JURNAL

# THE PROPERTY.

ANALISA STRUKTUR MIKRO PADA DAERAH LAS DAN
HAZ HASIL PENGELASAN SHIELDED METAL ARC WELDING (SMAW)
PADA BAJA KARBON MEDIUM DAN QUENCHING AIR LAUT
Ertzal

CAPTURE ID CARD BERDASARKAN JARAK IMAGE MENGGUNAKAN ALGORITMA EUCLIDEAN DISTANCE Dedy Abdullah, Maltayudin

> ANALISA EFEKTIFITAS HEAT EXCHANGER PADA KONDISI OPERASI

(Studi Kasus di Unit 1 Pembangkit Listrik Tenaga Air (PLTA) Musi F.E. PLN-Persero, Kec. Ujan Mas, Kab. Kepahiang, Propinsi Bengkalasi Angky Puspawan

IMPLEMENTASI DATA MINING DENGAN METODE CLUB AND UNTUK MENGUKUR KECENDERUNGAN MEMILIH DAN YARAH MEMILIH BAKAL CALON KEPALA DAERAH PADA PEMILIHAN KEPALA DAERAH Rozali Toyib

ANALISA PENGARUH VOLUME TABUNG DAN JARAK KATUP BUANG TERHADAP UNJUK KERJA POMPA HIDRAM Angky Puspawan<sup>1</sup>, Nurul Iman Supardi<sup>2</sup>, Destu Rizal<sup>3</sup>

PENERAPAN WEBQUAL 4.0 UNTUK MENGANALISA WEBSITE
E-GOVERNMENT PROVINSI BENGKULU
Diana

SISTEM PAKAR MENGGUNAKAN METODE FORWARD CHAINING UNTUK MENGANALISA KEPRIBADIAN SISWA SMP Khairunnisyah

IMPLEMENTASI PENGAMANAN FILE MENGGUNAKAN ALGORITMA RSA PADA APLIKASI PGP Usman Gumanti

Vol. 7

No. 1

Halaman. 1512 - 1584

Bengkulu Januari 2015

FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH BENGKULU JURNAL.

# TELEMATIK

VOLUME 7 NOMOR 1 JANUARI 2015

#### Visi

Sebagai media yang dapat memberikan Sumbangan terhadap perkembangan Ilmu Pengetahuan dan Teknologi

Dapat menyumbangkan dan menyebarkan berupa Hasil penelitian (research) Maupun hasil kajian, Pendapat dan pemikiran dalam bidang Ilmu Pengetahuan dan Teknologi

# Pelindung / Penaschat Dr. H. Khairil, M.Pd

(Rektor Universitas Muhammadiyah Bengkulu)

Penanggung Jawab Ir. Yukiman Armadi, M.Si (Dekan Fakultas Teknik)

Penyunting Ahli Dr. Bahrin, M.Si Ir. Z. Hartawan, MM, DM

Pimpinan Redaksi Sastia H. Wibowo, S.Kom, M.Kom

Sekretaris Redaksi Yulia Darmi, S.Kom, M.Kom

> Staf Redaksi Diana, S.Kom

Distribusi dan Pemasaran Dedy Abdullah, ST

#### Penerbit

Fakultas Teknik Universitas Muhammadiyah Bengkulu

#### Alamat Redaksi

Fakultas Teknik Universitas Muhammadiyah Bengkulu Jl. Bali Po. Box 118 Bengkulu Telp. 0736-22765, Fax. 0736-26161 Email: jurnalilmiahtelematik@gmail.com

> Frekuensi Terbit 4(Empat) kali setahun

JURNAL

# TFIFMATIK

VOLUME 7 NOMOR 1 JANUARI 2015

# **DAFTAR ISI**

| ٦. | ANALISA STRUKTUR MIKRO PADA DAERAH LAS                                                   |             |
|----|------------------------------------------------------------------------------------------|-------------|
|    | DAN HAZ HASIL PENGELASAN SHIELDED METAL                                                  |             |
|    | ARC WELDING (SMAW) PADA BAJA KARBON                                                      |             |
|    | MEDIUM DAN QUENCHING AIR LAUT                                                            | 1512 - 1520 |
|    | Erizal                                                                                   |             |
| 2. | CAPTURE ID CARD BERDASARKAN JARAK IMAGE                                                  |             |
|    | MENGGUNAKAN ALGORITMA EUCLIDEAN                                                          |             |
|    | DISTANCE                                                                                 | 1521 - 1528 |
|    | Dedy Abdullah, Maltayudin                                                                |             |
| 3. | ANALISA EFEKTIFITAS HEAT EXCHANGER                                                       |             |
| -  | PADA KONDISI OPERASI                                                                     |             |
|    | (Studi Kasus di Unit 1 Pembangkit Listrik Tenaga Air                                     |             |
|    | (PLTA) Musi PT. PLN-Persero, Kec. Ujan Mas, Kab.                                         |             |
|    | Kepahiang, Propinsi Bengkulu)                                                            | 1529 - 1538 |
|    | Angky Puspawan                                                                           |             |
| 4. | IMPLEMENTASI DATA MINING DENGAN METODE                                                   |             |
|    | CLUSTERING UNTUK MENGUKUR                                                                |             |
|    | KECENDERUNGAN MEMILIH DAN TIDAK MEMILIH                                                  |             |
|    | BAKAL CALON KEPALA DAERAH PADA                                                           |             |
|    | PEMILIHAN KEPALA DAERAH                                                                  | 1539 - 1548 |
|    | Rozali Toyib                                                                             |             |
| 5. | ANALISA PENGARUH VOLUME TABUNG DAN                                                       |             |
|    | JARAK KATUP BUANG TERHADAP UNJUK KERJA                                                   |             |
|    | POMPA HIDRAM                                                                             | 1549 – 1558 |
|    | Angky Puspawan <sup>1</sup> , Nurul Iman Supardi <sup>2</sup> , Destu Rizal <sup>3</sup> |             |
| 6. | PENERAPAN WEBQUAL 4.0 UNTUK MENGANALISIS                                                 |             |
|    | WEBSITE E-GOVERNMENT PROVINSI BENGKULU                                                   |             |
|    | Diana                                                                                    | 1559 - 1568 |
| 7. |                                                                                          |             |
|    | CHAINING UNTUK MENGANALISA KEPRIBADIAN SISWA                                             |             |
|    | SMP                                                                                      | 1569 – 1578 |
| 0  | Khairunnisyah<br>IMPLEMENTASI PENGAMANAN FILE                                            |             |
| 8. | MENGGUNAKAN ALGORITMA RSA PADA APLIKASI                                                  |             |
|    | PGP                                                                                      | 1579 - 1584 |
|    | Usman Gumanti                                                                            | 10/8 - 1004 |
|    | t/xman tillmanii                                                                         |             |

# ANALISA EFEKTIFITAS HEAT EXCHANGER PADA KONDISI OPERASI

(Studi Kasus di Unit I Pembangkit Listrik Tenaga Air (PLTA) Musi PT. PLN-Persero, Kec. Ujan Mas, Kab. Kepahiang, Propinsi Bengkulu)

Oleh: Angky Puspawan

# ABSTRACT

In Musi Hydropower Heat Exchanger is used to cool the generator. As we know, the generator is a vital component in a generation electricity wire. The function of the generator is converting mechanical energy from the turbine into electrical energy. Generators in everyday use require cooling in order to extend service life. Due to extremely high operating temperatures can cause damage to the generator components. The importance of the effectiveness of the heat exchanger is happening is to look at the performance of the ground heat exchanger.

Data obtained as inlet and outlet water temperature  $(T_{c,in} \text{ and } T_{c,out})$ , oil temperature  $\log (T_{h,in} \text{ and } T_{h,out})$  and the flow of water and oil flow capacity  $(Q_c \text{ and } Q_h)$  is used to calculate the effectiveness of the heat exchanger. In calculating the heat exchanger effectiveness, there is some value to look like Density  $(\rho)$ , specific heat (Cp), the mass flow rate  $(\dot{m}_c \text{ and } \dot{m}_h)$ , the real heat transfer (Q), the maximum possible heat transfer  $(Q_{max})$ , the coefficient heat transfer to the water and oil (Cc and Ch) and the last search effectiveness  $(\varepsilon)$ .

The results of calculation of heat exchanger effectiveness is happening at unit 1 Musi Hydropower of Ujan Mas Kepahiang, can be considered to be ineffective and inefficient, as heat exchangers work effectively under state or in other words the heat exchanger is not working properly in accordance with the (far from the boundaries of normal). This is because the maintenance and repair of heat exchangers made far from perfect.

Keywords: Effectiveness, Heat Exchangers, Heat Transfer

#### PENDAHULUAN

Dalam dunia produksi yang menggunakan mesin dengan kerja non stop sangat lah memungkinkan untuk menggunakan pendingin agar alat atau mesin yang digunakan tidak mengalami overheat (panas berlebih). Dengan fungsi heat exchanger sebagai kontrol sistem atau substansi dengan menambahkan atau menghilangkan energi thermal sangat baik digunakan sebagai alat pendingin suatu kerja mesin. Heat exchanger didesain untuk dapat memindahkan suhu panas dari suatu zat ke zat yang lain, yaitu misalnya dari suatu fluida ke fluida lain.

Di PLTA Musi Heat Exchanger digunakan untuk mendinginkan generator. Seperti kita ketahui, generator adalah komponen yang vital pada suatu pembangkit lisrik. Fungsi dari generator yaitu adalah mengubah energi mekanik yang berasal dari turbin menjadi energi listrik. Generator dalam penggunaannya sehari-hari memerlukan pendingin agar dapat memperpanjang umur pemakaian. Karena temperatur kerja yang sangat tinggi dapat menyebabkan kerusakan pada komponen generator.

Untuk menjaga agar suhu dalam generator tetap stabil, maka digunakan sebuah alat penukar kalor. Pada proses pendinginan generator, fluida yang akan didinginkan adalah oli panas dan fluida yang mendinginkan adalah air yang mengalir dalam berkas tabung.

Umumnya penukar kalor yang digunakan dalam jangka panjang. Oleh karena itu yang perlu diperhatikan adalah jenis fluida yang bekerja di dalamnya, dimensi yang dibutuhkan, serta bentuk konfigurasinya. Untuk itu, tulisan ini bertujuan untuk menganalisis kinerja alat penukar kalor yang digunakan untuk mendinginkan generator, seberapa efektif dan seberapa besar laju perpindahan panas yang terjadi antara air dan oli yang didinginkan di dalam alat penukar kalor tersebut.

#### Perpindahan Panas Konduksi

Perpindahan panas secara konduksi merupakan perpindahan panas melalui media penghantar tanpa disertai partikel zatnya. Pada umumnya, bahan yang dapat menghantar arus listrik dengan sempurna adalah logam. Jenis-jenis ini merupakan penghantar kalor yang baik. Sebagai contoh bila diandaikan sebatang besi atau sembarang jenis logam yang salah satu ujungnya diulurkan ke dalam

nyala api. Dapat diperhatikan bagaimana kalor dipindahkan dari ujung yang panas ke ujung yang dingin. Apabila ujung batang logam tadi menerima energi kalor dari api, energi ini akan memindahkan sebagian energi kepada molekul dan elektron yang membangun bahan tersebut. Konduktor adalah bahan yang dapat menghantar kalor dengan baik. Isolator adalah penghantar kalor yang buruk.

Syarat untuk terjadinya perpindahan panas secara konduksi adalah:

- a) Adanya bidang kontak (luas permukaan)
- b) Adanya perbedaan suhu (ΔT)
- c) Media penghantar yang dinyatakan dalam Konduktivitas thermal (W/m<sup>2</sup>.<sup>0</sup>C atau W/m<sup>2</sup>.K)

Perpindahan secara konduksi biasanya terjadi dari bagian yang bersuhu tinggi ke bagian yang bersuhu rendah. Laju perpindahan panas secara konduksi dapat di hitung dengan menggunakan rumus

$$q = -KA \frac{\partial T}{\partial x}$$

Keterangan:

q = Laju perpindahan kalor (W)

K = Konduktivitas termal dari bahan (W/m. C atau W/m².K)

A = Luas permukaan (m<sup>2</sup>)

 $\partial T / \partial x$  = Gradien perpindahan suhu ke arah benda pada jarak tertentu ( $^{0}$ C) - = Tanda negatif adalah perpindahan panas dari temperatur tinggi ke temperatur rendah.

# Perpindahan Panas Konveksi

Perpindahan panas secara konveksi merupakan perpindahan panas yang media panasnya relatif berpindah, biasanya terjadi antara permukaan padat dengan fluida seperti cairan dan gas. Keadaan permukaan dan keadaan sekelilingnya serta kedudukan permukaan itu adalah yang utama. Adapun laju perpindahan panas dengan menggunakan sistem konveksi dapat dihitung dengan menggunakan rumus sebagai berikut:

$$q = h \cdot A \cdot (T_w - T_\infty)$$
  
Keterangan :  
 $q = \text{Laju perpindahan kalor (W)}$ 

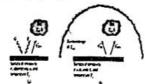
h = Koefisien perpindahan panas konveksi (W/m.<sup>0</sup>C atau W/m<sup>2</sup>.K)

A = Luas permukaan (m<sup>2</sup>)

 $(T_w - T_\infty)$  = Beda suhu antara dinding dan fluida ( $^0$ C)

Beberapa nilai h dapat dilihat pada tabel yang dimiliki fluida. Konveksi dapat di bedakan menjadi 2 jenis yaitu:

# a. Konveksi bebas (Konveksi alamiah)


Konveksi alami adalah perpindahan panas yang terjadi karena fluida yang berubah kerapatan jenisnya sendiri sehingga bergerak naik dengan kata lain terjadi secara alami

- Contohnya adalah pemanasan aliran udara yang melalui radiator, pemanasan air dalam ketel.
- 2. Fluida panas yang menerima panas akan naik ke atas, kekosongan tempat massa fluida yang telah naik diisi oleh massa fluida yang bersuhu rendah.
- Aliran fluida terjadi akibat perbedaan densitas, dan perbedaan densitas akibat adanya gradien suhu di dalam massa fluida itu.

# b. Konveksi paksa

Konveksi paksa adalah perpindahan panas yang teerjadi karena fluida bergerak disebabkan adanya dorongan dari peralatan dari luar seperti kipas atau blower, pompa dan lain sebagainya.

- 1. Jika aliran fluida digerakkan oleh piranti mekanik seperti pompa dan pengaduk.
- 2. Aliran/perpindahan panas tidak bergantung pada gradien densitas.
- Contohnya aliran kalor melalui pipa panas



(a) pada permukaan, (b) antara permukaan dan lingkungan

Gambar 1. Perpindahan panas radiasi

Untuk benda yang bukan benda hitam akan memancarkan energi sesuai persamaan di bawah ini:

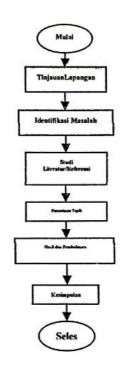
 $Q_r = \varepsilon \sigma A T^4$ 

Sedangkan untuk persamaan perpindahan kalor sesama benda hitam adalah:

 $Q_r = \varepsilon \sigma A(T_1^4 - T_2^4)$ 

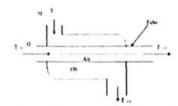
Keterangan:

 $\varepsilon = \text{Emisivitas permukaan } (0 \le \varepsilon < 1)^2$ 


 $\sigma$  = Konstanta Stefan-Boltzman (5.669 x 10<sup>-8</sup>W/m<sup>2</sup>.K<sup>4</sup>)

 $A = Luas (m^2)$ 

 $T = Temperatur (^{\circ}C)$ 


# **METODOLOGI**

# Diagram Alir



Gambar 3. Diagram Alir Metodologi

# Diagram Titik Pengukuran



Gambar 6. Diagram Titik Pengukuran

# Keterangan:

 $T_{c,in}$  = Temperatur air masuk ke *Heat Exchanger* ( ${}^{0}$ C)

 $T_{c,out}$  = Temperatur air keluar dari *Heat Exchanger* ( ${}^{0}$ C)

 $Q_h = debit (quantity flow) air (1/s)$ 

T<sub>h,in</sub> = Temperatur oli masuk ke *Heat Exchanger* (°C)

T<sub>h,out</sub> =Temperatur oli dari ke *Heat Exchanger* (<sup>0</sup>C)

 $Q_h = debit (quality flow) oli (l/s)$ 

## HASIL DAN PEMBAHASAN

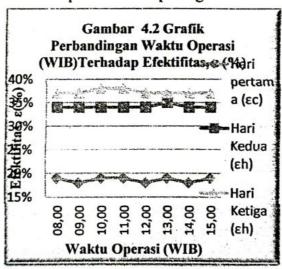
#### Hasil

Tabel 1 Data Hasil Perhitungan Nilai Efektifitas Heat Exchanger 8 Jam Operasi pada Hari Pertama

| Jam                        |       | Ai                         | r (cold)              |               |                          | 0            | li ( <i>hot</i> )      |                           |                       |                   |                      |                            |                       |
|----------------------------|-------|----------------------------|-----------------------|---------------|--------------------------|--------------|------------------------|---------------------------|-----------------------|-------------------|----------------------|----------------------------|-----------------------|
| operasi<br>(Pukul,<br>WIB) | (°C)  | T <sub>c,out</sub><br>(°C) | m <sub>c</sub> (kg/s) | C,<br>(kW/°C) | T <sub>bJn</sub><br>(°C) | Taus<br>(°C) | m̂ <sub>k</sub> (kg/s) | C <sub>k</sub><br>(kW/°C) | Q <sub>mst</sub> (kW) | Qair (Qc)<br>(kW) | Qoli<br>(Qb)<br>(kW) | 19 20 20 19 19 19 19 19 21 | e <sub>k</sub><br>(%) |
| 08.00                      | 22.9  | 27.3                       | 14.545                | 60.798        | 46.5                     | 41.5         | 32.213                 | 64.007                    | 1374.037              | 267.512           | 255.079              | 19                         | 19                    |
| 09.00                      | 22.7  | 27.3                       | 14.545                | 60.798        | 46.5                     | 41.6         | 32,213                 | 64.007                    | 1386.197              | 279.671           | 248.986              | 20                         | 18                    |
| 10.00                      | 22.7  | 27.3                       | 14.528                | 60.742        | 46.6                     | 41.5         | 32.243                 | 64.067                    | 1390.982              | 279,411           | 261.990              | 20                         | 19                    |
| 11.00                      | 22.8  | 27.2                       | 14.512                | 60.675        | 46.6                     | 41.5         | 32.272                 | 64.124                    | 1383,382              | 266.969           | 262.092              | 19                         | 19                    |
| 12.00                      | 23.0  | 27.2                       | 14.545                | 60.813        | 46.5                     | 41.7         | 32.228                 | 64.037                    | 1368.284              | 255.413           | 242.699              | 19                         | 18                    |
| 13.00                      | 23.0  | 27.3                       | 14.528                | 60.742        | 46.6                     | 41.7         | 32.287                 | 64.154                    | 1372.759              | 261.189           | 249.078              | 19                         | 18                    |
| 14.00                      | 22.9  | 27.3                       | 14.545                | 60.813        | 46.5                     | 41.5         | 32.257                 | 64.095                    | 1374.366              | 267.576           | 255.847              | 19                         | 19                    |
| 15.00                      | 22.7  | 27.4                       | 14.545                | 60.813        | 46.6                     | 41.5         | 32,257                 | 64.095                    | 1386.528              | 285.819           | 255.847              | 21                         | 18                    |
| Rerata                     | 22.84 | 22.28                      | 14.536                | 60.774        | 46.55                    | 41.56        | 32.246                 | 64.073                    | 1379.567              | 270,445           | 253.953              | 19.5                       | 18.                   |

Tabel 2 Data Hasil Perhitungan Nilai Efektifitas Heat Exchanger 8 Jam Operasi pada Hari Kedua

| - 1                            |       | Air       | r (cold)              |               |                      | (                    | li (hơt)   |                           |           |                      |                    |      |           |
|--------------------------------|-------|-----------|-----------------------|---------------|----------------------|----------------------|------------|---------------------------|-----------|----------------------|--------------------|------|-----------|
| Jam operasi<br>(Pukul,<br>WIB) | 55    | τ<br>(°C) | m <sub>e</sub> (kg/s) | C,<br>(kW/°C) | <b>T</b> .3.<br>(°C) | <b>T.</b> .∎<br>(°C) | ள்⊾ (kg/s) | C <sub>k</sub><br>(kW/°C) | Q<br>(kW) | Qair<br>(Qc)<br>(kW) | Qofi (Qft)<br>(kW) | (%)  | £,<br>(%) |
| 08.00                          | 24.7  | 29.3      | 14.706                | 61.471        | 51.3                 | 42.6                 | 31.895     | 64.141                    | 1635.131  | 282.767              | 554.764            | 17   | 34        |
| 09.00                          | 24.6  | 29.3      | 14.723                | 61.542        | 51.3                 | 42.6                 | 31.938     | 64.227                    | 1643.175  | 289.248              | 555.510            | 18   | 34        |
| 10.00                          | 24.5  | 29.3      | 14.707                | 61.475        | 51.3                 | 42.6                 | 31.924     | 64.199                    | 1647.537  | 295.081              | 555 267            | 18   | 34        |
| 11.09                          | 24.5  | 29.3      | 14.740                | 61.613        | 51.3                 | 42.4                 | 31.938     | 64.227                    | 1651.233  | 295,743              | 568.043            | 18   | 34        |
| 12.00                          | 24.5  | 29.3      | 14.723                | 61.542        | 51.3                 | 42,6                 | 31.909     | 64.169                    | 1649.329  | 295.402              | 555.007            | 18   | 34        |
| 13.00                          | 24 4  | 29.3      | 14,724                | 61.546        | 51.3                 | 42.4                 | 31.880     | 64.111                    | 1655.596  | 301.577              | 584.749            | 18   | 35        |
| 14.00                          | 24.4  | 29.3      | 14.724                | 61.546        | 51.3                 | 42.6                 | 31.909     | 64.169                    | 1655.596  | 301.577              | 555.007            | 18   | 34        |
| 15.00                          | 24.6  | 29.4      | 14.707                | 61.475        | 51.3                 | 42.6                 | 31.924     | 64.199                    | 1641.389  | 295,081              | 555.267            | 18   | 34        |
| Rerata                         | 25.52 | 29.31     | 14.719                | 61.526        | 51.3                 | 42.55                | 31.914     | 64.180                    | 1647.373  | 294.559              | 560.452            | 17.8 | 34.03     |


Tabel 3 Data Hasil Perhitungan Nilai Efektifitas Heat Exchanger 8 Jam Operasi pada Hari Ketiga

|                                   |      | Aiı                       | r (cold)                  | 84.1          |                         | 0          | li ( <i>hot</i> )      |                           |           |                   |                      |       |     |
|-----------------------------------|------|---------------------------|---------------------------|---------------|-------------------------|------------|------------------------|---------------------------|-----------|-------------------|----------------------|-------|-----|
| Jam<br>eperasi<br>(Pukul,<br>WIB) | T.30 | T <sub>cout</sub><br>(°C) | rh <sub>e</sub><br>(kg/s) | C,<br>(kW/°C) | Т <sub>ыз</sub><br>(°С) | These (°C) | m் <sub>k</sub> (kg/s) | C <sub>k</sub><br>(kW/°C) | Q<br>(kW) | Qair (Qc)<br>(kW) | Qoli<br>(Qh)<br>(kW) | Ę (%) | (%) |
| 08.00                             | 23.5 | 28.8                      | 14.726                    | 61.569        | 50.2                    | 40.6       | 32.039                 | 64.302                    | 1643.903  | 326.318           | 611.150              | 20    | 37  |
| 09.00                             | 23.5 | 28.8                      | 14.760                    | 61.711        | 50.2                    | 40.6       | 32,039                 | 64.302                    | 1647.699  | 327.071           | 611.150              | 20    | 37  |
| 10.00                             | 23.6 | 28.8                      | 14.759                    | 61.707        | 50.2                    | 40,6       | 32.053                 | 64.330                    | 1641.416  | 320.878           | 611.417              | 20    | 37  |
| 11.00                             | 23.7 | 28.8                      | 14.742                    | 61.636        | 50.2                    | 40.5       | 32.053                 | 64.330                    | 1633.362  | 314.345           | 617.475              | 19    | 38  |
| 12.00                             | 23.7 | 28.9                      | 14.759                    | 61.707        | 50.2                    | 40.5       | 32.068                 | 64.360                    | 1635.245  | 320.878           | 617.764              | 20    | 38  |

| 13 00  | 23 6  | 28.9  | 14.726 | 61.569 | 50.2  | 40.6  | 32 039 | 64 302 | 1637.746 | 326.318 | 611.150 | 20  | 37  |
|--------|-------|-------|--------|--------|-------|-------|--------|--------|----------|---------|---------|-----|-----|
| 14.00  | 23 6  | 28.8  | 14.726 | 61 569 | 50.1  | 40.5  | 32.055 | 64.302 | 1631.589 | 320 161 | 611.147 | 20  | 37  |
| 15.00  | 23 5  | 28 8  | 14 710 | 61 502 | 50.1  | 40.5  | 32 040 | 64.272 | 1635,967 | 325.963 | 610.862 | 20  | 37  |
| Rerata | 23 59 | 28 82 | 14 74  | 61 621 | 50.17 | 40.55 | 32 048 | 64.312 | 1638 366 | 322.741 | 612 765 | 198 | 37. |

#### Pembahasan

Pada analisa diambil salah satu data pada hari kedua pukul 08.00WIB sebagai contoh perhitungan yang mewakili seluruh perhitungan. Perbandingan nilai efektifitas yang didapat dilihat pada tabel 4.1, tabel 4.2 dan tabel 4.3, dimana perbandingan nilai tersebut dapat kita lihat pada gambar 4.2 seperti dibawah ini:



Seperti yang kita lihat pada gambar 4.2 grafik hubungan waktu operasi terhadap efektifitas heat exchanger bahwa data efektifitas yang diambil adalah nilai efektifitas yang dominan yaitu nilai yang paling besar dari efektifitas fluida dingin ( $\varepsilon_c$ ) dan efektifitas fluida panas ( $\varepsilon_h$ ). pada hari pertama efektifitasnya yang terbesar adalah nilai pada efektifitas pada fluida dingin ( $\varepsilon_c$ ), sedangkan pada hari kedua dan ketiga nilai efektifitasnya yang terbesar yaitu nilai efektifitas pada fluida panasnya ( $\varepsilon_h$ ). Dapat dilihat bahwa perbandingan nilai efektifitas tersebut dikategorikan sangat kecil. Perhitungan pada hari pertama nilai efektifitasnya

pada pukul 08.00WIB adalah 19% dan pada pukul 09.00WIB dan 10.00WIB adalah sebesar 20%, dan pada pukul 11.00WIB sampai 14.00WIB nilai efektifitasnya menjadi 19% dan mengalami kenaikan menjadi 20% pada pukul 15.00WIB. Sedangkan pada hari kedua nilai efektifitasnya cendrung lebih lebih besar dari hari pertama yaitu 34% pada setiap jamnya kecuali pada pukul 11.00WIB yaitu mencapai nilai 35%. Besar nilai efektifitas pada hari ketiga adalah 37% hampir disetiap jamnya kecuali pada pukul 11.00WIB dan 12.00WIB yaitu 38%.

Besarnya nilai efektifitas dipengaruhi oleh besarnya nilai Q<sub>max</sub> dan Q. Dari haril perhitungan nilai Q lebih kecil dibandingkan dengan nilai Q<sub>max</sub>, ini sangat mempengaruhi besar efektifitas yang dihasilkan. Nilai Q yang didapat sangat dipengaruhi oleh besarnya selisih temperatur yang masuk dan temperatur yang keluar, baik temperatur air maupun temperatur oli. Pada data yang didapat selisih nilai temperatur masuk dengan nilai temperatur keluar baik oli maupun air relatif kecil. Ini yang menyebabkan besar efektifitasnya menjadi kecil.

Nilai efektifitas yang kecil ini disebabkan karena beda temperatur yang masuk dan yang keluar sangat kecil. Dapat diketahui nilai efektifitas tersebut jauh dari nilai efektifitas terbaik. Atau dengan kata lain heat exchanger tidak bekerja sesuai dengan mestinya (tidak seefektif sesuai dengan fungsi dan kerja heat exchanger sebagai penukar kalor). Ini disebabkan perawatan pada heat exchanger hanya seadanya saja (ala kadarnya), artinya perawatan atau perbaikan yang dilakukan jauh dari sempurna, sedangkan disisi lain dituntut untuk tetap bekerja secara optimal. (dengan kata lain dana operasi perawatan baik berkala maupun mendadak minim atau nol rupiah atau tidak ada anggaran).

#### PENUTUP

# Kesimpulan

Dalam pembahasan ini, kita telah mengetahui bahwa data yang diambil adalah selama 3(tiga) hari dengan jumlah data sebanyak 8 perharinya atau secara keseluruhan berjumlah 24 data. Dengan demikian, jumlah nilai efektifiitas heat exchanger yang didapat sebanyak 24 buah nilai dengan waktu dan nilai yang berbeda. Dari hasil perhitungan, kita dapat mengetahui efektifiitas heat exchanger setiap jamnya dari jam 08.00WIB sampai 15.00WIB, dengan range nilai 19%-

38%. Sedangkan nilai efektifiitas ratā-rata heat exchanger adalah dengan range nilai 19.5%-37.42%. Sehingga kita dapat menyimpulkan bahwa heat exchanger yang bekerja dalam kondisi sangat jauh dari efektif. Hal Ini dapat disebabkan karena perawatan dan perbaikan heat exchanger yang dilakukan jauh dari sempurna.

#### DAFTAR PUSTAKA

- Cengel, Yunus. A, 2003. "Heat Transfer A Practical Approach, Ed. 2", New York, The McGraw-Hill Companies,
- Cengel, Yunus. A. 2006. "Thermodynamics An Engineering Approach", Singapore, McGraw-Hill Companies
- 3. Frass. Arthur P. 1988, "Heat Exchanger Design". Second Edition. USA.
- 4. Shah. Ramesh K. and Dusan P. Sekulic, 2003. "Fundamental of Heat Exchanger Design". USA
- Harahap. Filino 1996. "Termodinamika Teknik Edisi Kedua". Erlangga, Jakarta.
- 6. Holman, J. P. 1993. "Perpindahan Kalor, Ed. 6", Jakarta: Erlangga.
- 7. Zukauskas, A, 1972. "Heat Transfer from Tubes in Cross Flow, Ed. 8", Lithuania