf	VECTORS, Aedes aegypti AND Culex	
		quinquefasciatus (Diptera: Culicidae)	
P - 21	Buyung Keraman,	CONTACT TRACING STRATEGY TO IMPROVE	317-320
	H.M.T. Kamaluddin,	THE FINDING QUALITY OF TUBERCULOSIS	
	Ngudiantoro, and	(TB) SUSPECTS	
	Dwi Putro Priadi	IN BENGKULU TENGAH DISTRICT	
P - 24	Irma Calista Siagian,	TOMATO PLANT RESPON TO DIFFERENT	321-325
	Taupik Rahman,	DOSAGE OF NPK PHONSKA FERTILIZER IN	
	Yulie Oktavia, and	SUNGAI SERUT SUBDISTRICT, BENGKULU	
	Yartiwi	CITY	
P-25	Sri Suryani M	SITE SPECIFIC FERTILIZATION OF RGL CITRUS	326-330
	Rambe, Irma Calista	IN LEBONG DISTRICT, PROVINCE OF	
	Siagian, and Kusmea	BENGKULU	
	Dinata		

.

POPULATION PRESSURE ON THE VILLAGES AROUND KERINCI SEBLAT NATIONAL PARK (TNKS) OF LEBONG DISTRICT, PROVINCE OF BENGKULU, INDONESIA

Septri Widiono¹*, Ketut Sukiyono¹, Enggar Apriyanto²

¹Department of Agricultural Socio-Economic Faculty of Agriculture University of Bengkulu ²Department of Forestry Faculty of Agriculture University of Bengkulu Jl. WR. Supratman Kandang Limun Bengkulu

*Corresponding author: sep3w@live.com

Abstract

The sustainability of Kerinci Seblat National Park (TNKS), especially the forest located in the Lebon District, is largely determined by the carrying capacity of surrounding villages. The carrying capacity can be described by the index of population pressure. According to this calculation of the sample villages shows that the population pressures of villages around TNKS were already happening (the average population pressure index is 3.5). This was means that there had been an over population in the majority of the sample villages because of the numbers above 1.00. Population pressure occurs more due to underdeveloped non-farm activities, while the productivity of the farm activities were still relatively low. Based on these facts, the carrying capacity could be increased by improving the application of technology and the creation of the attraction to the area in order to increase the population dynamics.

Keywords: Kerinci Seblat National Park, carrying capacity, population pressure, population dynamic

Introduction

Sustainable development was better understood as a form of natural resources use with respect to the availability and the ability to support any particular livelihood [1,2]. A simple depiction of sustainable development could be supposed to the drivers. They must consider the availability of fuel in the tank. How fast is the speed of oncoming vehicles depending on the vehicle capabilities. The ability of the resources that available in the nature can be described as the carrying capacity of land either physically or their biocapasity.

Starting from these understandings, sustainable development requires a natural resources management tools. The depiction described above indicate the importance of management tools that can reveal how much the capacity has been used by humans to support their life in achieving a certain level of prosperity. There was an old approach to analyze the human relationship with the environment proposed by Duncan by namely POET models [3]. POET models reveal any factors that determines the dynamics of the relationship between humans and the environment namely Population, Organization, Environment, and Technology. This model deals with the concept of carrying capacity where the ability of land to support a particular level of life was seen as direct and indirect impact of the four factors.

The carrying capacity can be determined by calculating the population pressure. Population pressure is a symptom of over population in the region, which are linked to the availability of resources, according to the desired standard of living in the area concerned. Population pressure occured when the population in the region has exceeded the carrying capacity [4].

The population pressure in the agrarian dominant areas were heavily influenced by farming system used. For example the wetland farming systems and the shifting cultivation systems will indicate population pressure levels different. If the pressure of population has occurred then it will most likely happen deterioration in the quality of wealth and the natural resources, population pressure to the villages around the forest could lead to forest clearing activities to the deepest location.

At the global level, the environmental degradation (i.e deforestation) are generated by the interaction of economic, demographic, cultural, and political causes [5]. There were two aspects, namely deforestation and the elements that are often cited as a cause, such as agricultural expansion as the tautological explanation [6]. An efforts to explain the destruction of forests by linking human activity as an independent variable will not find a comprehensive conclusion because it turns out their correlation are mutually influencing relationship. Environmental sustainability (forest) also determines the level of living of the population, vice versa [1]. The dynamic interaction of human and forest described as a reciprocal relationship between the demographic system, social system, and ecosystem [7].

For example, shifting cultivation activities. In general, the actors were small farmers who embrace the culture shifting cultivation in the forest areas. Sedentary activity was an agrarian culture reflection in order to sustain their life that contributed to the degradation of forests [8]. The destruction of forest on the other side also threaten the sustainability of the population livelihood because generally they also utilized either the forest timber and non-timber for various purposes of their life.

The phenomenon of deforestation and forest degradation in Indonesia, could be caused by the people's activities that settled around the forest. Forest Watch Indonesia suggested that the destruction of forests caused by several things such as timber extraction both by forest concession holders (HPH) and the activities of illegal logging, industrial timber opening (HTI), large-scale plantations of oil palm plantations, and small-scale agriculture [9].

Forest areas in Bengkulu Province were the threatened location sustainability due to people's activities. The rate of destruction of Kerinci Sebelat National Park (TNKS) in Bengkulu Province was very high, ie at the beginning of 2004 as much as 36.27% (123,534.58 ha) has been severely damaged (the condition of non-forest) area of 340 575 ha that are included in the administrative area of the Province of Bengkulu [10]. TNKS located in the Province of Bengkulu stretched in position 2 ° 16'36 .59 "S to 3 ° 27'2 .50" S and 101 ° 17'7 .76 "E to 102 ° 42'8 .52" E. Geaographically TNKS are in the District of Mukomuko, North Bengkulu, Rejang Lebong, and Lebong.

Kerinci Sebelat National Park (TNKS) established by the Decree of the Minister of Agriculture No. 736/Mentan/X/1982 then amplified by Decree of the Minister of Forestry and Plantations No. 901/kpts-II/1999 as conservation areas. The other areas were also confirmed as a Rimbo Pengadang Conservation Forest Areas Registers 42 and conservation areas Boven Lais that the first was designated as conservation forest by the Dutch Colonial Administration about 1927 known as the forest boundary Boszwezen [11].

The population and population density factors have to be recognition so we can know the demographic aspect contributing to the destruction of TNKS in Lebong district. Furthermore, it can be estimated also the impact on the sustainability of the livelihood system of people living around TNKS. So this study aimed to estimate the index of population pressure in the villages around TNKS.

Materials and Methods

The research was conducted in the district of Lebong, Province of Bengkulu. The early stage was identifying the villages that are directly contiguous to the forest. Data obtained from the sub-district office, there are 41 villages contiguous to the forest. Furthermore, the villages were randomly selected 20 of 41 villages directly contiguous to the TNKS.

The data collected consisted of the number of population, the annual rate of population growth, land use, land productivity, various of employment, and household income. Data collected by documenting the data available at the village office. If not available, conducted interviews with village heads and then loaded on the checklist provided. Especially revenue data was conducted by a survey of 15 households in each village randomly.

Population pressure index was calculated using the formula [12], namely:

$$PP_t = (1 - \alpha_t) \frac{F_t P_0 (1 + r)^t}{L_t}$$

where:

PP_t	= Population indexat year t
t	= Year
L_{t}	= Agricultural land area at year t
Z_t	= Average of agricultural land area required by each people at a needed standard of
	living
P_0	= Population at starting year
r	= Annual rate of population growth at year t
F_t	= Proportion of farmer population
α_t	= Proportion of non-farm to the farmer income

Population pressure indexes were calculated for each sample villages in 2012 and 2017. Here selected 2010 as a base year for determining population estimates for the year. In addition to productivity and agricultural land, use extrapolation techniques. The proportion of non-farm income was determined based on household surveys. While the standard of living used the World Bank poverty line of U.S. \$ 2.00 (IDR 18,500) per capita per day; conversion of paddy into rice by 0.6, and rice productivity comparisons, dryland, and the estate was 10:5:6.

Results and Discussion

Population and its growth

Villages around TNKS have a different population (Table 1). Population minimum was the village of Talang Baru Sub-District of Rimbo Pengadang (370) and the maximum one was the village of Talang Leak 1 Sub-District of Lebong Selatan (1,833).

The annual population growth rate ranged from 0.67% to 6.73%. In general, these villages has had a population growth rate was quite high (more than 1:00%), except for the villages in the sub-district of Pinang Belapis (0.67%) and the Village Tambang Sawah and Air Kopras Sub-District of Lebong Tengah (0,67). There was a village with the highest growth in the village of Kota Baru Sub-District of Embong Uram.

The annual growth rate of population in these villages might be come from natural increases, the population growth was caused by the birth and death. There was no migration data making it difficult to quantitatively estimate the contribution of population movement to the total population. However, qualitatively it can be stated that the District of Lebong was a place that did not pass the road across the province so that the development of the region was relatively slow. Evens more not grown yet the industry that attracts people to come in and look for a job.

Tabel 1. Population and annual growth rate of villages around TNKS

No.	Villages	Year	Population	Growth Rate 2000-2010 (%)
	Sub-District of Rimbo Pengadang			
1.	Talang Ratu	2010	1,086	1.19
2.	Air Dingin	2010	1,323	1.19
	Sub-District of Topos			
3.	Talang Donok	2010	442	1.53
4.	Talang Baru	2010	370	1.53
	Sub-District of Bingin Kuning			
5.	Talang Leak 1	2010	1,833	1.62
6.	Kr. Dapo Atas	2010	1,039	1.62
7.	Kr. Dapo Bawah	2010	1,282	1.62
8.	Pl. Talang Leak	2009	1,015	1.62
	Sub-District of Lebong Atas			
9.	Desa Baru	2007	500	2.5
10.	Pelabi	2007	740	2.5
11.	Atas Tebing	2010	767	1.89
12.	Danau	2007	938	1.89

	Sub-District of Pinang Belapis			
13.	Ketenong 1	2009	568	0.67
14.	Ketenong 2	2009	478	0.67
15.	Sebelat Ulu	2009	310	0.67
	Sub-District of Embong Uram			
16.	Kota Baru	2010	672	6.73
17.	Talang Sakti	2009	1,388	1.73
18.	Tambang Sawah	2009	663	0.67
19.	Ujung Tanjung	2009	1,800	1.73
20.	Air Kopras	2010	666	0.67

Source: Villages Prophile and Monograph of Sub-District in District of Lebong 2007, 2009, 2010.

Land use and agrarian density

Land use was categorized based on the format issued by the Ministry of Home Affairs which was provided as a data base of every village, which consists of wetland, dryland, garden, swamp, yard, community forests, and state forests. Under the category then we classified in to two types of land namely arable land and non-arable land [4].

The villages around TNKS were generally more dominant arable land (Table 2). For example, the villages in the sub-district of Rimbo Pengadang, about 80% were arable land. In fact there were also villages where the amount of arable land close to 100%. There are two villages namely Talang Sakti and Tambang Sawah Sub-District of Embong Uram where 100% were arable land. The villages of this type means to the potential for agricultural development although not optimal cultivated, depending on the technology used and their capabilities.

The villages in the Sub-district of Lebong Atas were generally more dominant non-arable land (Table 2). Even the village of Atas Tebing nearly 100% was non-arable land, especially forests. The villages with a dominant type of non arable land indicates many lands that difficult to cultivate. Most of the non-arable land consists of swamps, community forests and state forests.

Real condition of arable lands in sustaining population was showed by agrarian density. According to the Table 2, generally were low agrarian density (below 3 people/ha). However, in some villages, especially in Sub-District of Embong Uram agrarian density was very high (above 6 people/ha). One even was reaching 11 people/ha, the Village Tambang Sawah.

Table 2. Land use and agrarian density of villages around TNKS

No.	Villages	Year	Arable Land (hectare)	Non Arable Land (hectare)	Agrarian Density (people/ha)
	Sub-District of Rimbo Peng	gadang			
1.	Talang Ratu	2010	678 (84.2)	127 (15.8)	1,49
2.	Air Dingin	2010	611 (83.2)	123 (16.8)	2,01
	Sub-District of Topos				
3.	Talang Donok	2010	137 (48.2)	147 (51.8)	3,00
4.	Talang Baru	2010	192 (60.6)	125 (39.4)	1,79
	Sub-District of Bingin Kun	ing			
5.	Talang Leak 1	2010	812 (95.9)	35 (4.1)	2,10
6.	Kr. Dapo Atas	2010	740 (98.0)	15 (2.0)	1,31
7.	Kr. Dapo Bawah	2010	106 (79.1)	28 (20.9)	11,25
8.	Pl. Talang Leak	2009	835 (78.8)	225 (21.2)	1,13
	Sub-District of Lebong Ata	S			
9.	Desa Baru	2007	100 (32.8)	205 (67.2)	3,85
10.	Pelabi	2007	300 (31.6)	650 (68.4)	2,20
11.	Atas Tebing	2010	145 (1.4)	10,004 (98.6)	4,50
12.	Danau	2007	1,089 (67.1)	535 (32.9)	0,80

	Sub-District of Pinang B	elapis			
13.	Ketenong 1	2009	155 (31.0)	345 (69.0)	2,38
14.	Ketenong 2	2009	280 (73.7)	100 (26.3)	1,45
15.	Sebelat Ulu	2009	380 (77.9)	108 (22.1)	0,73
	Sub-District of Embong	Uram			
16.	Kota Baru	2010	78 (79.6)	20 (20.4)	8,01
17.	Talang Sakti	2009	127 (100.0)	0 (0.0)	10,16
18.	Tambang Sawah	2009	24 (100.0)	0 (0.0)	11,05
19.	Ujung Tanjung	2009	260 (95.4)	12.5(4.6)	6,23
20.	Air Kopras	2010	165 (39.3)	255 (60.7)	3,23

Source: Villages Prophile and Monograph of Sub-District in District of Lebong 2007, 2009, 2010. (Data processed) Notes:

- a. Arable land consists of wetland, dryland, and estate.
- b. Non arable land consists of swamp, yard, community forest, and state forest.
- c. Agrarian density is number of people who depend on agriculture per hectare of arable land.
- d. Numbers in the parentheses indicate percentage.

Population Pressure Index

The result of calculation of sample villages showed that the villages around TNKS, population pressure were already happened in 2012 (average of the population pressure index 3.21). This figure means that it has occurred over population in the sample villages (indexes above 1.00). Even there were some indexes very high, the Village Kr. Dapo Bawah, Kota Baru, Talang Sakti and Tambang Sawah. Contrary there were only 4 villages that have not experienced population pressure (population pressure indexes below 1.00), namely Talang Baru, Pelabi, Atas Tebing, and Danau. Population pressure will increase in 2017 (the average population pressure index 3.54). Completed results of the calculations are presented in Table 3.

Table 3. Population Pressure Index of Villages around TNKS, 2012 and 2017

No.	Village	2012	2017
	Sub-District of Rimbo Pengadang		_
1.	Talang Ratu	1.28	1.36
2.	Air Dingin	2.76	2.93
	Sub-District of Topos		_
3.	Talang Donok	1.83	1.97
4.	Talang Baru	0.26*	0.28*
	Sub-District of Bingin Kuning		
5.	Talang Leak 1	2.00	2.16
6.	Kr. Dapo Atas	1.01	1.10
7.	Kr. Dapo Bawah	8.96	9.71
8.	Pl. Talang Leak	1.32	1.43
	Sub-District of Lebong Atas		
9.	Desa Baru	1.41	1.59
10.	Pelabi	0.59*	0.67*
11.	Atas Tebing	0.89*	0.98*
12.	Danau	0.22*	0.24*
	Sub-District of Pinang Belapis		
13.	Ketenong 1	2.75	2.84
14.	Ketenong 2	1.29	1.33
15.	Sebelat Ulu	4.73	4.89
·	Sub-District of Embong Uram		
16.	Kota Baru	7.81	10.81
17.	Talang Sakti	7.41	8.07

18.	Tambang Sawah	10.68	11.04
19.	Ujung Tanjung	2.7	2.98
20.	Air Kopras	4.3	4.48
•	Average	3.21	3.54

Notes: * In these villages population pressure have not occured.

Population pressure index was formed by several important components, especially population growth rate, land productivity, and the proportion of non-farm income. The population growth rate above 1:00%, even there was reaching 6:00% (Kota Baru) what meaning?, causing rapid increase in population. The population was generally accommodated in the agricultural sector, which indicated the large proportion of the farmer population in these villages. The farmer population was the peoples who identifies the main occupation as a farmer. In those conditions, have not been available employment outside agriculture. Consequently, the proportion of non-farm income becomes smaller, which is equal to 0.32.

In some villages, there are some villages that have non-farm income proportion was quite large (around 0.5), the village of Danau (0.59), Ketenong 1 (0.47), Ketenong 2 (0.49), and Ujung Tanjung 2 (0.49). However, non-farm income sources have not yet contributed to the improvement of living standards. At the level of agricultural technology that was used by the villagers, where rice productivity is still low (around 2 tonnes / ha) have not produced the desired welfare (standard World Bank spending 2 dollars per capita a day). The villages that have not occured population pressures, the agricultural productivity apparently was large around 5 tonnes/ha. Consequently, although the agrarian density was still low, agricultural land was not able to sustain its population lives.

The standar of living that considered in this study population was equivalent to 2:00 expenditure US dollars per capita a day (roughly IDR 18,500). This has led to be good income either the agricultural sector and outside the agricultural sector. The implication was we need more intensive in using of technology or the expansion of agricultural land. Up here, it can be concluded that in the villages around TNKS has been a decreasing of the carrying capacity as big as population pressure above 1.00. It means that the available natural resources, especially the agricultural sector was not able to support the entire population at the level of properity.

Livelihood strategies of villagers would run to diversify sources of income called multiple livelihood. In the setting of mountains forest ecology and shifting cultivation cultural setting [8], then the chances of forest degradation around settlements the population will increase. In the calculation of the index population pressure here, the income from the utilization of forest products were removed. Thus, the figures obtained could explain the symptoms of deforestation were increased caused by agricultural activities.

The estimated of the island of Sumatra population pressure has not happened (in 2006 amounted to 0.80, and 0.86 in 2010) [7]. With an average productivity of land 4.17 tonnes / ha, the ecology of Sumatra Island was able to sustain the population lives on the same level of prosperity with this research. Specifically in the Province of Bengkulu, the population pressure nearly occurred in 2010, which amounted to 0.99 [7]. If the condition of the people and the land did not change the population pressure was estimated would have occurred in the following year. Worse situation occurred in North Sumatra (1.06), West Sumatra (1.18), and Lampung (1.53). Java situation as the worst, ie the population pressure in 2006 amounted to 1.80 and 2010 amounted to 1.83 [13].

Conclusion

Based on this study concluded that in 2012 the villages around TNKS has occurred population pressure (pressure index of 3.21 residents). Although agrarian density still quite low, but because of high population growth rate, of low agricultural productivity, and of proportion of non-farm income were also low, the population pressure has occurred. These conditions indicated the occurrence of overpopulation or the decreasing of carrying capacity of the environment.

To improve the environmental carrying capacity and sustainability of the population livelihood around TNKS required number of strategies. Multiple livelihood strategies by diversify the source of income was one of the solutions [1]. It's just that we need to take into account the population. The relatively small number of people have not been sufficient for the development of the secondary sector

(trade) and tertiary (services). Demographically, the factors that can be considered to be better for the population growth was in-migration. The factors of birth and death can be ruled out because of these two factors still require long periods of time as well as development of human resources. Therefore, the development of trade and services sector needs to be supported by the government program such as agro tourism, agroforestry, and industry (e.g. mining). These option would improve the proportion of non-farm income to increase the internal carrying capacity.

Another option was the intensification of agriculture. The intensification was done by apllying the modern agricultural technology. The goal was to improve the productivity of agricultural land. Rice fields and plantations were conserved and replanted. If the productivity of land improved successfully, it could reduce the population pressure. It means that the carrying capacity of the environment would increase.

Acknowledgment

This research is part of a study entitled Economic Empowering Strategy Designing for Communities around Forest as an Effort to Lessen Population Pressure on Conservation Forest. This research was financed by DIPA University of Bengkulu in 2011.

References

- [1] Ellis, Frank. 2000. Rural Livelihoods and Diversity in Developing Countries. New York, Oxford University Press.
- [2] Bell, M.M. 1998. An Invitation to Environmental Sociology. California, Sage Publication.
- [3] Rusli, S., Ekawati Sriwahyuni. 2007. Penduduk, Organisasi, Lingkungan dan Teknologi. *In* Ekologi Manusia. Soeryo Adiwibowo (ed). Bogor, Fakultas Ekologi Manusia IPB, p. 355-365.
- [4] Rusli, S. 1996. Pengantar Ilmu Kependudukan. (7th ed). Jakarta, LP3ES.
- [5] Goldblatt, David. 1996. Social Theory and The Environment. Cambridge, Polity Press.
- [6] Barracklough, S.L., and Krishna B. Ghimire. 2000. Agricultural Expansion and Tropical Deforestation. London, Earthscan Publication.
- [7] Rusli, S., Septri Widiono, Hana Indriana. 2010. Tekanan Penduduk, Overshoot Ekologi Pulau Sumatera dan Masa Pemulihannya. In Sodality. 04(01): 65-98.
- [8] Widiono, S., Apri Andani, M.A. Firmansyah. 2012. Pemaknaan terhadap Sumberdaya Agraria pada Dua Desa sekitar Area Konservasi di Provinsi Bengkulu. *In* Proceeding of Seminar Nasional Menuju Kedaulatan Pertanian, University od Bengkulu, 12 September 2012, p. 85-97.
- [9] FWI/GFW. 2001. Potret Keadaan Hutan Indonesia. Bogor, Indonesia: Forest Watch Indonesia and Washington D.C.: Global Forest Watch.
- [10] WALHI BENGKULU (2008). Kerusakan Hutan Taman Nasional Kerinci Sebelat Wilayah Kabupaten Lebong, Propinsi Bengkulu. Downloaded from:
- http://cfors.wordpress.com/2008/03/14/kerusakan-hutan-taman-nasional-kerinci-sebelat-wilayah-kabu paten-lebong-propinsi-bengkulu. at August 17 2011, 11.00 pm.
- [11] [BPS Kabupaten Lebong]. 2011. Monografi Kabupaten Lebong. Katalog No. 17070.1105.
- [12] Soemarwoto, O. 1985. A Quatitative Model of Population Pressure and Its Potential Use of Development Planning. Majalah Demografi Indonesia. XII, 24: 1-15.
- [13] Rusli, S., Septri Widiono, Hana Indriana. 2009. Tekanan Penduduk, Overshoot Ekologi Pulau Jawa dan Masa Pemulihannya. In Sodality. 03(01): 83-120.