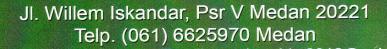


# Prosiding

BIDANG WATEWATIKA

# SEMINAR & RAPAT TAHUNAN

**BKS-PTN B Tahun 2012** 


BIDANG ILMU MIPA Badan Kerjasama Perguruan Tinggi Negeri Wilayah Barat

Tema : Peran MIPA dalam Pengembangan SDM dan SDA

Hotel Madani Medan 11 - 12 Mei 2012









ISBN:978-602-9115-22-2

# PROSIDING

SEMINAR NASIONAL DALAM RANGKA SEMIRATA BKS-PTN WILAYAH BARAT BIDANG MIPA TAHUN 2012

Thema: Peran MIPA Dalam Peningkatan Kualitas SDM dan SDA

# **MATEMATIKA**

# Editor:

Prof.Dr.Mukhtar,MPd Drs.Asrin Lubis,MPd Dr.Edi Syahputra,MPd Dra.Nerli Khairani,MSi Dr.Yulita Molliq,MSc



Penerbit Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Medan

# SUSUNAN PANITIA SEMINAR DAN RAPAT TAHUNAN BADAN KERJASAMA PERGURUAN TINGGI NEGERI WILAYAH BARAT (SEMIRATA BKS-PTN B) BIDANG MIPA TAHUN 2012

# Pelindung

Prof. Dr. Ibnu Hadjar, M.Si (Rektor Unimed)
Gatot Pujo Nugroho, ST (Plt. Gubernur Sumatera Utara)
Drs. Rahudman Harahap, MM (Walikota Medan)

## Penasehat

Prof. Dr. Emriadi (Ketua BKS-PTN B)
Prof. Dr. Khairil Ansari, M.Si (PR I Unimed)
Drs. Khairul Azmi, M.Pd (PR II Unimed)
Prof. Dr. Biner Ambarita, M.Pd (PR III Unimed)
Prof. Dr. Berlin Sibarani, M.Pd (PR IV Unimed)

# Penanggung jawab

Prof. Drs. Motlan, M.Sc, P.hD (Dekan FMIPA Unimed)

# Pengarah

Prof. Drs. Manihar Situmorang, M.Sc, P.hD Drs. Asrin Lubis, M.Pd Drs. Eidi Sihombing, MS

Ketua: Drs. P. Maulim Silitonga, MS Ketua 1: Dr. Marham Sitorus, M.Si Ketua 2: Dr. Edi Syahputra, M.Pd Sekretaris: Alkhafi Maas Siregar, S.Si.,M.Si

Wakil Sekretaris: Juniastel Rajagukguk, S.Si.,M.Si

Bendahara: Dra Martina Restuati M Si

Bendahara: Dra. Martina Restuati, M.Si Wakil Bendahara: Dra. Ani Sutiani, M.Si

Koordinator Sekretariat: Drs. M. Yusuf Nasution. MS

Koordinator Makalah/Prosiding : Prof. Dr. Herbert Sipahutar, M.Sc

Koordinator Persidangan : Dr. Nurdin Bukit, M.Si Koordinator Penerima Tamu : Dra. Nerli Khaerani, M.Si

Koordinator Acara/Protokoler: Dra. Melva Silitonga, M.Si Koordinator Informasi/Humas/Dokumentasi: Drs. Eddiyanto,Ph.D

Koordinator Transportasi, Akomodasi & Rekreasi: Drs. Rahmat Nauli, M.Si

Koordinator Dana: Purwanto, S.Si.,M.Pd Koordinator Perlengkapan: Yon Rinaldi, S.E.,M.Si

DAFTAR ISI HALAMA Kata Pengantar dari Editor Kata Sambutan Ketua Panitia Kata Sambutan Ketua BKS-PTN B Bidang MIPA Kata Sambutan Rektor Universitas Negeri Medan **DAFTAR ISI** Admi Nazra A Lower- Bound of the Number of Diffeomorphism Classes Of Real Boot Manifolds 1 8 Ahmad Iqbal Bagi Estimasi Fertilitas Provinsi Sumatera Utara 1995-2005 Dengan Menggunakan Metoda Antar Survei 9 12 Alfirman Pengendalian putaran Motor Stepper dengan Menggunakan Port Parallel Komputer 13 17 Asep Rusyana Rancangan Faktorial Dengan Pengamatan Berulang Untuk Mengidentifikasi Pengaruh Mulsa Dan Jarak Tanam Terhadap Radiasi Surya Pada Kacang Kedelai 18 22 Asmara Karma Pemakaian Transformasi Baru Elzaki dalam Menyelesaikan Persamaan Differensial 23 27 Aziskhan Penggunaan Persamaan Diferensial geometri dalam menyelesaikan persoalan pada elektrostatika 28 31 **Budi Rudianto** Penerapan Metode Graf Multi- Transformasi Pada Penyelesaian Sirkuit Elektronik 32 -37 Eduward H Hutabarat Persamaan dan Fungsi Potensial Kompleks airfoil Dalam Analisis Transformasi Joukowski 38 43 Dian Kurniasari Model Berperingkat Tidak Penuh Pada Data Spasial Dengan Metode Dekomposisi Spektral 44 49 Dodi Devianto Sebaran Eksponensial Terbagi Tak Hingga 50 \_ 53 Efendi Konstruksi Model Untuk Melihat Pengaruh Bentuk Geometri Habitat Pada Perkembangan Populasi Aedes Dengan Bentuk Geometri Habitat Kerucut. 54 61 Effendi Algorithma String Pada Bioinformatik 62 64 Evfi Mahdiyah Analisa dan Pengembangan artifical Inteligence Markup Language (AIML) Tentang Istilah Komputer Dalam Bahasa Indonesia Menggunakan Alice chat bot 65 69 Fatayat Penerapan Metode Neural Network Dalam Prediksi Persediaan Darah Pertahun Pada PMI Rumah Sakit 70 75 Johannes Kho Perbaikan Metode Secant Steffensen Untuk Menyelesaikan Persamaan Nonlinier 76 79 Leli Deswita Pemodelan Matematika Bagi Aliran Syaraf Batas Konveksi Bebas pada Flat Horizontal 80 83

Penjadwalan Perawat Dengan Menggunakan Pemrograman

Superstruktur Umum dan Optimisasi Global Proses Desain

Estimasi Parameter pada Distribusi Rayleigh untuk Sampel

Konstruksi Algoritma Sorting Berdasarkan Indeks Data

84

93

105 -

92

98

104

110

Tujuan

Jaringan Air Terpadu.

Lengkap dan Tersensor

M. D. H. Gamal

Machudor Yusman M

Nonong Amalita

M. Natsir

| Ridha Ferdhiana       | Pendugaan Selang Kepercayaan Koefisien Korelasi Pearson                                                            |     |     | 115   | Was all the same |
|-----------------------|--------------------------------------------------------------------------------------------------------------------|-----|-----|-------|------------------|
|                       | menggunakan Metode Bootstrap                                                                                       |     |     | 115   |                  |
| Riri Lestari          | Batas Exercise Opsi Put Amerika                                                                                    | 116 | -   | 117   | Series           |
| Sugandi Yahdin        | Model Keputusan Membeli Di Pasar Tradisional Dengan Metode                                                         | 118 | _   | 122   |                  |
|                       | Regresi Logistik Biner                                                                                             | 123 |     | 126   |                  |
| Syafruddin            | Pelabelan Supersisi Ajaib Dari Suatu Graf (n,2)-KITE                                                               | 123 |     | 120   |                  |
| Syarifah Meurah Yuni  | Model Matematika Resistensi Parasit Plasmodium falciparum<br>Terhadap Obat Tunggal dan Obat Campuran Antimalaria   |     |     |       |                  |
|                       | Ternadap Obat Tunggai dan Obat Camputan Titumatan                                                                  | 127 | _   | 132   | Topo To Inc.     |
| n' 1                  | Suatu Penyajian Geometris Grup Fungsi pada Himpunan {1, 2, 3,                                                      |     |     |       |                  |
| Yusmet Rizal          | 4}                                                                                                                 | 133 | -   | 138   |                  |
| Hazmira Yozza         | kajian Perbandingan Beberapa metode Klasifikasi                                                                    | 139 | -   | 147   |                  |
| Helmi                 | Metode Transformasi Sumudu Dalam Penyelesaian Persamaan                                                            |     |     |       | Za Zara          |
| Hemm                  | Diferensial Parsial Linear Order Dua                                                                               | 148 | -   | 156   |                  |
| Indrawati             | Perapihan dan Proyeksi Penduduk Sumatera Selatan Berdasarkan                                                       |     |     |       | Tarres Tree      |
|                       | Tingkat Fertilitas Total (Total Fertility Rate) dan Rasio Jenis                                                    |     |     | 1.67  |                  |
|                       | Kelamin (Sex Ratio)                                                                                                | 157 | -   | 167   |                  |
| Intan Syahrini        | Algoritma Genetik Untuk Masalah Optimisasi Program Non                                                             |     |     |       | Zaiffa Men       |
|                       | Linier Genetic Algorithm For Nonlinear Program Optimization                                                        |     |     |       |                  |
|                       | Problem                                                                                                            | 168 | _   | 175   | Name Name        |
|                       | Wasannajan Managunakan Metode                                                                                      | 100 |     | 175   |                  |
| Joko Risanto          | Algoritma Menghitung Nilai Kesesuaian Menggunakan Metode<br>Lickert dalam Suatu Analisa SWOT Perencanaan Srategis. |     |     |       |                  |
|                       | Lickert daiam Suatu Aliansa Swo1 1 creneanaan Stategist                                                            | 176 | _   | 184   |                  |
|                       | Pendugaan Model Regresi dengan Regresi Fuzzy                                                                       | 185 | -   | 191   | Zathi Sair       |
| Marzuki               | PENGGUNAAN PENALARAN TRANSFORMASIONAL                                                                              |     |     |       |                  |
| Media Rosha           | DALAM BERFIKIR KREATIF MATEMATIK                                                                                   |     |     |       | A gree had im    |
|                       | DARI PERMASALAHAN MULTINOMIAL (a1 + a2 + +                                                                         |     |     |       |                  |
|                       | ak)n                                                                                                               | 192 | _   | 202   | Milwano          |
|                       | HISTORY MATCHING OF ONE-DIMENSIONAL                                                                                |     |     |       | Hapisai S        |
| Nina Fitriyati        | HOMOGENOUS RESERVOIR PARAMETER FOR TWO                                                                             |     |     |       |                  |
|                       | INTERACTING WELLS                                                                                                  | 203 | _   | 210   |                  |
| Novi Reandy Sasmita   | Perbandingan Metode Fuzzy C-Means (FCM) dan Fuzzy C-Shell                                                          |     |     |       | Arrelis          |
| Novi Kealidy Sasilita | (FCS) Menggunakan Data Citra Satelit Quickbird (Studi Kasus                                                        |     |     |       |                  |
|                       | Daerah Peukan Bada, Aceh Besar)                                                                                    | 211 | -   | 218   | TP Nation        |
| Pepi Novianti         | Kajian Circular Descriptive Statistics Pada Data Yang Berupa                                                       |     |     |       |                  |
| 1 opi 1 to riami      | Arah Dan Sudut                                                                                                     | 219 |     | 77    |                  |
| Rahma Zuhra           | Kajian Tentang Integral Daniell                                                                                    | 226 | -   | 231   |                  |
| Ramya Rachmawati      | Penerapan Pemrograman Dinamis Dalam Sistem Inventori                                                               |     |     |       |                  |
|                       |                                                                                                                    | 020 | ,   | 220   |                  |
|                       |                                                                                                                    | 232 |     | - 238 |                  |
| Riry Sriningsih       | MODEL MATEMATIKA PENGARUH VAKSINASI                                                                                |     |     |       |                  |
|                       | TERHADAP PENYEBARAN FLU BURUNG PADA                                                                                | 239 | ) . | - 249 |                  |
|                       | POPULASI UNGGAS & MANUSIA                                                                                          | 43  |     | 217   |                  |

The same of the same

Zaiffiz Memi Ma

THE THEFT

Zartu Barr

Acres Salim

Milwins Harrisa Stat

T.P. National

# KAJIAN STATISTIK DESKRIPTIF CIRCULAR PADA DATA YANG BERUPA ARAH DAN SUDUT

Pepi Novianti<sup>1</sup>

## **Abstrak**

Di berbagai disiplin ilmu, hasil pengukurannnya dapat berupa arah yang biasanya dinyatakan dalam ukuran sudut. Himpunan beberapa pengamatan berupa arah disebut dengan directional data dan directional data dalam dua dimensi disebut data circular. Beberapa sifat tertentu dari data circular mengakibatkan analisis yang diperlukan berbeda dengan analisis statistik linier biasa. Penulisan ini bertujuan untuk mengkaji beberapa analisis statistik deskriptif pada data circular Metode penulisan yang digunakan adalah kajian pustaka dengan menggunakan data simulasi. Simulasi data dan analisis dilakukan dengan bantuan Program R. Data circular disajikan dalam koordinat kartesius dan perhitungan analisisnya dinyatakan dalam bentuk koordinat polar. Pemanfaatan beberapa fungsi trigonometri mengakibatkan statistik deskriptif Circular cocok untuk directional data.

Kata Kunci: data circular, rataan circular, ragam circular.

# THE STUDY OF CIRCULAR DESCRIPTIVE STATISTICS FOR DIRECTIONAL DATA

### Abstract

In many diverse scientific fields, the result data are directional which are measured by angles. A set of such observations on directions is referred to as directional data and the directional data in two dimension are called circular data. Some features of circular data make the analysis needed is different from the standard linear statistics analysis. This research aimed to study the Circular descriptive Statistics for circular data. The research method is literature study which uses simulation data. Simulation data and its analysis are ran in R-program. The circular data as cartesian coordinate while the data analysis is processes by polar coordinate. Utilization of trigonometric involving Circular descriptive Statistics is effective for directional data.

Keywords: circular data, circular mean, circular variance

## 1. PENDAHULUAN

ion

ada

Klim

dan

SLITER

1999

Siemo

o Pilim

an part

ed Till

OC OF THE

Di berbagai disiplin ilmu, hasil pengukurannnya dapat berupa arah yang biasanya dinyatakan dalam ukuran sudut. Misalnya dalam biologi dimungkinkan mengukur arah terbang seekor burung atau arah perjalanan seekor hewan, sedangkan seorang ahli bumi tertarik dengan arah kutub magnet bumi. Arah ini dapat dinyatakan dalam dua dimensi untuk kasus arah terbang seekor burung dan tiga dimensi untuk kasus arah kutub magnet bumi. Himpunan beberapa

Dosen pada Jurusan Matematika FMIPA Universitas Bengkulu. Email: pie novianti@yahoo.com. HP:085267775320

pengamatan berupa arah disebut dengan directional data. Directional data dalam dua dimensi disebut data circular, sedangkan directional data dalam tiga dimensi disebut data spherical (Jammalamadaka & SenGupta, 2001).

Data circular dapat dinyatakan dalam beberapa cara. Cara yang biasa digunakan berhubungan dengan dua alat ukur lingkaran, yaitu kompas dan jam. Bentuk pengamatan yang diukur menggunakan kompas misalnya arah mata angin dan arah perpindahan burung, termasuk juga data yang diukur menggunakan busur derajat. Bentuk pengamatan yang diukur dengan jam adalah waktu kedatangan (24 jam) pasien di ruang gawat darurat di suatu rumah sakit dan banyaknya kejadian dalam satu tahun atau dalam waktu bulanan.

Directional data memiliki sifat khusus dan relative baru baik dari segi model maupun dalam analisis statistiknya. Penyajian data pada arah dua dimensi berupa sudut atau satuan vektor tidak tunggal karena nilai angular tergantung pada pilihan titik awal yang ditentukan sebagai sudut 0 dan arah rotasinya. Seorang matematikawan menganggap arah  $60^{\circ}$  diukur dari arah barat sebagai sudut awal dan arah rotasinya berlawanan dengan arah jarum jam, namun arah posisi yang sama dianggap mempunyai arah  $30^{\circ}$  oleh seorang ahli Geologi yang diukur dari arah utara sebagai sudut awal dan berputar mengikuti arah jarum jam.

Beberapa sifat tertentu mengakibatkan directional analysis pada dasarnya berbeda dengan analisis statistik linier univariat maupun multivariat biasa yang banyak ditemukan di buku statistik. Metode statistik dan pengukuran yang dipengaruhi sebarang sudut 0 dan arah rotasi mengakibatkan teknik dan pengukuran linier biasanya sering tidak cocok. Metode statistik yang paling sederhana adalah statistik deskriptif yang digunakan digunakan untuk menggambarkan dan menganalisa data dengan menghitung sedikitnya satu statistik contoh. Statistik sederhana yang paling sering digunakan adalah penghitungan nilai rataan dan ragam. Metode statistik *circular* merupakan metode statistik yang relative baru, maka akan dikaji statistik deskriprtif *circular* untuk nilai rataan dan ragam.

# 2. METODE PENELITIAN

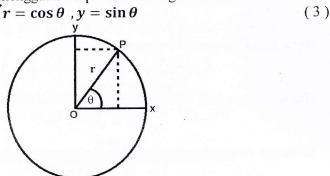
Penulisan makalah ini merupakan kajian pustaka tentang statistika deskriptif pada data circular. Statistika deskriptif yang akan dibahasa adalah rata-rata dan varian untuk data yang berupa arah dan sudut. Data yang digunakan berupa data simulasi dari sebaran *circular* normal. Simulasi data dan analisis dilakukan dengan bantuan Program R. Hasil rata-rata dan varian dari metode circular ini akan dibandingkan dengan rata-rata dan varian analisis linier biasa.

# 2.1 Statistik deskriptif

Metode statistik adalah prosedur yang digunakan dalam pengumpulan, penyajian, analisis dan penafsiran data. Metode statistik dikelompokkan ke dalam dua kelompok besar, yaitu statistika deskriptif dan statistika infernasia. Statistiska deskriptif memberikan informasi hanya mengenai data yang ada dan sama sekali tidak menarik inferensia atau kesimpulan apapun tentang himpunan data yang lebih besar. Penyusunan data dalam bentuk table atau grafik dan pengukuran satu statistik contoh merupakan penyajian statistik secara deskriptif. Ukuran

pemusatan data yang sering digunakan adalah rata-rata, sedangkan ukuran penyebaran yang sering digunakan adalah ragam (Walpole, 1995).

Rata-rata merupakan rasio dari total nilai pengamatan dengan banyaknya pengamatan. Bila data dari peubah acak X sebanyak n buah dinotasikan dengan  $x_1, x_2, \dots, x_n$ , maka rata-rata dari data tersebut dapat dituliskan sebagai  $\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} \Box_i \tag{1}$  Ragam atau varian adalah ukuran penyebaran dengan menggunakan rataan


$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n \Box_i \tag{1}$$

terbobot dari kuadrat jarak setiap nilai data terhadap pusat data tersebut. Satuan dari ragam adalah kuadrat dari satuan datanya. Formula untuk menghitung ragam dapat dituliskan sebagai berikut:

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$
 (2)

# 2.2 Statistik Deskriptif Circular

Posisi yang berupa arah dapat ditentukan oleh koordinat polar atau koordinat kartesius. Pada koordinat kartesius titik P dinyatakan sebagai nilai (X,Y) atau sebagai nilai  $(r,\theta)$  pada koordinat polar dimana r merupakan jarak titik P dari titik pusat O (Gambar 1). Koordinat polar dapat dirubah menjadi koordinat kartesius dengan menggunakan persamaan teigonometri berikut:



Gambar 1 Hubungan antara koordinat kartesius dan koordinat polar Misalkan  $\theta_1, \theta_2, ..., \theta_n$  merupakan data circular yang berupa sudut dan transformasi dari koordinat polar ke koordinat kartesius dinyatakan dengan

$$(\cos \theta_i, \sin \theta_i), i = 1, 2, ..., n \tag{4}$$

Sehingga untuk mendapatkan vector resulatan dari n satuan vector dengan cara menjumlahkan semua komponennya

$$R = \left(\sum_{i=1}^{n} \cos \theta_{i}, \sum_{i=1}^{n} \sin \theta_{i}\right) = (C, S)$$
 (5)

Sehingga

$$R = ||R|| = \sqrt{C^2 + S^2} \tag{6}$$

Menyatakan panjang vector resultan R. Arah vector resultan R yang dianggap sebagai rata-rata arah circular dinotasikan dengan  $\bar{\theta}_0$  dan didefenisikan sebagai berikut:

$$\overline{\theta}_0 = arg\{\sum_{j=1}^n \cos \theta_j + i \sum_{j=1}^n \sin \theta_j\}$$
 (7)

Atau dengan persamaan

$$\cos \overline{\theta}_0 = \frac{c}{p}, \sin \overline{\theta}_0 = \frac{s}{p} \tag{8}$$

Atau

$$\overline{\theta}_0 = \cot^*(S/C) \tag{9}$$

Dimana

ana
$$\overline{\theta}_{0} = \cot^{*}(S/C) = \begin{cases}
\cot(S/C), jika C > 0, S > 0 \\
\pi/2, jika C = 0, S > 0 \\
\cot(S/C) + \pi, jika C < 0 \\
\cot(S/C) + 2\pi, jika C \ge 0, S < 0 \\
tak terdefenisi, jika C = 0, S = 0
\end{cases} (10)$$

Vektor resultan R dapat digunakan untuk mengukur konsentrasi data. Apabila semua sudut titik menyatakan arah yang sama, maka dapat diindikasikan bahwa data tersebut terkonsentrasi dan R mendekati nilai n. sebaliknya jika data menyebar diseluruh lingkaran dapat diindikasikan bahwa data tidak terkonsentrasi dan R mendekati nilai 0.

Jarak antara dua data berupa arah sudut, misalkan  $\theta_1$  dan  $\theta_2$ adalah

$$d_0(\theta_1, \theta_2) = \min(\theta_1 - \theta_2, 2\pi - (\theta_1 - \theta_2)) = \pi - |\pi - \theta_1 - \theta_2|$$
 (11) atau

$$d_0(\theta_1, \theta_2) = (1 - \cos(\theta_1 - \theta_2)) \tag{12}$$

Karena jarak antara dua titik sudut merupakan jarak sudut terkecil disepanjang lingkaran, maka besarnya sudut tersebut tidak akan lebih besar dari  $\pi$  atau  $0 < \theta_i < \pi$ .

C dan S adalah jumlah nilai cosinus dan sinus dari data sudut, sehingga dapat juga dihitung rataannya masing-masing

$$\overline{C} = \frac{1}{n} \sum_{i=1}^{n} \cos \theta_i \quad \text{dan} \quad \overline{S} = \frac{1}{n} \sum_{i=1}^{n} \sin \theta_i$$
 (13)

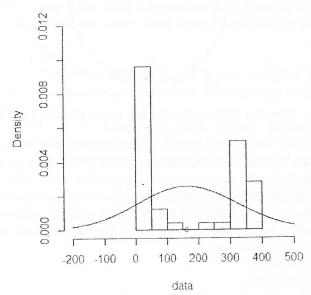
Untuk memperoleh varian circular perlu diketahui nilai rataan vector. yaitu

$$\overline{R} = \sqrt{\overline{C^2 + \overline{S}^2}} \tag{14}$$

Sehingga varian circular diperoleh dari persamaan berikut:

$$s^2 = 2(1 - \overline{R}) \tag{15}$$

# 3. HASIL DAN PEMBAHASAN


Data hasil simulasi yang dibangkitkan dari sebaran Von Misses (0,4) menggunakan program R disajikan pada **Tabel 1**. Data berupa arah sudut dengan satuan derajat. Titik awal 0<sup>0</sup> berada pada posisi arah barat dan berputar berlawan dengan arah jarum jam.

Tabel 1 Data hasil simulasi sebaran von misses

| Tubel I Buta hadn dilitari |                     |                     |                     |                     |                  |  |
|----------------------------|---------------------|---------------------|---------------------|---------------------|------------------|--|
| 9.43 <sup>0</sup>          | $36.08^{0}$         | $24.93^{0}$         | $7.85^{0}$          | 333.41°             | $12.17^{0}$      |  |
| 24.37 <sup>0</sup>         | 11.71               | 51.27 <sup>0</sup>  | $4.94^{0}$          | $7.37^{0}$          | $338.85^{0}$     |  |
| 356.14 <sup>0</sup>        | $35.02^{0}$         | 335.22 <sup>0</sup> | $330.49^{0}$        |                     | $298.22^{0}$     |  |
| 351.65 <sup>0</sup>        | 31.53 <sup>0</sup>  | $17.08^{0}$         | $9.62^{0}$          | 336.43 <sup>0</sup> | 81.47            |  |
| 34.26 <sup>0</sup>         | 348.59 <sup>0</sup> | 327.13 <sup>0</sup> | 337.11 <sup>0</sup> | 236.63 <sup>0</sup> | $346.78^{\circ}$ |  |
| 352.44 <sup>0</sup>        | 19.61 <sup>0</sup>  | $22.95^{0}$         | $343.79^{0}$        | $352.98^{0}$        | $14.00^{\circ}$  |  |
| 54.52°                     | 339.85 <sup>0</sup> | 1.15                | $333.02^{0}$        | 11.66               | $319.52^{0}$     |  |

| 33.09 <sup>0</sup> | 19.78        | 353.52 <sup>0</sup> | 354.84 <sup>0</sup> | 101.540 | $47.22^{0}$ |
|--------------------|--------------|---------------------|---------------------|---------|-------------|
| $34.70^{\circ}$    | $358.80^{0}$ |                     |                     |         |             |

Data simulasi yang dianalisis dengan metode statistika linier menunjukkan grafik histogram seperti pada **Gambar 2**. Rataan yang dihasilkan dari statistika deskriptif linier sebesar 163.15° dan simpangan baku sebesar 156.40°. Besarnya nilai rataan dan ragam ini tidak merepresentasikan keadaan data sebenarnya. Rataan pada data tidak sama dengan nilai median yang bernilai 52.90°. Simpangan baku yang sangat besar diakibatkan oleh keragaman data yang sangat besar yaitu 24459.72°.



Gambar 2 Grafik histogram dan kurva normal data

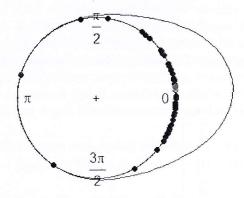
Untuk memperolakan nilai rataan dan ragam yang lebih represntatif akan digunakan metode statistik deskriptif *circular*. Perhitungan nilai rataan  $\overline{\theta}_0$  dan ragam  $s^2$  adalah sebagai berikut:

$$C = \sum_{i=1}^{n} \cos \theta_i = \cos 9.43^0 + \cos 36.08^0 + \dots + \cos 358.80^0 = 41.88$$

$$S = \sum_{i=1}^{n} \sin \theta_i = \sin 9.43^0 + \sin 36.08^0 + \dots + \sin 358.80^0 = 4.022$$

$$\bar{\theta}_0 = \cot(S/C) = \cot(\frac{4.022}{41.88}) = 5.730, karena \ C > 0, S > 0$$

Dan


$$\bar{C} = \frac{41.88}{50} = 0.84$$
 dan  $\bar{S} = \frac{4.022}{50} = 0.08$   
 $\bar{R} = \sqrt{\bar{C}^2 + \bar{S}^2} = \sqrt{0.84 + 0.08} = 0.84$ 

Sehingga

$$s^2 = 2(1 - R) = 2(1 - 0.84) = 0.16\pi = 9.08^0$$

Metode statistik deskriptif *circular* menghasilkan rataan untuk data adalah 5.73° dan ragamnya sebesar 9.08°. Grafik arah sudut dan kurva normal *circular* 

disajikan pada **Gambar 3**. Titik berwarna hijau pada **Gambar 3** menunjukan posisi sudut rataan data dan titik berwarna merah menunjukan posisi median data yaitu pada sudut 7.81°. Nilai ragam yang relative kecil mengakibatkan simpangan baku data juga kecil yaitu sebesar 3.01°, sehingga data terkonsentrasi di sekitar rataan dengan penyebaran yang relatif kecil.



Gambar 3 Data circular dan kurva circular normal

Titik biru pada **Gambar 3** merupakan posisi rataan untuk statistic deskriptif linier. Apabila dibandingkan dengan posisi data yang ada, maka titik biru berada berlawanan dengan posisi konsentrasi data. Hal ini berarti bahwa untuk data berupa arah sudut, penggunaan metode statistik linier tidak tepat lagi.

Penggunaan program R memerlukan paket program Circular dan CircStats. Berikut ini listing program yang digunakan untuk menghasilkan data simulasi dan menganalisisnya:

library(circular) library(CircStats) #Membuat data cir

#Membuat data circular simulasi dari sebaran von mises

data <- rvonmises(n=50, mu=circular(pi), kappa=4)

#Menghitung rataan data circular

rataan<-mean.circular(data)

#Menghitung ragam data circular

ragam<-var.circular

#Menggambar penyebaran data pada koordinat kartesius

kappa <- Alinv(mean(cos(data - rataan)))

plot.function.circular(function(x) dvonmises(x, circular(rataan),

kappa),stack=TRUE, bins=150,shrink=1.5,)

points.circular(data)

points.circular(rataan,col=3)

points(medianCircular(data),col=2)

# 4. SIMPULAN DAN SARAN

Data dalam bentuk sudut dengan satuan derajat atau radian terkadang tidak cocok lagi dianalisis dengan menggunakan metode statistik linier dikarenakan arah dan besar sudut mempengaruhi posisi antara satu data dengan data yang lain. Data dalam bentuk sudut pada ruang dua dimensi disebut dengan data *circular*. Data *circular* disajikan dalam koordinat kartesius dan perhitungan analisisnya dinyatakan dalam bentuk koordinat polar. Perhitungan statistik descriptif *circular* menggunakan persamaan trigonometri. Pemanfaatan beberapa fungsi trigonometri mengakibatkan statistik descriptif *circular* cocok untuk *directional data*. Kajian statistik descriptif *circular* merupakan kajian paling sedrhana dalam analisis circular. Analisis circular yang lebih kompleks seperti *circular regression*, anova *circular* dan *circular* untuk *time series* juga dapat dikaji lebih lanjut.

# 5. DAFTAR PUSTAKA

- Brunsdon, C. & J. Corcoran. 2006. Using Circular statistics to analyse time patterns in crime incidence. *Computers, Environment and Urban Systems* 30:300-319.
- Jammalamadaka, S.R. & A. SenGupta. 2001. *Topics in circular Statistics*. London: World Scientifics Publishing.
- Mardia, K.V. & Jupp, P.E. 2000. *Directional Statistics*. New York: John Wiley & Sons
- Nugroho, S. 2008. Dasar-Dasar Metode Statistika. Jakarta: Grasindo.
- Walpole, R.E. 1995. *Pengantar Statistika*, edisi ke-3. Diterjemahkan oleh: Ir. Bambang Sumantri. Jakarta: PT Gramedia.







PERGURUAN TINGGI NEGERI WILAYAH BARAT BIDANG ILMU MIPA BADAN KERJASAMA (BKS PTN-B

Diberikan Kepada:

Pepi Novianti, M.Si

Sebagai

# PEMAKALAH

SEMINAR DAN RAPAT TAHUNAN BIDANG ILMU MIPA PADA KEGIATAN

"PERAN MIPA DALAM PENGEMBANGAN SUMBER DAYA MANUSIA DAN SUMBER DAYA ALAM" FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI MEDAN HOTEL MADANI - MEDAN, 11 s.d. 12 MEI 2012 TEMA:

Medan, 12 Mei 2012

KOORDINATOR BIDANG ILMU MIPA Meun

BKS PTN BARAT

NIP. 19620409 198703 1 003 Prof. Dr. H. Emriadi, M. S.

KETUA, PELAKSANA

My

Drs. Pasaf Maulim Silitonga, M. S. NIP. 19590907 198503 1 003