PENELITIAN MANDIRI

LAPORAN PENELITIAN MANDIRI UNIVERSITAS BENGKULU

JUDUL PENELITIAN

GENERALISASI BEBERAPA SIFAT IDEAL PADA RING YANG BERLAKU PADA NEAR-RING

Zulfia Memi Mayasari, M.Si. (002127301)

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS BENGKULU 2017

HALAMAN PENGESAHAN

L. Judul Usalan	: Generalisasi Beberapa Sifat Ideal pada Ring yang Berlaku pada Near-Ring
2. Keron Penelini a. Nama lengkap b. NIP/NIK c. NIDN d. Pangkat/Golongan e. Jabatan Fungsional f. Fakuitas/Jurusan g. Pasat Penelitian b. Alamat Institusi i. Telfon/Faks/Email	: Zulfia Memi Mayasari, M.Si : 197312021998022001 : 0002127301 : Pembina/IVa : Lektor Kepala : MiPA / Matematika : Lembaga Penelitian Universitas Bengkulu : Jl. WR. Supraman Kandang Limon Bengkulu : 081367379697 / zulfiammigunib.ac.id
3. Peneliti Anggota	-
4. Biaya yang diasaikan tahun 2017	44

Menyetajai. Ketus Jurusan.

Fachri Faisal, M.Si NIP.197104031998021004

Bengkulu, Desember 2017 Ketua Peneliti

Zulfia Memi Mayasori, M.Si NIP. 197312021998022001

Mengetahui

Ketua LPPM UNIB

meanth

Dekan FMIPA

Dr. Ir. Ahimanyu Dipo Nusantara, MP NIP. 195612251986031003

Dr. Zul Bahvun Caniago, MS-NIP. 195711251987021001

RINGKASAN

Near-ring merupakan salah satu perluasan dari ring. Near-ring terbentuk dari ring dengan melepaskan beberapa aksioma yang berlaku pada ring, diantaranya sifat komutatif terhadap operasi pertama serta terhadap operasi pertama dan kedua cukup dipenuhi salah satu sifat distributif kanan atau distributif kiri. Jadi, suatu himpunan $N \neq \emptyset$ yang dilengkapi dengan dua operasi biner '+' dan '•' yang masing-masing disebut operasi pertama dan kedua dan dinotasikan dengan $(N, +, \bullet)$ dikatakan nearring jika memenuhi (N, +) grup, (N, \bullet) semigrup dan $(N, +, \bullet)$ berlaku sifat distributif kanan atau distributif kiri. Dalam teori ring, dikenal istilah ideal yang merupakan subring dari suatu ring dengan tambahan syarat tertentu. Dalam near-ring juga terdapat istilah ideal yang didefinisikan berbeda dengan ideal pada ring. Beberapa peneliti sebelumnya telah menunjukkan beberapa sifat ideal dalam ring juga berlaku pada ideal dalam near-ring, meskipun secara definisi kedua ideal ini berbeda. Tujuan dari penelitian ini adalah untuk menyelidiki apakah beberapa generalisasi sifat ideal yaitu generalisasi sifat gabungan beberapa ideal dalam ring, sifat ideal terkecil yang dibangun oleh gabungan beberapa ideal dalam ring dan sifat ideal terkecil yang dibangun oleh irisan beberapa ideal dalam ring juga berlaku dalam near-ring. Pelaksanaan kegiatan penelitian diawali dengan mengumpulkan literatur yang berhubungan dengan ring, near-ring, sifat-sifat ideal pada ring, dan ideal pada nearring, kemudian mempelajari sifat-sifat ideal pada ring dan menyelidiki beberapa sifat ideal pada ring yang juga berlaku pada near-ring. Selanjutnya adalah menggeneralisasi beberapa sifat ideal yang didapat pada langkah sebelumnya, dan terakhir adalah menarik kesimpulan.

PRAKATA

Puji syukur kehadirat Allah SWT, karena atas berkat dan rahmat_Nya peneliti dapat menyelesaikan laporan penelitian mandiri Tahun 2017 Jurusan Matematika FMIPA Universitas Bengkulu dengan judul : Generalisasi Beberapa Sifat Ideal pada Ring yang berlaku pada Near-Ring. Penelitian ini bertujuan untuk menggeneralisasi beberapa sifat ideal pada near-ring berdasarkan pada sifat ideal yang terdapat pada ring.

Laporan penelitian ini disusun sesuai dengan keterbatasan dan kemampuan yang peneliti miliki. Peneliti merasakan banyak sekali kekurangan dalam penelitian ini. Untuk itu peneliti mengharapkan kritik dan saran yang bersifat membangun guna penyempurnaan laporan penelitian ini kemudian.

Demikianlah laporan ini disusun agar dapat berguna bagi kemajuan kita semua di masa yang akan datang.

Bengkulu, Desember 2017 Peneliti

DAFTAR ISI

HALAMAN SAMPUL	i
HALAMAN PENGESAHAN	ii
RINGKASAN	iii
PRAKATA	iv
DAFTAR ISI	V
BAB I. PENDAHULUAN	1
1.1. Latar Belakang	1
BAB II. TINJAUAN PUSTAKA	3
2.1. Grup, Semigrup dan Subgrup Normal	3
2.2. Ring, Near-Ring dan Ideal	7
BAB III. TUJUAN DAN MANFAAT PENELITIAN	14
3.1. Tujuan Penelitian	14
3.2. Manfaat Penelitian	14
BAB IV. METODE PENELITIAN	15
4.1. Jenis Penelitian	15
4.2. Waktu dan Tempat Penelitian	15
4.3. Prosedur Kerja	15
BAB V. HASIL YANG DICAPAI	16
5.1. Kajian Literatur	16
5.2. Hasil dan Pembahasan	16
BAB VI. KESIMPULAN DAN SARAN	21
5.1. Kesimpulan	21
5.2. Saran	21
DAFTAR PUSTAKA	22

BAB I

PENDAHULUAN

1.1. Latar Belakang

Dalam struktur aljabar, teori ring sudah sangat dikenal dan terus dikembangkan sehingga menghasilkan struktur-struktur yang baru. Beberapa struktur yang terbentuk dari ring antara lain: daerah integral (integral domain), lapangan (field), dan near-ring.

Near-ring merupakan suatu struktur aljabar yang terbentuk dari ring dengan melepaskan beberapa aksioma yang berlaku pada ring, diantaranya sifat komutatif terhadap operasi pertama serta terhadap operasi pertama dan kedua cukup dipenuhi salah satu sifat distributif kanan atau distributif kiri. Jadi, suatu himpunan $N \neq \emptyset$ yang dilengkapi dengan dua operasi biner ' + ' dan ' • ' yang masing-masing disebut operasi pertama dan kedua dan dinotasikan dengan $(N, +, \bullet)$ dikatakan near-ring jika memenuhi (N, +) grup, (N, \bullet) semigrup dan $(N, +, \bullet)$ berlaku salah satu sifat distributif kanan atau distributif kiri.

Seiring dengan perkembangan zaman, penelitian mengenai near-ring terus dikembangkan. Tidak hanya pada strukturnya saja, tetapi terus dikembangkan dengan memadukannya dengan teori-teori lain diantaranya [5] yang meneliti mengenai ideal fuzzy near-ring, [1] yang melakukan penelitian mengenai ideal maksimal fuzzy near-ring dan [10] yang meneliti mengenai unit pada near-ring. Beberapa penelitian mengenai near-ring dapat juga berdasarkan pada sifat-sifat yang dimiliki dalam ring, diantaranya [10] yang menunjukkan beberapa sifat sederhana ideal dalam ring juga berlaku pada ideal di near-ring meskipun definisi ideal pada ring berbeda dengan ideal pada near-ring. [7] menunjukkan Teorema Utama

Homomorphisma dan teorema-teorema pengembangan dari Teorema Utama Homomorphisma dalam ring juga berlaku pada near-ring, [6] menunjukkan beberapa sifat ideal lainnya pada near-ring dan [8] menunjukkan sifat-sifat ideal utama dan ideal maksimal dalam near-ring. Berdasarkan latar belakang ini, penelitian ini akan melanjutkan penelitian tentang ideal pada near-ring khususnya mengenai generalisasi beberapa sifat ideal pada ring yang berlaku pada near-ring.

BAB II

TINJAUAN PUSTAKA

2.1. Grup, Semigrup dan Subgrup Normal

Struktur aljabar yang paling sederhana adalah suatu himpunan yang dilengkapi dengan satu operasi biner yang disebut grupoid. Apabila ditambahkan sifat assosiatif dalam grupoid maka akan terbentuk struktur baru yang disebut semigrup. Suatu semigrup yang dilengkapi dengan sifat memiliki elemen identitas disebut monoid. Suatu monoid yang setiap elemennya memiliki invers disebut grup. Dalam suatu grup dapat dibuat grup lain yang juga merupakan grup dengan operasi yang sama dengan grup tersebut yang disebut subgrup. Suatu subgrup dengan sifat setiap koset kirinya sama dengan koset kanannya disebut subgrup normal. Untuk lebih jelas, diberikan beberapa definisi berikut.

Definisi 2.1. [2], [3], [4]

Suatu semigrup (S, 0) adalah suatu himpunan S yang dilengkapi dengan operasi biner 'o' yang memenuhi aksioma berikut: (S, 0) assosiatif yaitu $(\forall a, b, c \in S)$ berlaku $(a \circ b) \circ c = a \circ (b \circ c)$

Definisi 2.2. [2], [3], [4]

Suatu grup (G, o) adalah suatu himpunan G yang dilengkapi dengan operasi biner 'o' yang memenuhi aksioma-aksioma berikut:

- i. (G, o) assosiatif vaitu $(\forall a, b, c \in G)$ berlaku $(a \circ b) \circ c = a \circ (b \circ c)$
- ii. (G, o) memiliki elemen identitas yaitu $(\exists e \in G)$ sehingga $(\forall a \in G)$ berlaku $e \circ a = a \circ e = a$, e disebut elemen identitas G
- iii. (G, o) memiliki invers yaitu $(\forall a \in G)((\exists a' \in G)$ sehingga berlaku a'o a =

 $a \circ a' = e$, a' disebut invers dari a. Invers dari a biasa ditulis a^{-1}

Selanjutnya suatu grup (G, o) yang memiliki sifat komutatif yaitu $(\forall a, b \in G)$ berlaku $a \circ b = b \circ a$ disebut grup abelian. Dalam tulisan ini, penulisan (G, o) grup akan dituliskan sebagai G grup.

Contoh grup yang cukup sederhana adalah himpunan bilangan riil \mathbb{R} terhadap operasi penjumlahan atau ditulis (\mathbb{R} , +). Hal ini dapat dibuktikan sebagai berikut:

- i. Operasi '+' merupakan operasi biner dalam $\mathbb R$ atau $(\mathbb R,+)$ tertutup. Artinya penjumlahan dua bilangan riil masih merupakan bilangan riil yaitu $(\forall \, a,b \in \mathbb R)$ berlaku $a+b \in \mathbb R$
- ii. $(\mathbb{R}, +)$ bersifat assosiatif yaitu $(\forall a, b, c \in \mathbb{R})$ berlaku (a + b) + c = a + (b + c)
- iii. (\mathbb{R} , +) memiliki elemen identitas yaitu ($\exists e = 0 \in \mathbb{R}$) sehingga ($\forall a \in \mathbb{R}$) berlaku 0 + a = a + 0 = a, '0' disebut elemen identitas \mathbb{R}
- iv. $(\mathbb{R}, +)$ memiliki invers yaitu $(\forall a \in \mathbb{R})((\exists a^{-1} = -a \in \mathbb{R})$ sehingga berlaku $(-a) + a = a + (-a) = 0, \ a^{-1} = (-a)$ disebut invers dari a

Dari (i) – (iv) terbukti bahwa (\mathbb{R} , +) grup.

Definisi 2.3. [2], [3], [4]

Misalkan (G, o) adalah grup. Suatu himpunan $H \neq \emptyset \subseteq G$, dikatakan subgrup G jika (H, o) grup.

Berdasarkan Definisi 2.3, jika (H, o) subgrup (G, o), maka (H, o) memenuhi aksioma-aksioma berikut:

- i. Operasi 'o' merupakan operasi biner dalam H artinya $(\forall a, b \in H)$ berlaku $a \circ b \in H$
- ii. (H, o) bersifat assosiatif yaitu $(\forall a, b, c \in H)$ berlaku $(a \circ b) \circ c = a \circ (b \circ c)$

iii. (H, o) memiliki elemen identitas yaitu $(\exists e \in H)$ sehingga $(\forall a \in H)$ berlaku $e \circ a = a \circ e = a$

iv. (H, 0) memiliki invers yaitu $(\forall a \in H)((\exists a^{-1} \in H) \text{ sehingga berlaku})$

$$a^{-1}$$
o $a = a$ o $a^{-1} = e$

Berdasarkan sifat yang dimiliki oleh $H \subseteq G$ ini, untuk menunjukkan suatu himpunan $H \neq \emptyset \subseteq G$ merupakan subgrup G, cukup ditunjukkan syarat (i) dan (iv) seperti dalam teorema berikut. Hal ini karena sifat assosiatif dan elemen identitas pada H diwariskan dari sifat assosiatif dan elemen identitas dari G.

Teorema 2.4. [2], [3], [4]

Misalkan (G, o) adalah grup. Suatu himpunan $H \neq \emptyset \subseteq G$, dikatakan subgrup G jika dan hanya jika $(\forall a, b \in H)$ berlaku $a \circ b \in H$ dan $a^{-1} \in H$

Berdasarkan Teorema 2.4, jika $a,b \in H$ berlaku $a \circ b \in H$ dan $b^{-1} \in H$. Artinya $a,b^{-1} \in H$. Berdasarkan Definisi 2.3 (i), maka $a \circ b^{-1} \in H$. Jadi Teorema 2.4 dapat disederhanakan menjadi Teorema 2.5 berikut.

Teorema 2.5.[2], [3], [4]

Misalkan (G, o) adalah grup. Suatu himpunan $H \neq \emptyset \subseteq G$, dikatakan subgrup G jika dan hanya jika $(\forall a, b \in H)$ berlaku $a \circ b^{-1} \in H$

Untuk lebih jelasnya, pembuktian Teorema 2.4 dan Teorema 2.5 dapat dilihat pada [3]. Contoh subgrup adalah himpunan bilangan bulat terhadap operasi penjumlahan yang ditulis sebagai (\mathbb{Z} , +) merupakan subgrup dari (\mathbb{R} , +). Hal ini karena $\mathbb{Z} \subseteq \mathbb{R}$ serta \mathbb{Z} dan \mathbb{R} merupakan grup terhadap operasi yang sama yaitu operasi "+". Hal ini dapat ditunjukkan sebagai berikut.

- i. Operasi '+' merupakan operasi biner dalam \mathbb{Z} atau (\mathbb{Z} , +) tertutup. Artinya penjumlahan dua bilangan bulat masih merupakan bilangan bulat yaitu ($\forall a, b \in \mathbb{Z}$) berlaku $a + b \in \mathbb{Z}$
- ii. $(\mathbb{Z}, +)$ bersifat assosiatif yaitu $(\forall a, b, c \in \mathbb{Z})$ berlaku (a + b) + c = a + (b + c)

iii. (
$$\mathbb{Z}$$
, +) memiliki elemen identitas yaitu ($\exists \ e=0 \in \mathbb{Z}$) sehingga ($\forall \ a \in \mathbb{Z}$) berlaku $0+a=a+0=a, \ '0'$ disebut elemen identitas \mathbb{Z}

iv. $(\mathbb{Z}, +)$ memiliki invers yaitu $(\forall a \in \mathbb{Z})((\exists a^{-1} = -a \in \mathbb{Z})$ sehingga berlaku $(-a) + a = a + (-a) = 0, \ a^{-1} = (-a)$ disebut invers dari a

Karena $\mathbb{Z} \subseteq \mathbb{R}$ dan berdasarkan (i) – (iv) terbukti bahwa (\mathbb{Z} , +) adalah subgrup dari (\mathbb{R} , +).

Definisi 2.6. [2], [3], [4]

Misalkan (H, o) subgrup dari grup (G, o). $aH = \{a \circ h | h \in H\} \subseteq G$ dikatakan koset kiri H yang memuat a, dan $Ha = \{h \circ a | h \in H\} \subseteq G$ dikatakan koset kanan H yang memuat a.

Definisi 2.7. [2], [3], [4]

Misalkan H subgrup dari grup G.H dikatakan subgrup normal G jika dan hanya jika $aH = Ha \ (\forall a \in G).$

Berdasarkan Definisi 2.7, jika H subgrup dari grup G dan aH = Ha ($\forall a \in G$) maka H subgrup normal G. Perhatikan bahwa:

$$aH = Ha \ (\forall a \in G) \tag{2.1}$$

Dengan mengoperasikan a^{-1} dari kanan pada Persamaan (2.1) diperoleh:

$$aHa^{-1} = Haa^{-1}$$

$$aHa^{-1} = H \tag{2.2}$$

Persamaan (2.2) artinya
$$aHa^{-1} \subseteq H \operatorname{dan} H \subseteq aHa^{-1}$$
(2.3)

Berdasarkan Definisi 2.7, Persamaan (2.1), (2.2) dan (2.3) dapat diturunkan teorema berikut.

Teorema 2.8.[2], [3], [4]

Misalkan (H, o) subgrup dari grup (G, o). H dikatakan subgrup normal G jika dan hanya jika berlaku a o h o $a^{-1} \in H$ ($\forall a \in G \ dan \ h \in H$)

2.2. Ring, Near-ring dan Ideal

Suatu struktur aljabar dapat berkenaan dengan satu himpunan yang dilengkapi dengan dua operasi biner, yang disebut dengan operasi pertama dan operasi kedua. Jika suatu himpunan $R \neq \emptyset$ dan dilengkapi dengan dua operasi biner '+' dan '•' yang masing-masing disebut sebagai operasi pertama dan operasi kedua sehingga berlaku R terhadap operasi pertama merupakan grup abelian, R terhadap operasi kedua semigrup, dan R terhadap operasi pertama dan kedua bersifat distributif maka R disebut ring dan ditulis sebagai $(R, +, \bullet)$ ring. Dalam suatu ring $(R, +, \bullet)$, jika beberapa aksioma dilepas sehingga cukup berlaku R terhadap operasi pertama merupakan grup, R terhadap operasi kedua semigrup, dan R terhadap operasi pertama dan kedua cukup dipenuhi salah satu sifat distributif kiri atau kanan maka R disebut near-ring dan ditulis sebagai $(R, +, \bullet)$ near- ring. Baik dalam teori ring maupun near-ring, terdapat suatu himpunan bagian yang juga merupakan ring maupun near-ring terhadap operasi yang sama dengan ring atau near-ring tersebut yang disebut sub ring dan sub near-ring. Dengan tambahan syarat tertentu pada subring ataupun sub near-ring tersebut dapat dibentuk himpunan lain yang dinamakan ideal. Secara definisi,

ideal pada ring berbeda dengan ideal pada near-ring. Untuk lebih jelas, diberikan beberapa definisi dan teorema berikut.

Definisi 2.9 [2], [3], [4]

Diberikan himpunan $R \neq \emptyset$. Pada R diberikan dua operasi yaitu '+' dan '•' yang masing-masing disebut sebagai operasi pertama dan operasi kedua. R terhadap dua operasi ini dikatakan ring jika memenuhi:

- I. (R, +) grup abelian
- II. (R, \bullet) Semigrup
- III. $(R, +, \bullet)$ distributif
 - i. Distributif kanan yaitu $(\forall a, b, c \in R)(a + b) \cdot c = (a \cdot c) + (b \cdot c)$
 - ii. Distributif kiri yaitu $(\forall a, b, c \in R)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Himpunan R yang membentuk ring terhadap dua operasi '+' dan $'\bullet'$ dinotasikan sebagai $(R, +, \bullet)$. Dalam tulisan ini, penulisan $(R, +, \bullet)$ ring akan dituliskan sebagai R ring. Contoh ring yang cukup sederhana adalah himpunan bilangan riil $\mathbb R$ terhadap operasi penjumlahan dan perkalian atau ditulis $(\mathbb R, +, \bullet)$. Hal ini dapat dibuktikan sebagai berikut:

- I. Pada sub bab 2.1 telah dibuktikan bahwa (\mathbb{R} , +) membentuk grup abelian.
- II. (\mathbb{R}, \bullet) semigrup
 - i. Operasi '•' merupakan operasi biner dalam $\mathbb R$ atau ($\mathbb R, \bullet$) tertutup. Artinya pekalian dua bilangan riil masih merupakan bilangan riil yaitu ($\forall a, b \in \mathbb R$) berlaku $a \bullet b \in \mathbb R$
- ii. (\mathbb{R} ,•) bersifat assosiatif yaitu ($\forall a, b, c \in \mathbb{R}$) berlaku ($a \cdot b$)• $c = a \cdot (b \cdot c)$ III. (\mathbb{R} , +,•) distributif
 - i. Distributif kanan yaitu $(\forall a, b, c \in \mathbb{R})(a+b) \cdot c = (a \cdot c) + (b \cdot c)$

ii. Distributif kiri yaitu $(\forall a, b, c \in \mathbb{R})$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Dari (I), (II) dan (III) terbukti bahwa (\mathbb{R} , +,•) merupakan ring.

Definisi 2.10 [2], [3], [4]

Misalkan R ring. $S \neq \emptyset \subseteq R$ dikatakan subring R jika S terhadap operasi yang sama dengan R juga merupakan ring.

Berdasarkan Definisi 2.10, jika $(S, +, \bullet)$. subring $(R, +, \bullet)$, maka $(S, +, \bullet)$. memenuhi aksioma-aksioma yang sama seperti yang terdapat dalam ring $(R, +, \bullet)$ yatu:

- I. (S, +) grup abelian
- II. (S, \bullet) Semigrup

III.(S, +,•) distributif

- i. Distributif kanan yaitu $(\forall a, b, c \in S)(a + b) \cdot c = (a \cdot c) + (b \cdot c)$
- ii. Distributif kiri yaitu $(\forall a, b, c \in S)a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Teorema 2.11.[2], [3], [4]

Misalkan R ring. $S \neq \emptyset \subseteq R$ dikatakan subring R jika $(\forall a, b \in S)$ berlaku:

- (i) $a + b^{-1} \in S$
- (ii) $a \cdot b \in S$

Bukti:

Berdasarkan Definisi 2.10, $S \neq \emptyset \subseteq R$ dikatakan subring R jika:

- (i). (S, +) grup abelian
- (ii). (S, \bullet) Semigrup
- (iii). $(S, +, \bullet)$ distributif.

Ambil sebarang $a, b, c \in S$. Berdasarkan Teorema 2.5, untuk membuktikan (S, +)

Jadi terbukti bahwa $(S, +, \bullet)$ distributif. (2.6)

Dari (2.4), (2.5), dan (2.6) terbukti bahwa untuk menunjukkan $S \neq \emptyset \subseteq R$ subring R cukup dengan menunjukkan (i) $a + b^{-1} \in S$ dan (ii) $a \bullet b \in S$ ($\forall a, b \in S$).

Contoh subring adalah himpunan bilangan bulat terhadap operasi penjumlahan dan perkalian yang ditulis sebagai $(\mathbb{Z}, +, \bullet)$ merupakan subring dari $(\mathbb{R}, +, \bullet)$. Hal ini karena $\mathbb{Z} \subseteq \mathbb{R}$ serta \mathbb{Z} dan \mathbb{R} merupakan ring terhadap operasi yang sama yaitu operasi " + " dan " \bullet ". Hal ini dapat ditunjukkan sebagai berikut.

- I. Pada sub bab 2.1 telah dibuktikan bahwa (\mathbb{Z} , +) membentuk grup abelian.
- II. (\mathbb{Z}, \bullet) semigrup
 - i. Operasi '•' merupakan operasi biner dalam \mathbb{Z} atau (\mathbb{Z} ,•) tertutup. Artinya pekalian dua bilangan bulat masih merupakan bilangan bulat yaitu ($\forall a,b \in \mathbb{Z}$) berlaku $a \bullet b \in \mathbb{Z}$
- ii. (\mathbb{Z} ,•) bersifat assosiatif yaitu ($\forall a,b,c \in \mathbb{Z}$) berlaku ($a \cdot b$)• $c = a \cdot (b \cdot c)$ III. (\mathbb{Z} , +,•) distributif
 - i. Distributif kanan yaitu $(\forall a, b, c \in \mathbb{Z})(a+b) \cdot c = (a \cdot c) + (b \cdot c)$

ii. Distributif kiri yaitu $(\forall a, b, c \in \mathbb{Z})$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Karena $\mathbb{Z} \subseteq \mathbb{R}$ dan dari (I), (II) dan (III) terbukti bahwa (\mathbb{Z} , +,•) merupakan subring (\mathbb{R} , +,•).

Definisi 2.12 [2], [3], [4]

Misalkan $(R, +, \bullet)$ ring. $I \neq \emptyset \subseteq R$ dikatakan ideal pada R jika memenuhi:

i.
$$a - b \in I \ (\forall a, b \in I)$$

ii.
$$a \cdot r \in I \ dan \ r \cdot a \in I \ (\forall a \in I \ dan \ r \in R)$$

Suatu ideal I yang dibangun oleh a dinotasikan dengan $\langle a \rangle$ merupakan ideal terkecil yang memuat a. Dalam penjelasan sebelumnya telah ditunjukkan bahwa $(\mathbb{Z},+,\bullet)$ merupakan subring $(\mathbb{R},+,\bullet)$. Selanjutnya dapat ditunjukkan bahwa $(\mathbb{Z},+,\bullet)$ bukan ideal dalam $(\mathbb{R},+,\bullet)$, sebab jika $a\in\mathbb{Z}$ dan $r\in\mathbb{R}$ tidak selalu $ar\in\mathbb{Z}$ dan $ra\in\mathbb{Z}$. Dengan kata lain perkalian bilangan bulat dan bilangan riil tidak selalu menghasilkan bilangan bulat, sehingga syarai (ii) ideal pada Definisi 2.12 tidak dipenuhi.

Definisi 2.13 (Lihat [1], [6], [7], [9], [10], [11])

Diberikan himpunan $N \neq \emptyset$. Pada N diberikan dua operasi yaitu '+ 'dan '• 'yang masing-masing disebut sebagai operasi pertama dan operasi kedua. N terhadap dua operasi ini dikatakan near-ring jika memenuhi:

- I. (N, +) grup
- II. (N, \bullet) Semigrup
- III. $(N, +, \bullet)$ berlaku salah satu sifat distributif kanan atau distributif kiri yaitu
 - i. Distributif kanan yaitu $(\forall a, b, c \in N)(a + b) \cdot c = (a \cdot c) + (b \cdot c)$ atau
 - ii.Distributif kiri yaitu $(\forall a, b, c \in N)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Himpunan N yang membentuk near-ring terhadap dua operasi '+' dan $' \cdot '$ dinotasikan sebagai $(N, +, \cdot)$. Dalam tulisan ini, penulisan $(N, +, \cdot)$ near-ring akan dituliskan sebagai N near-ring. Berdasarkan Definisi 2.9 dan Definisi 2.13, dapat disimpulkan bahwa setiap ring merupakan near-ring tetapi tidak setiap near-ring merupakan ring. Karena itu jelas bahwa $(\mathbb{R}, +, \cdot)$ merupakan near-ring.

Definisi 2.14. (Lihat [1], [6], [7], [9], [10], [11])

Misalkan N near-ring. $S \neq \emptyset \subseteq N$ dikatakan sub near-ring N jika S terhadap operasi yang sama dengan N juga merupakan near-ring.

Definisi 2.15. (Lihat [1],[5], [6], [7], [9], [10], [11])

Misalkan $(N, +, \bullet)$ near-ring. $I \neq \emptyset \subseteq N$ dikatakan ideal N jika memenuhi:

i. (I, +) subgrup normal (N, +)

ii. $NI \subseteq I$

iii.
$$(n+i) \cdot m - n \cdot m \in I$$
, $(\forall i \in I \ dan \ m, n \in N)$

Berdasarkan Definisi 2.15, Teorema 2.5, dan Teorema 2.8, untuk membuktikan $I \neq \emptyset \subseteq N$ adalah ideal dalam N cukup ditunjukkan:

(i)
$$a + b^{-1} \in I$$

(ii)
$$a + n + a^{-1} \in I$$

(iii) $n \cdot i \in I$

(iv)
$$.(n+i) \cdot m - n \cdot m \in I$$
, $(\forall a,b,i \in I)(\forall m,n \in N)$

Sifat 2.16 [6]

Misalkan N merupakan near-ring. Jika I_1 dan I_2 masing-masing merupakan ideal di Near-ring N maka $I_1 \cup I_2 \subseteq I_1 + I_2$

Sifat 2.17 [6]

Misalkan N merupakan near-ring. Jika I_1 dan I_2 masing-masing merupakan ideal di near-ring N maka $\langle I_1 \cup I_2 \rangle \subseteq I_1 + I_2$

Notasi $\langle I_1 \cup I_2 \rangle$ menyatakan ideal yang dibangun oleh $I_1 \cup I_2$ dan merupakan ideal terkecil N yang memuat $I_1 \cup I_2$

Pembuktian lengkap Sifat 2.16 dan Sifat 2.17 ini dapat dilihat dalam [6].

BAB III

TUJUAN DAN MANFAAT PENELITIAN

3.1. Tujuan Penelitian

Tujuan umum penelitian ini adalah untuk menyelidiki generalisasi beberapa sifat ideal yang telah dibuktikan dalam [6] yaitu generalisasi sifat gabungan beberapa ideal, sifat ideal terkecil yang dibangun oleh gabungan beberapa ideal dalam near-ring dan sifat ideal terkecil yang dibangun oleh irisan beberapa ideal dalam near-ring.

3.2 Manfaat Penelitian

Manfaat dari penelitian ini adalah menambah wawasan pengetahuan mengenai struktur aljabar khususnya tentang teori near-ring dan sebagai pengembangan ilmu matematika khususnya aljabar.

BAB IV

METODE PENELITIAN

4.1. Jenis Penelitian

Penelitian ini bersifat studi literatur. Bahan literatur diperoleh dengan mengkaji buku-buku teks, jurnal, artikel-artikel ilmiah dan sumber-sumber lain yang diakses secara langsung maupun melalui internet.

4.2. Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan selama kurang lebih enam (6) bulan, dan dilaksanakan di Jurusan Matematika Fakultas Matematika dan Ilmu pengetahuan Alam Universitas Bengkulu.

4.3. Prosedur Kerja

Langkat-langkah yang dilakukan dalam penelitian ini adalah:

- Mengumpukan literatur yang berhubungan dengan ring, near-ring, sifat-sifat ideal pada ring, dan ideal pada near-ring.
- 2. Mempelajari sifat-sifat ideal pada ring
- 3. Menyelidiki beberapa sifat ideal pada ring yang juga berlaku pada near-ring
- 4. Menggeneralisasi beberapa sifat ideal yang didapat pada langkah (2)
- 5. Menarik kesimpulan.

BAB V

HASIL YANG DICAPAI

5.1 Kajian Literatur

Kajian terhadap teori dan pustaka yang berkaitan dengan sifat-sifat ideal pada near-ring memerlukan literatur dan referensi yang mendukung penelitian. Literatur yang dicari adalah buku-buku teks, jurnal, artikel-artikel ilmiah dan sumber-sumber lain yang berkaitan dengan ideal pada ring dan ideal pada near-ring.

5.2. Hasil dan Pembahasan

Hasil 1.

Diberikan sembarang near-ring N. Jika $I_1, I_2, I_3, \dots, I_n$ masing-masing merupakan ideal di near-ring N maka $\bigcup_{i=1}^n I_i \subseteq \sum_{i=1}^n I_i$

Bukti:

Diketahui: N near-ring dan $I_1, I_2, I_3, \dots, I_n$ masing-masing merupakan ideal di near-ring N

Akan dibuktikan: $\bigcup_{i=1}^n I_i \subseteq \sum_{i=1}^n I_i$ artinya $(\forall x \in \bigcup_{i=1}^n I_i)$ berlaku $x \in \sum_{i=1}^n I_i$

Ambil sembarang $x \in \bigcup_{i=1}^n I_i$, artinya $x \in I_1 \lor x \in I_2 \lor x \in I_3 \lor ... \lor x \in I_n$

Jika $x \in I_1$ maka x dapat dituliskan sebagai:

$$x = x + 0 + 0 + \dots + 0 \in I_1 + I_2 + I_3 + \dots + I_n$$
 dengan $0 \in I_i, \forall i = 2, 3, \dots, n$

Artinya $x \in I_1 + I_2 + I_3 + ... + I_n$

$$Jadi I_1 \subseteq \sum_{i=1}^n I_i \tag{5.1}$$

Jika $x \in I_2$ maka x dapat dituliskan sebagai:

$$x = 0 + x + 0 + \dots + 0 \in I_1 + I_2 + I_3 + \dots + I_n \text{ dengan } 0 \in I_i, \forall i = 1,3,4,\dots,n$$
 Artinya $x \in I_1 + I_2 + I_3 + \dots + I_n$

$$Jadi I_2 \subseteq \sum_{i=1}^n I_i \tag{5.2}$$

Jika $x \in I_3$ maka x dapat dituliskan sebagai:

$$x=0+0+x+\cdots+0 \in I_1+I_2+I_3+\ldots+I_n$$
 dengan $0\in I_i, \forall i=1,2,4,5,\ldots,n$ Artinya $x\in I_1+I_2+I_3+\ldots+I_n$

$$Jadi I_3 \subseteq \sum_{i=1}^n I_i \tag{5.3}$$

Proses ini dapat diteruskan untuk $x \in I_4$, $x \in I_5$ sampai $x \in I_n$ sebagai berikut:

Jika $x \in I_n$ maka x dapat dituliskan sebagai:

$$x = 0 + 0 + 0 + \dots + x \in I_1 + I_2 + I_3 + \dots + I_n \text{ dengan } 0 \in I_i, \forall i = 1, 2, \dots, n - 1$$

Jadi $I_n \subseteq \sum_{i=1}^n I_i$ (5.4)

Dari (5.1), (5.2), (5.3) dan (5.4) diperoleh :
$$I_1 \cup I_2 \cup I_3 \cup ... \cup I_n \subseteq \sum_{i=1}^n I_i$$

Artinya
$$\bigcup_{i=1}^{n} I_i \subseteq \sum_{i=1}^{n} I_i$$

Terbukti bahwa jika N near-ring dan $I_1, I_2, I_3, \dots, I_n$ masing-masing merupakan ideal di near-ring N maka $\bigcup_{i=1}^n I_i \subseteq \sum_{i=1}^n I_i$

Hasil 2

Diberikan sembarang near-ring N. Jika $I_1, I_2, I_3, ..., I_n$ masing-masing merupakan ideal di near-ring N maka $\sum_{i=1}^n I_i$ merupakan ideal yang dibangun oleh $\bigcup_{i=1}^n I_i$.

Bukti:

Diketahui: N near-ring dan $I_1, I_2, I_3, \dots, I_n$ masing-masing merupakan ideal di near-ring N

Akan dibuktikan: $\sum_{i=1}^{n} I_i$ merupakan ideal yang dibangun oleh $\bigcup_{i=1}^{n} I_i$.

 $\sum_{i=1}^{n} I_i$ merupakan ideal yang dibangun oleh $\bigcup_{i=1}^{n} I_i$ dapat dituliskan sebagai: $\langle \bigcup_{i=1}^{n} I_i \rangle = \sum_{i=1}^{n} I_i$. Untuk membuktikan $\langle \bigcup_{i=1}^{n} I_i \rangle = \sum_{i=1}^{n} I_i$ akan ditunjukkan:

i. $\sum_{i=1}^{n} I_i$ merupakan ideal N

ii.
$$\bigcup_{i=1}^n I_i \subseteq \sum_{i=1}^n I_i$$

- iii. $\sum_{i=1}^{n} I_i$ merupakan ideal terkecil di N yang memuat $\bigcup_{i=1}^{n} I_i$
- (i) Misalkan $I_1, I_2, I_3, ..., I_n$ masing-masing merupakan ideal di near-ring N. Berdasarkan [6] telah terbukti bahwa $\sum_{i=1}^n I_i$ merupakan ideal di N.

Jadi
$$I_1, I_2, I_3, \dots, I_n$$
 ideal di $N \Rightarrow \sum_{i=1}^n I_i$ ideal di N (5.5)

- (ii) Berdasarkan Hasil 1 telah terbukti bahwa $\bigcup_{i=1}^{n} I_i \subseteq \sum_{i=1}^{n} I_i$ (5.6) Dari (5.5) dan (5.6) terbukti bahwa $\sum_{i=1}^{n} I_i$ merupakan ideal yang memuat $\bigcup_{i=1}^{n} I_i$
- (iii) Jadi tinggal menunjukkan bahwa $\sum_{i=1}^{n} I_i$ merupakan ideal terkecil di N yang memuat $\bigcup_{i=1}^{n} I_i$, artinya jika terdapat ideal lain di N yang memuat $\bigcup_{i=1}^{n} I_i$ maka ideal tersebut juga harus memuat $\sum_{i=1}^{n} I_i$.

Ambil sembarang ideal, misalkan K dan $\bigcup_{i=1}^{n} I_i \subseteq K$.

Akan ditunjukkan $\sum_{i=1}^n I_i \subseteq K$ artinya $(\forall x \in \sum_{i=1}^n I_i) \Rightarrow x \in K$

Ambil sebarang $x \in \sum_{i=1}^{n} I_i$, misalkan $x = a_{11} + a_{21} + a_{31} + \dots + a_{n1}$ dengan $a_{11} \in I_1, a_{21} \in I_2, a_{31} \in I_3, \dots, a_{n1} \in I_n$.

Karena $a_{11} \in I_1$, $a_{21} \in I_2$, $a_{31} \in I_3$, ..., $a_{n1} \in I_n$ dan $\bigcup_{i=1}^n I_i \subseteq K$ maka $a_{11} \in K$, $a_{21} \in K$, $a_{31} \in K$, ..., $a_{n1} \in K$. Karena K ideal di N, berdasarkan (i) diperoleh $x = a_{11} + a_{21} + a_{31} + \dots + a_{n1} \in K$.

Jadi diperoleh $\sum_{i=1}^{n} I_i \subseteq K$

Terbukti $\sum_{i=1}^{n} I_i$ merupakan ideal terkecil di N yang memuat $\bigcup_{i=1}^{n} I_i$ (5.7) Dari (5.5), (5.6) dan (5.7) terbukti bahwa jika N near-ring dan $I_1, I_2, I_3, ..., I_n$ masing-masing merupakan ideal di near-ring N maka maka $\sum_{i=1}^{n} I_i$ merupakan ideal yang dibangun oleh $\bigcup_{i=1}^{n} I_i$.

Hasil 3.

Diberikan sembarang near-ring N. Jika $X \neq \emptyset \subseteq N$ dan $\mathcal{I}_{x} = \{I \mid I \text{ ideal dan } X \subseteq I\}$, maka berlaku $\bigcap_{I \in \mathcal{I}_{x}} I = \langle X \rangle$

Bukti:

Diketahui: N near-ring, $X \neq \emptyset \subseteq N$ dan $\mathcal{I}_{x} = \{I \mid I \ ideal \ dan \ X \subseteq I\}$

Akan dibuktikan: $\bigcap_{I \in \mathcal{I}_x} I = \langle X \rangle$

Untuk membuktikan $\bigcap_{I \in \mathcal{I}_x} I = \langle X \rangle$, akan ditunjukkan:

- i. $\bigcap_{I\in\mathcal{I}_x}I$ merupakan ideal di N
- ii. $X \subseteq \langle X \rangle$
- (i) $\mathcal{I}_{X} = \{I \mid I \text{ ideal } \operatorname{dan} X \subseteq I\}$ dapat ditulis sebagai $\mathcal{I}_{X} = \{I_{\alpha} \mid \alpha \in \Delta\}$ dengan Δ adalah himpunan indeks dan I_{α} adalah ideal di N yang memuat $X \ (\forall \alpha \in \Delta)$.

 Berdasarkan [6] telah terbukti $\bigcap_{\alpha \in \Delta} I_{\alpha} = \langle X \rangle$ merupakan ideal di N (5.7)
- (ii) Akan ditunjukkan $X \subseteq \langle X \rangle$

Karena $\bigcap_{I \in \mathcal{I}_x} I = \langle X \rangle \operatorname{dan} \mathcal{I}_x = \{ I \mid I \text{ ideal } \operatorname{dan} X \subseteq I \}$ diperoleh:

$$X \subseteq I_1, \qquad I_1 \in \mathcal{I}_{\chi} \tag{5.8}$$

$$X \subseteq I_2, \qquad I_2 \in \mathcal{I}_{\chi} \tag{5.9}$$

$$X \subseteq I_3, \qquad I_3 \in \mathcal{I}_{\chi} \tag{5.10}$$

Dan seterusnya hingga
$$X \subseteq I_n$$
, $I_n \in \mathcal{I}_x$ (5.11)

Dari (5.8) - (5.11) diperoleh:

$$X \subseteq I_1 \cap I_2 \cap I_3 \cap \dots \cap I_n = \bigcap_{I \in \mathcal{I}_x} I = \langle X \rangle \dots$$
 (5.12)

Dari (5.7) dan (5.12) disimpulkan bahwa $\bigcap_{I \in \mathcal{I}_X} I$ merupakan ideal terkecil yang memuat X.

Jadi terbukti bahwa jika N near-ring, $X \neq \emptyset \subseteq N$ dan $\mathcal{I}_{x} = \{I \mid I \ ideal \ dan \ dan$

$$X \subseteq I$$
 maka berlaku $\bigcap_{I \in \mathcal{I}_X} I = \langle X \rangle$

Berdasarkan hasil kajian literatur diperoleh hasil 1, 2, 3 yang telah dibuktikan bahwa:

1. Jika $I_1, I_2, I_3, \dots, I_n$ masing-masing merupakan ideal di near-ring N maka berlaku

$$\bigcup_{i=1}^{n} I_i \subseteq \sum_{i=1}^{n} I_i$$

- 2. Jika I_1,I_2,I_3,\dots,I_n masing-masing merupakan ideal di near-ring N maka berlaku $\langle \bigcup_{i=1}^n I_i \rangle = \sum_{i=1}^n I_i$
- 3. Jika N near-ring, $X \neq \emptyset \subseteq N$ dan $\mathcal{I}_{x}=\{I \mid I \ ideal \ dan \ X \subseteq I\}$ maka berlaku $\bigcap_{I \in \mathcal{I}_{x}} I=\langle X \rangle$

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Dari hasil penelitian dapat ditarik kesimpulan bahwa beberapa generalisasi sifat ideal dalam ring juga berlaku dalam near-ring, diantaranya:

- Gabungan ideal-ideal dalam suatu near-ring merupakan subset dari penjumlahan ideal-ideal tersebut.
- 2. Penjumlahan ideal-ideal dalam suatu near-ring merupakan ideal terkecil yang memuat gabungan ideal-ideal tersebut.
- 3. Irisan semua ideal yang memuat himpunan bagian tak kosong dari suatu near-ring merupakan ideal terkecil yang dibangun oleh himpunan tersebut.

6.2 Saran

Berdasarkan hasil penelitian yang telah dicapai, penelitian ini telah mampu mengkaji generalisasi beberapa sifat ideal pada ring yang berlaku pada near-ring. Masih banyak sifat-sifat lain dalam ring yang perlu dikaji apakah berlaku pada near-ring, misalnya sifat ideal prima, ideal maksimal, ideal utama dan sebagainya.

DAFTAR PUSTAKA

- [1] Abdurrahman, S. Thresye dan Hijriati, N. 2013. Ideal Prima Fuzzy Near-Ring. *Jurnal Matematika Murni dan Terapan Epsilon* Vol. 7 No.01. Hal.21-32.
- [2] Adkinds, W.A dan Weintraub, S.H. 1992. *Algebra: An Approach via Module Theory*. Springer –Verlag. New York.
- [3] Dummit, D.S. and Foote, R.M. 1999. *Abstract Algebra*. Second Edition. John Wiley and Sons Inc. New York
- [4] Fraleigh, J.B. 1999. *A First Course in Abstract Algebra*. Addison Wesley Publishing Company Inc.
- [5] Kim, S.D. and Kim, H.S. 1996. On fuzzy ideals of near-rings. *Bull. Korean Math. Soc.* Vol. 33 No. 4. Pp593-601
- [6] Mariana, A. 2017. *Sifat-Sifat Ideal pada Near-Ring*. Skripsi. Jurusan Matematika FMIPA Unib. Bengkulu.
- [7] Mayasari, Z.M., Fauzi, Y., dan Rafflesia, U. 2015. Teorema-teorema Utama Isomorphisma pada Ring yang Berlaku pada Near-Ring. *Jurnal Gradien*. Vol.11 No.2 Juli 2015: 1112-1116
- [8] Mayasari. Z.M. 2017. Sifat-Sifat Ideal Utama dan Ideal Maksimal dalam Near-Ring. Makalah Seminar Nasional Unnes. Universitas Negeri Semarang. Semarang.
- [9] Pilz, G. 1983. Near-rings. North-Holland. New York.
- [10] Sahputri, J.A. 2016. *Sifat-Sifat Ideal dan Homomorphisma pada Ring yang Berlaku pada Near-Ring*. Skripsi. Jurusan Matematika FMIPA Unib. Bengkulu.
- [11] Tomasouw, B.P dan Persulessy, E.R. 2010. *Unit pada Near-ring*. Proseding. ISBN: 978-602-97522-0-5. Hal.101-110.

Lampiran

DAFTAR RIWAYAT HIDUP PENELITI

A. Identitas Diri

A. IU	ichinas Dill	
1	Nama Lengkap	Zulfia Memi Mayasari, S.Si, M.Si
2	Jenis Kelamin	Perempuan
3	Jabatan Fungsional	Lektor Kepala
4	NIP	197312021998022001
5	NIDN	002127301
6	Tempat dan Tanggal Lahir	Palembang, 2 Desember 1973
7	E-mail	zulfiamm@unib.ac.ic; zulfiamemimaysari@yahoo.com
8	Nomor Telepon/ HP	081367379697
9	Alamat Kantor	Gedung FMIPA Universitas Bengkulu. Jl. WR. Supratman, Raya Kandang Limun Bengkulu
10	Nomor Telepon/ Faks	(0736) 20919
11	Lulusan yang Telah Dihasilkan	S1 = 35 orang
12	Mata Kuliah yang Diampu	 Struktur Aljabar I Struktur Aljabar II Aljabar Linier Metode Numerik
12	Triata Ixanan yang Diampa	5. Persamaan Differensial Parsial

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama Perguruan Tinggi	UNSRI	UGM	
Bidang Ilmu	Matematika	Matematika	
Tahun Masuk-Lulus	1992 – 1997	2002 – 2004	
Judul Skripsi/ Tesis/ Disertasi	Penyelesaian Masalah Arus Biaya Minimum dengan Metode Simpleks Jaringan Kerja	Lattice Kongruen	
Nama Pembimbing/ Promotor	Drs. Eddy Roflin	Prof. Dr. Sri Wahyuni	

C. Pengalaman Penelitian

No	Tahun	Judul Penelitian	Pendanaan	
No Tanun		Judui Penenuan	Sumber	Jml(Juta Rp)
1		Perancangan S <i>Perfect State Transfer</i> (PST) Pada Hiperreguler Integral (anggota)	Fundamental	
2	2013	istem Informasi Kebencanaan Tsunami Melalui Penyusunan Peta Kerawanan dan Jalur Evakuasi Bencana di Pesisir Kota Bengkulu (anggota)	Hihah	46.500.000,-
3	2013	Pemodelan Problem Evakuasi Bencana Tsunami Melalui Pendekatan <i>Maximum Dynamic Flow</i> <i>Problem</i> (MDFP) (Studi Kasus : Kelurahan Berkas Kota Bengkulu) (Ketua)	BOPTN	10.800.000,-
4		Pengembangan Teknik Pengolahan dan Analisis Citra Penginderaan Jauh melalui Perancangan Tapis Morfologi Matematik (anggota)		32.000.000,-

D. Pengalaman Pengabdian Kepada Masyarakat

	m 1		Pendanaan	
No	Tahun	Judul Pengabdian Kepada Masyarakat	Sumber	Jml (Juta Rp)
1	2016	Upaya peningkatan Kemampuan Berhitung Siswa dengan Metode Jarimatika di SD Negeri 79 Kota Bengkulu	Mandiri	-
2	1 7015	Pelatihan Teknik Menghitung Cepat dengan Jari di SD Negeri 79 Kota Bengkulu		-
3	3 "Masyarakat Siaga Bencana" pada masyarakat Kelurahan Bentiring Kota Bengkulu		Mandiri	-
4	Aplikasi Ilmu Matematika dalam Pembahasan Tes Potensi Akademik Bagi Siswa SMA Negeri 2 Kota Bengkulu		Dana DIPA FMIPA	2

D. Publikasi Artikel Ilmiah dalam Jurnal

No.	Judul Artikel Ilmiah	Nama Jurnal	Volume/Nomor/Tahun
1.	Kajian Solusi Numerik MetodeRunge-Kutta Nystrom Orde Empat Dalam Menyelesaikan Persamaan Diferensial Linier Homogen Orde Dua	C 1'	16/2/Juli 2016
2.	Teorema-Teorema Utama Isomorphisma pada Near-Ring.	Gradien	11/2/Juli 2015
3.	Analisis Kesesuaian Lahan Wilayah Pesisir Kota Bengkulu Melalui Perancangan Model Spasial dan Sistem InformasiGeografis (SIG).	Forum Geografi	23/2/Desember 2009

F. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan Ilmiah/ Seminar	Judul Artikel Ilmiah	Waktu Dan Tempat
1.		Sifat-Sifat Ideal Utama dan Ideal Maksimal dalam Near-Ring	2017 Universitas Negeri Semarang
2.	Seminar BKS PTN Wilayah Barat	Sifat-Sifat Homomorphisma pada Near-Ring	2016 Universitas Sriwijaya
3.	Seminar Nasional Matematika dan Pendidikan Matematika UNY Yogyakarta	Pasangan Baku dalam Polinomial Monik	2015 Universitas Negeri Yogyakarta
4.	Seminar Nasional MIPA UNSRI	Pemodelan Problem Evakuasi Bencana Tsunami Melalui Pendekatan <i>Maximum</i> <i>Dynamic Flow Problem</i> (MDFP)	2014 Universitas Sriwijaya
5	Seminar BKS PTN Wilayah Barat	Pemodelan Matematika Untuk Optimasi Proses Evakuasi Dengan Model Makroskopik	2014 Institut Pertanian Bogor
6.	Seminar BKS PTN Wilayah Barat	Pengembangan Tapis Morfologi Matematik Menggunakan Teori Ordered Set Dan Lattice	2013 Universitas Negeri Medan

G. Karya Buku dalam 5 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah Halaman	Penerbit
	-	-		

H. Perolehan HKI dalam 5 Tahin Terakhir

No	Judul/Tema HKI	Tahun	Jenis	No P/ID
	-	-		

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No	Judul/Tema/Jenis Rekayasa Sosial Lainnya yang Telah Diterapkan	Tahun	Tempat Penerapan	Respons Masyarakat
	-	-		

J. Penghargaan yang Pernah Diraih dalam 10 Tahun Terakhir (dari pemerintah, asosiasi, atau Institusi Lainnya)

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
	-	-	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima resikonya. Demikian biodata ini saya buat dengan sebenarnya.

Bengkulu, Desember 2017

Zulfia Memi Mayasari, M.Si