# PROGEDINGS

# 16<sup>th</sup> ASEAN Regional Symposium on Chemical Engineering

# "Chemical Engineering at the forefront of Global Challenges"

December 1-2, 2009 Manila Hotel Manila, Philippines

Organized by:



Pontifical and Royal UNIVERSITY OF SANTO TOMAS The Catholic University of the Philippines

In cooperation with:





ISSN: 2094 - 3660

#### FOREWORD

It is with great pleasure that the Chemical Engineering Department of the University of Santo Tomas (UST), on the occasion of its 75<sup>th</sup> Foundation Anniversary, hosts the 16<sup>th</sup> ASEAN Regional Symposium on Chemical Engineering (RSCE), in cooperation with the Philippine Institute of Chemical Engineers (PIChE) and the PIChE-Metro-Manila Academe Chapter. As UST prepares to celebrate its Quadricentennial in 2011, it opens its doors to the members of the Chemical Engineering Scientific and Professional Community in the ASEAN and Asia-Pacific regions in the spirit of international cooperation and collaboration in order to bring forth technological solutions to pressing global challenges. Thus, the theme of the 16<sup>th</sup> ASEAN RSCE is *"Chemical Engineering at the Forefront of Global Challenges"*.

As this is the first time that the Chemical Engineering Department is hosting an international event as prestigious as the 16<sup>th</sup> ASEAN RSCE, it is keen in keeping the Symposium as a venue for meaningful scientific and professional exchanges among its participants and ensuring that such exchanges become a catalyst of collaboration and innovation in the ASEAN Region. Therefore, in addition to the customary Technical and Poster Sessions, four fora were included in the Scientific Programme where topics that are deemed apt in addressing current regional and global challenges are tackled. It is hoped that this format will accommodate Academic, Industrial and Governmental viewpoints, both in highly scientific discussions and more informal exchanges of ideas, and more effectively synthesize sustainable solutions to pressing global challenges. This Proceeding is a testament of such exhilarating discussions and exchanges.

The Organizing Committee recognizes how the Chemical Engineering discipline is evolving into an almost basic science-like discipline on which allied fields anchor to create new branches of technological disciplines of highly specific applications. It is viewed that this evolution reiterates the fact that Chemical Engineering will continue to be a highly relevant discipline in responding to global challenges that involve science and technology. Therefore, this year, rather than dividing the Technical Sessions according to Chemical Engineering Principles, the Organizing Committee divided the Scope of the Symposium into five areas where different Chemical Engineering principles may be used to address specific issues that require technological intervention: (1) Emerging Technologies, (2) Materials Innovation, (3) Processing: State of the Art, (4) Product Innovation and Entrepreneurship, and (5) Advances in Chemical Engineering Education. More than 100 paper and poster presentations with authors from 15 different countries are showcased in the 16<sup>th</sup> ASEAN RSCE. We are grateful for their participation and the opportunity to host them. Likewise, the Organizing Committee thanks the invited speakers, Technical Session Chairs and all the attendees. The Organizing Committee also wishes to thank the 16<sup>th</sup> ASEAN RSCE sponsors, donors and exhibitors, without whose generosity, holding this event will not be possible.

The historical Manila Hotel was chosen as a venue because of its long history of catering to people and events that had significant impact to the Philippines. The 16<sup>th</sup> ASEAN RSCE, being a milestone for the UST Chemical Engineering Department, deserves to be held in a storied venue such as the Manila Hotel.

**Prof. Philipina A. Marcelo, Ph. D.** Chair, Technical Committee The Secretariat 16<sup>th</sup> ASEAN Regional Symposium on Chemical Engineering Chair, Chemical Engineering Department University of Santo Tomas December 2009

## INTERNATIONAL SCIENTIFIC COMMITEE

| Indonesia   | PROF. SURYO PURWONO, Ph. D.<br>ASSOC. PROF. SANGGONO ADISASMITO, Ph. D.           |
|-------------|-----------------------------------------------------------------------------------|
| Japan       | PROF. MAASAKI SUZUKI, Ph. D.<br>PROF. HIROO NIIYAMA, Ph. D.                       |
| Malaysia    | PROF. IR. WAN RAMLI WAN DAUD, Ph. D.<br>PROF. IR. MOHAMAD AZLAN HUSSAIN, Ph. D.   |
| Philippines | PROF. MARIA NATALIA R. DIMAANO, Ph. D.<br>PROF. SUSAN A. ROCES, Ph. D.            |
| Singapore   | PROF. CHING CHI BUN, Ph. D.<br>PROF. XU RONG, Ph. D.                              |
| Thailand    | PROF. PIYASAN PRASERTHDAM, Ph. D.<br>ASST. PROF. SUPITCHA RUNGRODNIMITCHAI, Ph.D. |
| Vietnam     | PROF. TRAN VINH DIEU, Ph. D.<br>PROF. LE CONG HOA, Ph. D.                         |

### **ORGANIZING COMMITTEE**

| Chairman:          | Prof. Maria Natalia R. Dimaano, Ph. D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Co-Chairman:       | Engr. Cezar S. de la Cruz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Secretariat:       | Prof. Philipina A. Marcelo, Ph. D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Treasury:          | Assoc. Prof. Bernadette M. Duran<br>Assoc. Prof. Cecilia H. Espinosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>Committees:</i> | Assoc. Prof. Virgilio N. Agbayani<br>Prof. Benedicta B. Alava, Ph. D.<br>Asst. Prof. Michael Francis D.C. Benjamin<br>Prof. Carmela R. Centeno, Ph. D.<br>Asst. Prof. George Y. Chao, Jr.<br>Asst. Prof. Carol M. Encarnado<br>Prof. Evelyn R. Laurito, Ph. D.<br>Engr. Alvin Roy J. Malenab<br>Assoc. Prof. Lola Domnina B. Pestaño<br>Assoc. Prof. Edna C. Quinto, Ph. D.<br>Engr. Glaiza E. Tanguilan<br>Asst. Prof. Andrew B. Tengkiat<br>Asst. Prof. Susana D. Torres<br>Asst. Prof. Evangeline E. Deleña<br>Engr. Merlinda A. Palencia<br>Asst. Prof. Virginia A. Sembrano<br>Assoc. Prof. Marifa S. Torralba, Ph. D.<br>Engr. Ferdinand C. Zapanta<br>Engr. Mark Emile H. Punzalan |

*Advisers:* Prof. Lydia G. Tansinsin. D. Sc. Prof. Alberto A. Laurito

### The 16<sup>th</sup> ASEAN Regional Symposium on Chemical Engineering Technical Committee and Proceedings Editorial Board

Chair: Prof. Philipina A. Marcelo, Ph. D.

Members: Prof. Maria Natalia R. Dimaano, Ph. D. Asst. Prof. Carol M. Encarnado Prof. Evelyn R. Laurito, Ph. D. Engr. Alvin Roy J. Malenab Engr. Mark Emile H. Punzalan Assoc. Prof. Edna C. Quinto, Ph. D. The 16<sup>th</sup> ASEAN Regional Symposium on Chemical Engineering Technical Committee wishes to thank the members of its Panel of Abstract and Paper Reviewers and Technical Consultants for their invaluable assistance.

Nesha May O. Andoy, Ph. D. (cand.) Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, USA

JMR Apollo Arquiza, Ph. D. (cand.) Department of Biological and Environmental Engineering Cornell University, Ithaca, NY, USA

**Prof. Aristea V. Bayquen, Ph. D.** The Research Center for the Natural and Applied Sciences University of Santo Tomas, Manila, Philippines

**Prof. Cecilia V. Bayquen, Ph. D.** Department of Chemistry University of Santo Tomas, Manila, Philippines

**Prof. Christina A. Binag, Ph. D.** Director, Research Center for the Natural and Applied Sciences University of Santo Tomas, Manila, Philippines

**Prof. Carmela R. Centeno, Ph. D.** United Nations Industrial Development Organization (UNIDO) Vienna, Austria

**Asst. Prof. Rizalinda P. De Leon, Ph. D.** *Coordinator, College of Engineering Energy Program University of the Philippines-Diliman* 

**Prof. Leslie Joy L. Diaz, D. Eng.** *Chair, Materials Science and Engineering Department University of the Philippines-Diliman* 

**Prof. Bonifacio T. Doma, Jr., Ph. D.** *Executive Vice-President for Academic Affairs Mapua Institute of Technology* 

**Assoc. Prof. Angela D. Escoto, Ph.D.** Human Resource Development, National Engineering Center, University of the Philippines

**Prof. Susan M. Gallardo, Ph.D.** Director, Asian Regional Research Programme on Environmental Technology-DLSU De La Salle University-Manila **Prof. Wilfredo I. Jose, Ph. D.** Biotechnology Research University of the Philippines-Diliman

Assoc. Prof. Mary Beth Maningas, Ph. D.

Marine Biotechnology Research Group Leader at the Research Center for the Natural Sciences University of Santo Tomas, Manila, Philippines

#### Prof. Servillano C. Olaño, D. Eng.

De La Salle University (ret.) Former Dean, College of Engineering

#### Edwin C. Palang, Ph. D.

Scientist at Perdue Incorporated Maryland, USA

#### Prof. John Donnie A. Ramos, Ph. D.

Biological Sciences Research Group Leader at the Research Center for the Natural Sciences University of Santo Tomas

#### Assoc. Prof. Ana Liza P. Rollon, Ph. D.

Chair, Chemical Engineering Department University of the Philippines

#### Prof. Jonathan L. Salvacion, Ph.D.

Dean, Graduate School Mapua Institute of Technology

**Hon. Fortunato B. Sevilla III, Ph. D.** University of Santo Tomas, Manila, Philippines Presidential Adviser on Science and Technology (Philippine Government)

Engr. Andrew B. Tengkiat, M.Sc.

Petron Corporation Makati City, Philippines

**Prof. David L. Tomasko, Ph.D.** *Vice-Dean, College of Engineering Ohio State University Columbus, OH, USA* 

Asst. Prof. Bernard V. Tongol, Ph. D.

Nanoscience Research Group Leader at the Research Center for the Natural and Applied Sciences University of Santo Tomas, Manila, Philippines

## ACKNOWLEDGEMENT

The Technical Committee and Proceedings Editorial Board would like to thank the following students and alumni for sharing their time to help put together this Proceedings:

Engr. Princess Joyce R. Antonio Ms. Joice Anne D. Bengzon Mr. Edward John F. Boniquit Ms. Jeseca Dayao Mr. Armel John M. De Vera Mr. Juan Paolo T. Flores Mr. Gat F. Granada Engr. Mariz A. Illao Ms. Abegail Lamayan Engr. Carl Angelo D. Medriano Engr. Timothy John T. Peña Ms. Sherly B. Samson Mr. Erol Nico Taiño Ms. Maria Kimberly Tan Ms. Farrah Kaye Z. Tindugan 16<sup>TH</sup> ASEAN REGIONAL SYMPOSIUM ON CHEMICAL ENGINEERING December 1-2, 2009, Manila Hotel, Philippines

# **UST** History

The University of Santo Tomas (UST) is the oldest existing university in Asia and in terms of student population, the largest Catholic University in the world located in one campus. It was through the pioneering desire of Bishop Miguel de Benavides, O.P., (1550-1605), the third Archbishop of Manila, to establish an educational institution and the donation he bequeathed, that the University of Santo Tomas was founded on April 28, 1611. It was originally conceived as a school to prepare young men for the priesthood. Originally located within Intramuros, the Walled City, UST was first called Colegio de Nuestra Señora del Santisimo Rosario and was later renamed Colegio de Santo Tomas, in memory of the foremost Dominican theologian, St. Thomas Aquinas. The University holds three distinct titles: 'Royal' granted by King Charles III of Spain in 1795, 'Pontifical' bestowed by Pope Leo XIII on September 17, 1902, and 'The Catholic University of the Philippines' conferred by Pope Pius XII in 1947. It transferred to its present location in España, Sampaloc, Manila in 1927.



#### **TABLE OF CONTENTS**

| Foreword                           | ii   |
|------------------------------------|------|
| International Scientific Committee | iii  |
| Organizing Committee               | iv   |
| Technical Consultants              | vi   |
| Acknowledgement                    | vii  |
| UST History                        | viii |
|                                    |      |

#### PLENARY TALK

| Code | Title of Paper/Author                                                                                                                                                                      | Page |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1    | Environmental Conerns are Chemical Engineering Opportunities<br>Mohamed Eisa                                                                                                               | 1    |
|      | Membrane Processes in Chemical and Nuclear Industries: Current Scenario and Future                                                                                                         | 4    |
| 2    | Challenges<br>Anil Kumar Pabby                                                                                                                                                             |      |
| 3    | <b>Current Status and Future Direction of Chemical Engineering Researches and<br/>Education</b><br><i>Hiroo Niiyama</i>                                                                    | 9    |
| 5    | <b>Innovations in the Production of Biodiesel</b><br>Mohammed M. Farid and Sam Behzadi, The University of Auckland, New Zealand                                                            | 10   |
| 7    | <b>Membranes as Sustainable Technologies for Water, Energy, and Biofuel</b><br>Neal Tai-Shung Chung *, Yan Wang, Bee Ting Low, May May Teoh,National University of<br>Singapore, Singapore | 19   |
| 8    | Nanostructured Polymer Brushes and Layer-by-Layer Films: From Nanocomposites to<br>Ultrathin Smart Coatings<br>Rigoberto C. Advincula University of Houston, USA                           | 24   |

#### **TECHNICAL KEYNOTE**

| Code | Title of Paper/Author                                                                                                                                                                                                                                                                                                                        | Page |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1    | <b>Development of Efficient Photocatalysts for H</b> 2 <b>Production from Water Using Visible</b><br><b>Light</b><br><i>Wei Zhang, Yabo Wang, Rong Xu</i>                                                                                                                                                                                    | 27   |
| 2    | <b>Recent Advances on Carbon Dioxide Capture by Chemical Absorption</b><br><i>Meng-Hui Li</i>                                                                                                                                                                                                                                                | 31   |
| 3    | <b>Optimal Deployment of Carbon Dioxide Capture in the Power Sector Using Fuzzy</b><br><b>Boolean Programming</b><br><i>R. R. Tan, D. K. S. Ng, D. C. Y. Foo, and K. B. Aviso</i>                                                                                                                                                            | 33   |
| 4    | <b>Urban River Cleanup Collaboration Project in Ota-Ward, Tokyo</b><br>Masaaki Suzuki                                                                                                                                                                                                                                                        | 34   |
| 5    | Multiscale Modeling for Interfacial Adhesion Enhancement Using Self-Assembled<br>Nanostructures<br>Matthew M. F. Yuen , Haibo Fan, Cell K.Y.Wong                                                                                                                                                                                             | 36   |
| 6    | Role of $\chi$ -phase Contents in Nanocrystalline $\gamma$ -Al <sub>2</sub> O <sub>3</sub> on the Physiochemical and<br>Catalytic Properties of Al <sub>2</sub> O <sub>3</sub> and Pt/Al <sub>2</sub> O <sub>3</sub> Catalysts<br>Piyasan Praserthdam, Jutharat Khom-in, Chatchai Meephok, Joongiai Panpranot, and Okorn<br>Mekasuwandumrong | 40   |
| 7    | <b>Thermal Plasma Processing for Functional Nanoparticle Synthesis</b><br>Takayuki Watanabe and Manabu Tanaka                                                                                                                                                                                                                                | 47   |
| 8    | Unraveling and Probing the Current Paradigm of Chemical Engineering as a Basis in<br>Formulating Teaching Strategies<br>W. I. Jose                                                                                                                                                                                                           | 51   |
| 9    | Fuel Cell Research Trends: Towards Zero Emission Energy Technology                                                                                                                                                                                                                                                                           | 55   |

Wan Ramli Wan Daud

10Mesenchymal Cell Seeding on Three-Dimensional Matrices63James Patrick Abulencia, Dominique J. Griffon, Guillaume R. Ragetly, L. Page Fredericks, and<br/>Sahraoui Chaieb63

#### **EMERGING TECHNOLOGIES**

#### **Renewable Energy and Alternative Energy Technologies** Code **Title of Paper/Author** Page Experimental Investigation of Biodiesel Synthesis from Palm Oil using Reactive **1ET-REAET2** 66 **Distillation Process** Ratna D. Kusumaningtyas, Arief Budiman, Rochmadi, Sutijan, Suryo Purwono **1ET-REAET4** Thermodynamic Study on Vapour-Liquid Equilibrium of Toluene And Several Types of 70 **Oil as Absorbent** Hendriyana, Suhartono and Herri Susanto **1ET-REAET5** Synthesis and Activity Test of Cu/Zno/Al<sub>2</sub>O<sub>3</sub>for the Methanol Steam Reforming 74 IGBN Makertihartha, Subagjo, Melia Laniwati **1ET-REAET7 Gasification of Lignite by Microwaved Steam** 78 M. Djoni Bustan, Rosalina, Gusni Sushanti The Effect of Colocasia Esculenta Leaf as Electrolyte to Hydrogen **1ET-REAET8** 80 Production on Water Electrolysis by Using Electrochemical Reactor Sri Harvati. Widivanto. Yus Donald Chaniaao **1ET-REAET10** Nitrogen Isotope Separation Using Plasma Chemical Method 83 Harunori Nagoya, Shinsuke Mori, Masaaki Suzuki **1ET-REAET14** Review on Agricultural Biomass Utilization as Energy Source in Malaysia 86 Suzana Yusup, Mohamad Taufiq Arpin, Yoshimitsu Uemura, Anita Ramli, Lukman Ismail, Siew Hoong Shuit, Kok Tat Tan, Keat Teong Lee **1ET-REAET15** Engine Performance Characteristics of Using a Low Blend Coconut Methyl Ester(B5) 90 and Coconut - Jatropha Methyl Ester(CJ5) Mixture in an Unadditized Diesel Fuel, for a Single Cylinder, 4 Stroke Diesel Engine Felipe Ronald M. Argamosa, Carlos E. Zapanta, Elexis Edmond D. Lauzon Preliminary Engine Performance Tests and Smoke Emision Analysis Using Jatropha **1ET-REAET16** 96 (Tubang-Bakod) Methyl Ester in a Compression Ignition Engine Hernando E. Enal Jr., Mark Yu Tang P. Lin, Aldrin Kevin G. Tamse and Maria Natalia R. Dimaano **Environmental Science and Technology** Code **Title of Paper/Author** Page **1ET-EST1** Sorption of Chromium Using Dried Biomass of Water Spinach (Ipomoea aquatica) 99

|          | Daizyree Baran, Rey Eliseo Torrejos, Joann Baconguis and Maria Isabel R. Dumlao                                                                                                  |     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1ET-EST5 | <b>Effect of Preparation Methods on Nanogold Supported TiO</b> 2<br>Padikkaparambil Silija, Zahira Yaakob, Narayanan Binitha, S.K.Kamarudin,S.M.Tasirin,<br>Viswanathan Suraja   | 102 |
| 1ET-EST6 | Photocatalytic Activity of Iron and Niobium Co-Doped TiO2 Towards Perfluorooctanoic<br>Acid (PFOA) Degradation<br>Carl Renan Estrellan, Chris Salim, and Hirofumi Hinode         | 105 |
| 1ET-EST7 | <b>Technological Feasibility Study on the Chromium Recovery from a Synthetic<br/>Electroplating Effluent</b><br><i>R.T. Bachmann, D. Wiemken, A.B. Tengkiat</i>                  | 109 |
| 1ET-EST8 | Recovery of Phenol from Aqueous Solutions Using Liquid Extraction and Liquid<br>Membranes: A Review<br>Somayyeh Nosrati, Jayakumar Natesan Subramanian Nayagar, Mohd. Ali Hashim | 114 |
| 1ET-EST9 | Characterization of Nano-Titania Prepared by Sol-Gel Method and Photocatalytic Studies in Dye Degradation                                                                        | 118 |

|           | Jurex Gallo, Kerry Cabral, Carmela Centeno, Josephine Borja and Susan Gallardo                                                                                                                                                    |     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1ET-EST11 | <b>Substance Flow Analysis of Mercury in Fluorescent Lamps in the Philippines</b><br>Karl Ivan M. San Luis, John Patrick Y. Tio, Jennerson T. Ong<br>Florinda T. Bacani, Raymond R. Tan                                           | 122 |
| 1ET-EST14 | <b>Utilization of Cross-linked Carboxymethyl κ-Carrageenan as Adsorbent for Hexavalent</b><br><b>Chromium (Cr+6) Ion</b><br>Princess Joyce R. Antonio, Mark Emile H. Punzalan, Rochelle Anne B. Saturno and Aristea V.<br>Bayquen | 125 |
| 1ET-EST15 | Influence of Water Content on Biofiltration Performance<br>Daisy B. Badilla, Peter A. Gostomski, Maria Lourdes P. Dalida                                                                                                          | 129 |
| 1ET-EST16 | Sorption Selectivity of Mine Drainage Heavy Metals on Coco Peat<br>Dennis C. Ong, Maria Antonia N. Tanchuling, and Augustus C. Resurreccion                                                                                       | 133 |
| 1ET-EST18 | The Photocatalytic Degradation of Lignin from Simulated Recycled Paper Mill Effluent<br>using Nano Titania<br>Susan M. Gallardo, Ria Angelica L. Hermoso, Shaira Sharmaine G. Montero                                             | 137 |
| 1ET-EST19 | Solubility of Carbon Dioxide in the Aqueous Blended Amine System of<br>Triethanolamine and Piperazine<br>Rhoda B. Leron, Pei-Yuan Chung, Allan N. Soriano, Meng-Hui Li                                                            | 141 |
| 1ET-EST20 | A Liquid-Phase Batch Adsorption Study of Methyl Violet Dye Removal Using Acid<br>Modified Activated Carbon<br>Azam T. Mohd Din, Henry F. Chee Yew, M.S. Al-Amin A. Malik                                                          | 145 |
| 1ET-EST21 | <b>Reduction of Heavy Metal and Microbial Contaminants in Septage via Vermicomposting</b><br>Jessie O. Samaniego and Louernie F. De Sales-Papa                                                                                    | 150 |
| 1ET-EST22 | Utilization of Sulfonated Polystyrene in the Reduction of Pb+ <sup>2</sup> in Electroplating<br>Industry Wastewater<br>Aries A. Arcega, Justin Micah B. Comia, Aprille M. de Castro, Sherryl A. Perez                             | 154 |
| 1ET-EST23 | Dye Removal from Simulated Textile WastewaterUsing Pyrolyzed Spent Coffee<br>Grounds<br>Juan Paolo T. Flores, Clyde F. Permalino, Florenze Jesse D.D. Dumandan,<br>and Andrew Benedict Tengkiat                                   | 157 |

#### Analyses and Processing of Food and Pharmaceutical Products

| Code       | Title of Paper/Author                                                                                                                                                                                                      | Page |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1ET-APFPP1 | Characterization and Performance Studies of a Chloramphenicol Nano-Sensor<br>Based on Molecularly Imprinted Polymer Coated Piezoelectric Quartz Crystal<br>Benilda S. Ebarvia, Isaiah Ubando, and Fortunato B. Sevilla III | 160  |
| 1ET-APFPP2 | Pressurized Microwave-Assisted Extraction of Protoberberine Alkaloids from<br>Coscinium fenestratum<br>Makoto Suzuki, Phengxay Deevanhxay, Nariaki Maeshibu, Sachio Hirose                                                 | 163  |
| 1ET-APFPP3 | <b>Development of Industrial Microwave Processing</b><br>M. Rozainee, A. A. Yussuf , M. M. Mutahharah, M.Sarah, P.S. Ng                                                                                                    | 166  |

#### Materials Science and Engineering

| Code     | Title of Paper/Author                                                                                                                                                                                                   | Page |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1ET-MSE1 | Preparation of Palladium Nanoparticles Supported on Mesoporous Silica for Liquid-<br>Phase Semihydrogenation of Phenylacetylene<br>Napaporn Tiengchad and Joongjai Panpranot                                            | 170  |
| 1ET-MSE2 | Preparation of Composite Membrane Using Atmospheric Pressure Plasma<br>Polymerization Process<br>Taichi Bannai, Tran Thi Dung, Shinsuke Mori, Masaaki Suzuki                                                            | 174  |
| 1ET-MSE3 | Characterization of Gold Nanoparticles Prepared by Deposition Precipitation Method<br>on Surfactant Assisted Sol-Gel Co3O4<br>Viswanathan Suraja, Zahira Yaakob, Narayanan Binitha, S.M.Tasirin, Padikkaparambil Silija | 177  |
| 1ET-MSE4 | Modification of Properties of CeO $_2$ -Doped MgO-ZrO $_2$ Ceramic Synthesized at Low                                                                                                                                   | 179  |

#### Temperature

Eufrecina B. Bognalbal and Alberto V. Amorsolo, Jr.

#### MATERIALS INNOVATION

#### **Construction and Indutrial Materials**

| Code      | Title of Paper/Author                                                                                                                                                                                 | Page |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2MI-CIM1  | Urea-Formaldehyde Microcapsules by in Situ Polymerization: Effect of pH and<br>Prepolymer concentration<br>Rochmadi, Agus Prasetyo, Wahyu Hasokowati                                                  | 183  |
| 2MI-CIM2  | <b>Potential of Virgin Coconut Oil in the Production of Lacquer Enamel Paint</b><br>Lina D. dela Cruz                                                                                                 | 187  |
| 2MI-CIM3  | Preparation of Carbon Molecular Sieve for CO2/CO4 Separation by Pyrolysis of Phenol<br>Formaldehyde Resin<br>Imam Prasetyo, Rochmadi, and Endro Wahyono                                               | 193  |
| 2MI-CIM4  | <b>Crude Glycerol Purification and Treatment for Biolubricant Preparation</b><br>Manal Ismail, Wan Nor Roslam Wan Isahak , Mohd Ambar Yarmo ,<br>Jamaliah Mohd Jahim, Jumat Salimon                   | 197  |
| 2MI-CIM5  | Effect of Fiber Loading on the Mechanical Strength of NFR Hybrid Composites<br>Terence Tumolva, Masatoshi Kubouchi, Saiko Aoki <sup>1</sup> , Tetsuya Sakai                                           | 201  |
| 2MI-CIM6  | <b>Preparation of Activated Carbon from Bagasse Fly Ash by Chemical Activation</b><br>Chandra Wahyu Purnomo, Chris Salim, Hirofumi Hinode                                                             | 205  |
| 2MI-CIM7  | Performance of Potassium Metavanadate as Low Carbon Steel Corrosion Inhibitor in<br>Chloride and Sulfide Environments<br>Isdiriayani Nurdi, Aditya Arif, Asri Pratiwi, Fikri Putra, Rennie Windyawati | 208  |
| 2MI-CIM8  | Effect of Compatibilizer on Mechanical Properties of Polypropylene/Zinc Oxide<br>Nanocomposites<br>Thitipong Sanitchai, Sirirat Wacharawichanant, and Supakanok Thongyai                              | 213  |
| 2MI-CIM9  | <b>Aging Behavior of Epoxy Resin in an Inoxidizable Environment</b><br>Daisuke <u>.</u> Shono, Hidetaka Minagata, Masatoshi Kubouchi, Saiko Aoki                                                      | 216  |
| 2MI-CIM10 | <b>Production of Activated Char from Rice Husk for Gasification Wastewater Treatment</b><br>Frita Yuliati, Dwiwahju Sasongko and Herri Susanto                                                        | 220  |
| 2MI-CIM11 | Nonpolar and Polar Solvent Solubilities in Polymer Solution Using Quartz Crystal<br>Microbalance Method<br>Gede Wibawa, Grastayana Suki, Dicky Afrizal and Kuswandi                                   | 224  |
| 2MI-CIM12 | <b>Effects of Low Temperature Synthesis on the Properties of Magnesia-Doped Zirconia</b><br><i>Eufrecina B. Bognalbal and Alberto V. Amorsolo, Jr.</i>                                                | 229  |

#### **Biomedical and Pharmaceutical Products**

| Code      | Title of Paper/Author                                                                                                                                                                | Page |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2MI-BMPP3 | <b>Inline Analysis of Compounds in Lao Medicinal Plant-<i>Kiderm</i><br/>Nariaki Maeshibu, Phengxay Deevanhxay, Makoto Suzuki, Keooudone Rasphone, Ken Tanaka,<br/>Sachio Hirose</b> | 233  |

#### **Electronics Materials**

| Code    | Title of Paper/Author                                                                                                                                                   | Page |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2MI-EM1 | A Study of Polypropylene, Sodium Hydroxide and Quartz Composition on the<br>Capacitive Property of Cu<br>M. Djoni Bustan, Sri Haryati and Dian Kharismadewi             | 236  |
| 2MI-EM2 | Study of Resistive Degree of Polypropylene, Hydrofluoric Acid and Quartz Combination<br>on Cu Material<br>M. Djoni Bustan, Sri Haryati, Rahmawaty and Dian Kharismadewi | 239  |

| 2MI-EM3 | Structural and Electronic Properties of OH <sup>.</sup> Passivated Germanium Nanowires | 241 |
|---------|----------------------------------------------------------------------------------------|-----|
|         | Mahasin Alam SK, Haixia Da, Man-Fai Ng and Kok Hwa Lim                                 |     |

#### **PROCESSING: STATE OF THE ART**

Mathematical Modeling and Numerical Analyses

| Code        | Title of Paper/Author                                                                                                                                                                                                                         |     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3Pro-MMNA1  | <b>1</b> Diffusion Coefficients of Ethylene Glycol: Measurements and Correlations<br>Alvin R. Caparanga, Ming-Hung Wang, Allan N. Soriano, Meng-Hui Li                                                                                        |     |
| 3Pro-MMNA2  | 2 Molar Heat Capacity and Electrolytic Conductivity of Aqueous Solutions of<br>1-Butyl-3-methylimidazolium Methylsulfate<br>Allan N. Soriano, Pei-Yin Lin, Alvin R. Caparanga, Meng-Hui Li                                                    |     |
| 3Pro-MMNA3  | <b>Two Solved Models of Mass and Mass-Heat Transfers for Supercritical CO</b> 2 <b>Extraction of Melaleuca cajuputi oil</b><br>Shahnaz Mansouri Jajaei, Wan Ramli Wan Daud, Masturah Markom, Asghar Mansouri Jajaei                           | 250 |
| 3Pro-MMNA4  | Validation and Development of a Dispersion Model with Routine Ambient<br>Concentration Monitoring Data from Petrokimia Gresik Industrial Complex<br>Mohammad Fahrurrozi, Sutijan, Nanang Teguh, Mohammad Syahriari and Wahyudi B.<br>Sediawan | 254 |
| 3Pro-MMNA5  | <b>Effect of Tetrasodium EDTA on the Vapor-Liquid Equilibria of Ethanol-Water System</b><br>Vergel C. Bungay, Yolanda P. Brondial and Nathaniel P. Dugos                                                                                      | 257 |
| 3Pro-MMNA6  | <b>Modeling of Supercritical Fluid Extraction with Cosolvent Mixtures</b><br>Masturah Markom, Masitah Hasan and Wan Ramli Wan Daud                                                                                                            | 261 |
| 3Po-MMNA7   | Modeling and Simulation of a Separate Line Calciner Fueled with a Mixture of Coal and<br>Rice Husk<br>Sunu Herwi Pranolo, Yazid Bindar, Dwiwahju Sasongko, and Herri Susanto                                                                  | 266 |
| 3Pro-MMNA8  | 8 Adaptive Wavelet Density Distribution for Modeling Polymerization Processes<br>Jose Co Munoz and Junghui Chen                                                                                                                               |     |
| 3Pro-MMNA9  | Intermittent Hot Air, Dehumidified Air, Heat Pump and Convective Cum Vacuum<br>Microwave Drying Characteristics and Models<br>Chien Hwa Chong, Adam Figiel, Chung Lim Law                                                                     | 275 |
| 3Pro-MMNA10 |                                                                                                                                                                                                                                               |     |
| 3Pro-MMNA11 | Purely Predictive Application of Statistical Associating Fluid Theory for Enhanced Oil<br>Recovery by Miscible Gas Flooding<br>Tjokorde W. Samadhi, Hertanto Adidharma, Sugata P. Tan                                                         | 282 |

#### **Catalysis and Reaction Engineering**

| Code       | Title of Paper/Author                                                                                                                                         |     |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| 3Pro-CRE1  | Kinetics Modeling for Synthesis of Terpineol from Turpentine<br>Herti Utami, Arief Budiman, Sutijan, Roto, Wahyudi Budi Sediawan                              |     |  |  |
| 3Pro-CRE2  | <b>The Effect of Unburned Carbon on Coal Fly Ash Toward Cr(VI) Adsorption Capacity</b><br>Widi Astuti, I Made Bendiyasa, Endang Tri Wahyuni and Agus Prasetya | 290 |  |  |
| 3Pro-CRE3  | Kinetic Study on the Hydrolysis of Water Hyacinth to Levulinic Acid<br>Buana Girisuta, L. P. B. M. Janssen, H. J. Heeres                                      | 294 |  |  |
| 3Pro-CRE5  | Aerobic Oxidation of Benzyl Alcohol Using Molecular Oxygen Over Surface-Modified<br>Tud-1 Supported Palladium Catalysts<br>Yuanting Chen, Yanhui Yang         | 297 |  |  |
| 3Pro-CRE12 | Synthesis of Nanosized Platinum Catalysts for Cinnamaldehyde Hydrogenation<br>Reaction<br>Chalisa Kruprasert , Choowong Chaisuk, Okorn Mekasuwandumrong       | 302 |  |  |
| 3Pro-CRE13 | Immobilization of Phosphoramidite Ligands—Rh Complexes on SBA-15 and its Catalytic Application in Conjugate Addition of Arylboronic Acide to Enones           | 306 |  |  |

Zhen Guo, Yingshan Tan, Munfong Chan, Yanhui Yang

| 3Pro-CRE15 | Kinetics of Transesterification of <i>Jatropha Curcas</i> -Based Triglycerides<br>with an Alcohol in the Presence of Alkaline Catalyst<br>Azhari M. Syam, Yunus, R., Mohd. Ghazi, T. I., Choong, T. S. Y. | 310 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3Pro-CRE16 | Synergistic Effects of Plasma Chemical Reaction and Electrochemical Reaction using the SOFC Reactor                                                                                                       | 314 |

Yuki Tagawa, Shinsuke Mori, Masaaki Suzuki

#### Design, Optimization, Instrumentation and Process Control

| Code         | Title of Paper/Author                                                                                                                                                                                                           | Page |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| 3Pro-DOIPC1  | <b>Conservative Versus Optimum: Perspective on Process Design</b><br>Jed M. Bellen, Kevin Leonard C. Caudal, Herbie Gino S. Vinluan                                                                                             |      |  |  |
| 3Pro-DOIPC3  | Vapor-Liquid Equilibria (VLE) of Isopropyl Alcohol-Toluene-Water System in the<br>Presence of Magnesium Chloride<br>Nathaniel P. Dugos, Yolanda P. Brondial, Vergel C. Bungay                                                   |      |  |  |
| 3Pro-DOIPC4  | 4 Effect of Time and Temperature on Reflux Extraction from Sea Cucumber (Holothuri<br>scabra J) as Source of Natural Testosterone<br>Kurnia Harlina Dewi, Masturah Markom, Devi Silsia and Laili Susanti                        |      |  |  |
| 3Pro-DOIPC5  | <b>Comparison of Different Extraction Techniques for Isolation of Testosterone from Sea</b><br><b>Cucumber (Holothuria scabra J)</b><br>Kurnia Harlina Dewi, Masturah Markom, Wan Ramli Wan Daud, Devi Silsia and Laili Susanti |      |  |  |
| 3Pro-DOIPC6  | Dynamic Optimization of a Fixed-Bed Reactor System for Methanol Production with<br>Optimized Time Intervals<br>Mohd Nazri Mohd Fuad, Mohd Azlan Hussain, Adam Zakaria                                                           | 332  |  |  |
| 3Pro-DOIPC7  | <b>Product Quality and Drying Characteristics of Intermittent Heat Pump Drying of</b><br><i>Ganoderma tsugae</i> Murrill<br><i>Chung Lim Law, Siew Kian Chin</i>                                                                | 335  |  |  |
| 3Pro-DOIPC9  | Application of Solvent Extraction for Neodymium Separation from Mix Rare Earth<br>Rattakrei Hongsupanpang, Weerawat Patthaveekongka                                                                                             | 341  |  |  |
| 3Pro-DOIPC10 | <b>Deactivation of Water Gas Shift Catalyst for PEFC Applications under Startup and Shutdown (DSS) Operation,</b><br><i>Tomohiko Tagawa, Hirofumi Goshima, Rakunei Ba, Hiroshi Yamada, Yoshimi Kawashima</i>                    |      |  |  |
| 3Pro-DOIPC11 | <b>The Exergy Analysis of Modified Flowsheeting Primary Reformer</b><br><b>in Pt Pusri II Palembang</b><br>Sri Haryati, M. Djoni Bustan, I G. Mandera, J. Asnani I and D. Kharismadewi                                          | 346  |  |  |
| 3Pro-DOIPC12 |                                                                                                                                                                                                                                 |      |  |  |
| 3Pro-DOIPC14 | Utilization of Adhesion of Fine Crystals for Increasing the Efficiency<br>of NaCl Crystallization<br>Yoshinari Wada, Koji Masaoka, Masakazu Matsumoto and Kaoru Onoe                                                            | 351  |  |  |
| 3Pro-DOIPC15 |                                                                                                                                                                                                                                 |      |  |  |
| 3Pro-DOIPC16 | 5 Isotope Separation by Condensation of Vibrationally Excited Gas<br>Nga T.A Nguyen, Toyoaki Hayakawa, Shinsuke Mori, Masaaki Suzuki                                                                                            |      |  |  |
| 3Pro-DOIPC17 | <b>Separation of Rubber Particle from Skim Latex Using Rotating Microfilter</b><br><b>in Concentrated Latex Industry</b><br><i>Pravit Ployngam, Lim Chin Hock and Chirakarn Muangnapoh</i>                                      |      |  |  |
| 3Pro-DOIPC18 | Sludge Formation and Removal in Concentrated Latex Industry<br>Arnop Meesupree, Lim Chin Hock and Chirakarn Muangnapoh                                                                                                          | 362  |  |  |
| 3Pro-DOIPC20 | A Simple Ebulliometer for Accurate Measurement of Vapor Pressure of Alcohol-<br>Isooctane Mixtures<br>Ignatius Gunardi, Vika Amildesi, Rama Oktavian, and Gede Wibawa                                                           | 365  |  |  |
| 3Pro-DOIPC21 | The Effect Of Alcohol, Catalyst Concentration, And Reaction Time To The Yield Of Neem                                                                                                                                           | 369  |  |  |

|               | <b>Biodiesel And Characteristics</b><br>Felycia Edi Soetaredjo, Aning Ayucitra, Sindu Wibowo and Hendy Kurniawan                                                                                                                                                                   |      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3Pro-DOIPC23  | <b>Dynamic Modeling and Control of a Debutanizer column</b><br>Nasser M Ramli and Mohd Azlan Hussain                                                                                                                                                                               | 372  |
| 3Pro-DOIPC24  | 24 Exergy Analysis and Fuel Reduction Strategies For Crude Distillation Unit<br>Nur Izyan binti Zulkafli, Shuhaimi Mahadzir                                                                                                                                                        |      |
| Biotechnolog  | y                                                                                                                                                                                                                                                                                  |      |
| Code          | Title of Paper/Author                                                                                                                                                                                                                                                              | Page |
| 3Pro-Biotech1 | Investigation of Fungitoxic Activity of Neem Seeds, Leaf and Oil Extracts on the Most<br>Important Soil-Born Phythopathogenic Fungi Under Laboratory Condition<br>Lida Jabbari, Shahnaz Mansoori Jajaie, Homayoom Afshari Azad, Mohsen Morovati, Ahmad<br>Heidari                  | 382  |
| 3Pro-Biotech3 | Study of the Performance of a Bioreactor System Using Microbial Support Materials<br>Derived from Solid Wastes<br>Lam Van Giang, Franz Furby C. Ramos, Jocelyn B. Toga-on, Ma. Catriona Devanadera, Nguyen<br>Phuoc Dan, Ohtaguchi Kazuhisa, and Wilfredo I. Jose                  | 385  |
| 3Pro-Biotech4 | <b>Prediction of Fructose Concentration in a Glucose Isomerisation Process using</b><br><b>Artificial Neural Network</b><br>N A. Rahman, M.Hasan, M.A. Hussain, J. Jahim, S.R.S. Abdullah                                                                                          | 389  |
| 3Pro-Bioteh6  | <b>Characteristic Modification of Bacterial Cellulose during the Biosynthesis by</b><br><i>Acetobacter Xylinum</i><br><i>Siriporn Taokaew, Chattrin Mahaisavariya and Muenduen Phisalaphong</i>                                                                                    | 392  |
| 3Pro-Biotech7 | ech7 Ethanol Productivity from Sugarcane Juice and Cane Molasses by Mixed Cultures of<br><i>Kluyveromyces marxianus</i> DMKU 3-1042 and Saccharomyces cerevisiae M30<br>Akekasit Eiadphum, Anuchit Rattanapan, Jirawan Mongkolkajit, Savitree Limtong and<br>Muenduen Phisalaphong |      |
| 3Pro-Biotech8 | <b>Cellulose Decomposition Using <i>Trichoderma viride</i> and Derived Enzyme</b><br>Feng Liu, Motoki Kobayashi and Kaoru Onoe                                                                                                                                                     | 399  |
| 3Pro-Biotech9 | <b>Cabbage Extract as a Precursor in Xanthan Gum Production using Xanthomonas<br/>Campestris</b><br>Ronny Purwadi, Zulhaj Rizki , Fleuri Paramita Aprianti                                                                                                                         | 402  |

#### PRODUCT INNOVATION AND ENTREPRENEURSHIP Product Development

| Code     | Title of Paper/Author                                                                                                                                                                                                                           | Page |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4PIE-PD1 | <b>The Use of Kepok Banana Starch as Soy Milk Ice Cream Stabilizer</b><br>Aning Ayucitra, Felycia E Soetaredjo, Trio T Putra, Bob M Hoesan, and Hendy Heriyanto                                                                                 | 405  |
| 4PIE-PD4 | Development of a Personal Water Purification Solution for Rural Communities in the<br>Philippines<br>Anne Joan Caraccio, Nithin Susan Abraham, Kevin John McDonnell, Nicholas Alexander Ruffini,<br>Susan Gallardo, and James Patrick Abulencia |      |

#### **CHEMICAL ENGINEERING EDUCATION UPDATES**

**Emerging Teaching Approaches** 

| Code       | Title of Paper/Author                                                                                                             | Page |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|------|
| 5CEEU-ETA2 | A Proposed Strategy in Teaching "Mass and Energy Balance Calculations" (MEBC)<br>under Steady-State Situation<br>Wilfredo I. Jose | 411  |

# Effect of Time and Temperature on Reflux Extraction of Testosterone from Sea Cucumber (*Holothuria scabra J*) as Source of Natural Testosterone

Kurnia Harlina Dewi <sup>1\*</sup>, Masturah Markom<sup>2</sup>, Devi Silsia <sup>1</sup> and Laili Susanti<sup>1</sup>

<sup>1</sup>Department of Agroindustrial Technology, Faculty of Agriculture, University of Bengkulu, Jl. Raya Kandang Limun, Bengkulu, 38371, Sumatera, Indonesia, <sup>2</sup>Department of Chemical and Process Engineering, Faculty of Engineering, National University of Malaysia, UKM Bangi 43000, Selangor Darul Ehsan, Malaysia \*Email: nia\_unib@yahoo.com

**ABSTRACT:** Testosterone, the steroid hormone, is not only produced by sea cucumber but a lot of other organisms as well, which is used to sex reversal and aphrodisiac. This research aimed to invent extraction method, conventional (maceration, reflux and percolation), which is capable to yield highest steroid of sea cucumber extract. Raw material shown characteristic as sea cucumber which is contain water rate 88.99%, protein rate 38.96%, fat rate 4.18% and dusty rate 31.43%. Effect of temperature (40, 50 and 60°C) and time (0, 30 up to 240 minutes) on scale-up reflux extraction also studied. In scale-up reflux extraction of 3000 ml showed increasing temperature will increase sea cucumber steroid extract (%). The influence of extraction duration at temperature 40, 50 and 60°C showed result of 0.68, 0.69, and 0.84% content, respectively.

Keywords: extraction, steroid, refluxs, testosterone

#### **INTRODUCTION**

Cea cucumber, as one of marine resources, which is also known **J**as teat fish, sandfish and sea ginseng, preconceived contain testosterone steroid, since it can increase men's vitality. High protein content (39.09%) (Anonim. 2005) as enzyme in sea cucumber is such as alkaline protease (Xue-Yan Fu et al. 2005a), arginine kinase, bromelin and alcase (Xue-Yan Fu et al. 2005b). Kustiariah (2006) successful identify testosterone's steroid from sea cucumber and applies it on chicken. Utilization of extraction as aphrodisiac on human has been done and tested on mice (Nurjanah, S. 2008). Protein as antibody can be seen from contents of the active compound, as antibacterial (Villasin and Christopher M.P. 2000, Ridzwan, B.H. et al. 2005, Haug T. et al. 2002), antifungal (Muray, A. P. et al. 2002) and anticoagulant (Mullov, B. et al. 2000). Protein in sea cucumber has complete amino acids both essential and non-essential amino acids. Amino acid is very useful in protein synthesis in muscle and androgen hormone formation, which is testosterone functioning in reproduction process both libido enhancer and spermatozoa formation. Fat contents of fresh sea cucumber (4.35%) consist of saturated and unsaturated fatty acids (Fredalina, B. H. et al. 1998). Besides, there are 60 types of free sterol in sea cucumber

The potential to use sea cucumber extract as natural testosterone is promising, but the extraction method that is able to produce high purity testosterone is not achieved yet. While temperature influence and time of extraction not yet been checked. Therefore, further research of temperature influence and time of extraction are required. This paper investigates influence of temperature and extraction time of reflux extraction for the determination of natural testosterone in sea cucumbe. Reflux extraction is known from previous study as extraction method of sea cucumber that yields the highest steroid testosterone. The studied including types of solvent i.e. chloroform methanol mixture and also the ratio of substance: solvent 1:2 w/v.

#### **MATERIAL AND METHODS**

Raw material used was matured sea-cucumber (*Holothuria Scabra J*), which acquired of fisherman haul at Bengkulu Province, Indonesia. The characteristics of sea cucumbers used in the research were the same as the characteristics of the steroid producing sea cucumbers identified by Riani, *et al* (2007) and

also the same as sea cucumbers used by Kustiariah (2005) and Nurjanah (2008).

Equipments used in this research is instrumentals of raw material preparation, namely grinder tool, dryer, weighing digital (AB's Toledo Mettle 204 s), chemical material for proximate analysis. Chemicals to identify steroid, chemicals at color test (acetate anhydrate, condensed H<sub>2</sub>SO<sub>4</sub>), equipment of conventionally extraction, centrifuge and vacuum evaporator and the quantitative test use spectrophotometer UV-VIS,

The sea cucumbers to be extracted were characterized on the species and age based on weight and length of sea cucumbers. This is important because the weight and length of sea cucumber determine the existence of testosterone. Testosterone exists in matured sea cucumber with weight about 200-500 g and length about 25-35 cm. A suitable sea cucumber was cleaned; the flesh was separated from the entrails, milled and then analyzed proximately

Research divided into three stages, that is 1) characterization and chemical analysis of sea-cucumber, 2) reflux extraction at scale 3000 ml and 3) qualitative and quantitative analysis of testosterone from extract result. Reflux extraction by using methanol chloroform solvent 1:2 v/v and ratio of substance: solvent 1:2 b/v are used at this stage, because as shown in the previous studied, the condition of this extraction yield the highest testosterone. This step intent to determine temperature and extraction time which gives the highest testosterone. Sea cucumber flesh fresh which already been milled is weighed as much 1000 g, entered into extractor, added by solvent as much 2000 ml. Extraction conducted at various temperature (40, 50 and 60°C) and extraction time (30, 60, 90, 120, 150, 180, 210 and 240 minutes). Squealer remains to be done during extraction, to increase contact between material and solvent. Result of extraction is taken each 30 minutes as much 10 ml, then centrifuge, and dissociated between liquid phase/supernatant and precipitant/residue. Supernatant evaporated by using rotary vacuum evaporator until all solvent condense and then weighed.

#### **RESULTS AND DISCUSSION**

### Chemical Analysis of Raw Sea Cucumber (*Holothuria scabra J*)

Chemical analysis of the sea cucumbers used to determine water content, fat, protein and ash of the fresh and the powder of the sea cucumbers as raw material. Results of the analysis are

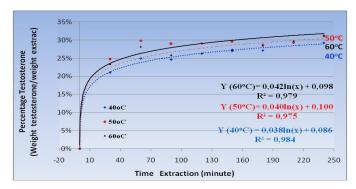



Figure 1. Testosterone weight of reflux extraction, scale 3000 ml

shown in Table 1. Highest ash content (31.43% of fresh and 42.43% of the powder) of the sea cucumbers was due to the lime covering the whole body of the sea cucumbers. Sea cucumber is one of the animals with spikes on the skin or *Echinoderm*, The spikes are distributed in epidermis layer which are microscopic lime particles

| Component   | Result of a fresh | Result of the powder of |  |
|-------------|-------------------|-------------------------|--|
|             | sea cucumber      | the sea cucumbers       |  |
| Water (%)   | 88,99             | 10,81 ± 2,01            |  |
| Ash (%)     | 31,43             | 42,43 ± 4,24            |  |
| Fat (%)     | 4,18              | 1,83 ± 0,27             |  |
| Protein (%) | 38,96             | 29,81 ± 0,29            |  |
|             |                   |                         |  |

#### **Conventional Extraction of Sea Cucumber**

Further testing use of chloroform solvent equal to 7.9547 mg did not cause significant difference compare to mixture of methanol-chloroform solvent which is equal to 7.6142 mg. While influence of ratio showed that when more solvent was used, testosterone extraction was higher, however ratio 1:2 not significance differ from ratio 1:3. Extraction by reflux show highest result obtained by using chloroform solvent, then mixture methanol-chloroform, acetone and lowest by methanol, respectively.

#### **Influence of Temperature**

Sea cucumber extraction in larger scale is done bases on method, solvent and ratio of material and solvent, which chosen at previous step, namely reflux extraction method by chloroform methanol solvent and ratio of material vs. solvent is 1:2 (w/v). Hereafter conducted chosen temperature and extraction time which can yield highest testosterone, namely 40, 50 and 60°C, at extraction up to 4 hours (240 minutes). Instillation or Warm-Up on extraction reflux constitutes very assistive condition process. Temperature step-up will increase solubility, so that dissolve quicker testosterones.

Temperature influence to testosterone weight shows that extraction temperature step-up of  $40^{\circ}$ C until  $60^{\circ}$ C increase testosterones weight. This result figures that temperature stepup will increase solubility and diffusivities on extraction; in line with Aguilera (2003) one that declares that extraction constitutes solvent synergist work through diffusion process of solvent and solubility, whether through cell network as well as through capillary. Testosterone weight can be seen on Figure 1. Result of equation point out extraction temperature step-up of  $40^{\circ}$ C as  $50^{\circ}$ C will increase average weight testosterone from 6,349 becoming 7,905 mg/100 g dry weight (dw) of fresh seacucumber, but then succeeding temperature step-up give weight testosterone which not differ (7,746 mg/100 g dw), This result in line with theory expressing that temperature have an effect to extraction rate, where the higher temperature, extraction result gets to increase. But the improvement limited by level of solvent evaporation (Tzia, C. and George L. 2003).

Besides amount of high testosterone become base of election of extraction temperature, it is important to know testosterone percentage, namely percentage of testosterone weight to crude extract weight which obtained by effect of distinctive extraction temperature. Extraction temperature step-up (40, 50 and 60°C) will raise level of testosterone percentage (testosterone percentage) alternately 0,689%, 0,692% and 0,776%

Duration of extraction also influences weight and percentage of obtained testosterone, namely the longer extraction, testosterone weight and percentage progressively increases. Increasingly temperature, on same duration of extraction, the weight and percentage of testosterones also becoming increases until temperature 50°C, but that step-up not happening on temperature 60°C. Percentage of testosterone obtained visible in detail at Figure **2** 

Temperature step-up also influence on extraction time. This observational result point out increasingly temperature, extraction time progressively shortens.

Temperature step-up of 40 to  $50^{\circ}$ C in result testosterones weight ± 6,347 taking a short cut extraction time from 240 minute become 120 minute. The small difference testosterone percentage due to extraction temperature step-up not only increase testosterone solubility, but also increases other component solubility. It can be seen on extracts yielding step-up.

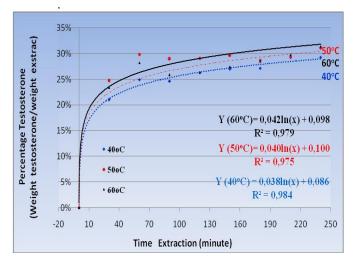



Figure 2. Testosterone percentage at various temperature of extraction

#### CONCLUSIONS

Study of reflux extraction of scale 3000 ml has been conducted. From this research we had some conclusion:

a. Temperature that results highest testosterone is 50°C. Temperature step-up of 40 to 50°C increase testosterone weight of 6.349 to 7.905 mg/100 g dw fresh sea cucumber, meanwhile succeeding temperature step-up doesn't point out testosterones weight significance difference. But then, temperature step-up (40, 50 and 60°C) not influential to testosterones percentages (testosterone weight/ weight extracts crude) namely equal to 0,689, 0,692 and 0,776% b. The highest testosterone found at 180 minute on all extraction temperature. Succeeding extraction time step-up doesn't point out testosterones weight difference. Progressively increasing of extraction temperature (40 to 50°C), extraction time required for same result of testosterones weight (6.349 mg 100 g dw<sup>-1</sup> fresh sea cucumber), progressively shorten (from 240 becoming 120 minutes).

#### SUGGESTIONS

Need further research in larger scale (pilot plant), so that the extraction conditions are close to industrial production scale.

#### ACKNOWLEDGEMENT

The first author thanks Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, for their support to conduct this research under Sandwich model programmed.

#### REFERENCES

Aguilera, Jose Miguel. 2003. Solid-Liqiud Extraction. Marcel Dekker, Inc. 270 Madison Avenue, New York

Anonim 2005. *The Holothuroidea*. http://www.Holothuroidea.htm.

- Fredalina, B. H. Ridzwan, A.A. Zainal Abidin, M. A. Kaswandi, H.Zaiton, I.Zali, P.Kittakop, A.M. Mat jais. 1998. Fatty acid compositions in local sea cucumber, Stichopus chloronotus, for wound healing. General Pharmacol. (44):337-34
- Haug T, Anita K.K, Olaf B.S, Erling S, Orjan M.O and Klara S. 2002. Antibacteria activity in Strongylocentrotus droebachoensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asteria rubrns (Astroideae). Journal of intevertebrate pathology (81):94-102

- Kustiariah. 2006. Isolasi dan Uji Aktivitas Biologis Senyawa Steroid dari Teripang Sebagai Aprodisiaka alami (Thesis). Bogor : Sekolah Pascasarjana, IPB
- Mulloy, B., P.A.S. Mourao and Gray. 2000. Structur/function studies of anticoagulant sulphated polysaccarides using NMR. Journal Biotech. 77(1):123-135
- Muray, Ana P, Claudia M, Alicia M.S and Marta S.M. 2002. Patagonicoside A: a novel antifungal disulfated triterpene glycoside from the sea cucumber Psolus pataginicus. Tetrahedron, journal. Tetrahedron.V (57): 9563-9568
- Nurjanah, Sarifah. 2008. Identifikasi Steroid Teripang Pasir (Holuthuria scabra) dan Pemanfaatannya Sebagai Sumber Steroid Alami (Disertasi). Bogor: Sekolah Pascasarjana, IPB
- Riani, Etty, Khaswar Syamsu and Kaseno, M.Eng. 2007. Pemanfaatan Steroid Teripang Seabagai Aprodisiaka Alami dan untuk Pengembangan Budidaya Perikanan. Laporan eksekutif Hibah Penelitian Pascasarjana-HPTP. Institut Pertanian Bogor
- Ridzwan, B.H., M.A. Kaswandi, Y.Azman and M.Fuad. 2005. Screening for antibacterial agent in three species of sea cucumber from coastal areas of Sabah. Journal General Pharmacology: the Vascular sytem 26:1539-1543
- Tzia, Constantina and George Liadakis. 2003. *Extraction in Food Engineering*. Marcel Dekker. United State of America
- Villasin and Christopher M.Pomory. 2000. Antibacterial activity of extracts from the body wall of Parastichopus parvimensis (Echinodermata: Holothuroidea). Journal Fish & Shellfish Immunology. V (10);465-467
- Xue-Yan Fu, Chang-hu Xue. Ben-chun Miao, Zhao-jie Li, Wen-ge Yang and Dong-feng Wang. 2005a. Study of highly alkaline protease extracted from digestive tract of sea cucumber (Stichopus japanicus. Food Research Inter. V (38):323-329.
- Xue-Yan Fu, Chang-hu Xue. Ben-chun Miao, Zhao-jie Li, Xin Gao and Wenge Yang. 2005b. Characterization of protease from the digestive track of sea cucumber (Stichopus japanicus). J.Aquacultur, In Press, Correted Proof



Pontifical and Royal
UNIVERSITY OF SANTO TOMAS

The Catholic University of the Philippines



CERTIFICATE

This is to certify that

# Kurnia Harlina Dewi

has participated as

presenter, POSTER SESSION 4 :" Comparison of different extraction techniques for isolation of testosterone from sea cucumber (Holothuria scabra J)"

in the

 16<sup>th</sup> ASEAN Regional Symposium on Chemical Engineering (RSCE 2009)
 with the theme "Chemical Engineering at the Forefront of Global Challenges" held on 01 – 02 December 2009 at the Manila Hotel and the University of Santo Tomas, Manila Philippines

Engr. Cezar S. de la Cruz National President, PIChE

mi a. m

**Prof. Philipina A. Marcelo, Ph.D.** 16th ASEAN RSCE Secretariat Chair, Technical Committee

Prof. Maria Natalia R. Dimaano, Ph.D. Chair 16th ASEAN RSCE

