

Letter of Acceptance - Oral Presentation

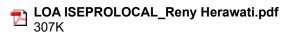
1 pesan

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id> Kepada: reny.herawati@unib.ac.id

28 Agustus 2020 pukul 13.46

Dear Mrs. Reny Herawati

We are pleased to inform you that your paper has been accepted for an oral presentation in The 2nd Iseprolocal 2020, and I herewith attached a Letter of Acceptance. The deadline for full paper submission is September 20th, 2020.


A Whatsapp group is organized for the purpose of sharing further information and communication (https://chat.whatsapp.com/BUF1Hv0rvLO5SBnERgvgVj).

Hope to see you at the seminar.

Best regards,

Dr. Nurmeiliasari,

Secretary

Today Reminder: 2nd ISEPROLOCAL 2020

1 pesan

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id>

8 Oktober 2020 pukul 05.34

Bcc: reny.herawati@unib.ac.id

Dear,

The 2ND ISEPROLOCAL participants

It is a friendly reminder of the 2nd iSEPROLOCAL 2020, 8th October 2020. The details of the 2nd ISEPROLOCAL 2020 are listed below:

I. The keynote speaker presentation session, from 09.00 a.m. to 12. a.m.

The link will be opened on Oct 8, 2020, at 08:45 a.m. (Jakarta Time). Please check the time zone carefully as it may be different from your local time. To join, simply click the link below.

LINK ZOOM: https://zoom.us/j/99299764419

or type Zoom ID: 992 9976 4419

and if it is possible to join Live Youtube: https://www.youtube.com/watch?v=SUy292sJ1mQ

It is recommended to join 15 minutes prior to the meeting. After the session ends, the participants leave the meeting. There are different links to the parallel sessions (see book of abstracts).

II. Break 12-13.15 p.m. (Jakarta time). The participants may prepare for the next session. There are 16 rooms with different zoom meeting IDs.

III. Parallel sessions.

The presenters and participants are given links to the meeting of parallel sessions. Please check the abstract book to find a meeting ID and passcode to enter the room.

There is an award to the best presenter in each room. Presenters are assessed and judged for their performance and quality of work. We recommend that all participants use a virtual background (attached files). After the parallel session, all participants leave the meeting and join a closing ceremony when the best presenters are announced.

IV. Closing

The closing of the event using a zoom webinar LINK ZOOM: https://zoom.us/i/99299764419 or type Zoom ID: 992 9976 4419 will be held at 3.45 p.m. (Jakarta time). The committee will open 10 minutes before the closing ceremony. The best presenter of each room will be announced.

We hope you enjoy the scientific sharing session during The 2nd Iseprolocal 2020. Meet and greet scientists from many different countries and start to create a global good network.

Regards,

The committee

4 lampiran

Vbackground_2.jpg 244K

Vbackground_3.png 1508K

Vbackground_1.png 1472K

ABSTRACTS BOOK 2ND ISEPROLOCAL 2020 8th Oct 2020.pdf $7909 \mathrm{K}$

LETTER OF CONFIRMATION (LoC) The 2nd Iseprolocal

2 pesan

noreply@unib.ac.id <noreply@unib.ac.id>

30 November 2020 pukul 14.08

Balas Ke: noreply@unib.ac.id Kepada: reny.herawati@unib.ac.id

Dear,

Reny Herawati

Herewith, we send the Letter of Confirmation (LoC) of your manuscript. You can also check/print the screen of OCS: https://semcon.unib.ac.id/index.php/iseprolocal/iseprolocal/login on your conference system.

Best regards,

Agustin Zarkani, Ph,D

NOTE: this is no-reply e-mail. Please contact us by e-mail: iseprolocal@unib.ac.id or visit the website: iseprolocal.unib.ac.id

Reny Herawati LoC Iseprolocal.pdf 294K

noreply@unib.ac.id <noreply@unib.ac.id>

Balas Ke: noreply@unib.ac.id Kepada: reny.herawati@unib.ac.id 30 November 2020 pukul 23.07

Dear,

Reny Herawati

Due to some grammatically errors with the first LoC, herewith, we re-sent the Letter of Confirmation (LoC) of your manuscript. You can also check/print the screen of OCS: https://semcon.unib.ac.id/index.php/iseprolocal/iseprolocal/login on your conference system.

[Kutipan teks disembunyikan]

Reny Herawati LoC Iseprolocal.pdf

286K

Iseprolocal Manuscript Revision

1 pesan

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id>

31 Januari 2021 pukul 21.59

Kepada: reny.herawati@unib.ac.id

Dear, Mrs. Reny Herawati

Your manuscript has been riviewed by riviewer. If you have fix it, please send back soon. Thank you.

Best Regards,

-Iseprolocal committee

266-422-1-SP(1)_rev1(1).docx 426K

Addition of Coconut Water and Banana Extract on MS Media to Stimulate PLB (Protocorm Like Bodies) Regeneration of *Dendrobium gatton sunray*

Reny Herawati^{1*}, Habibi¹, Atra Romeida¹, Dwi Wahyuni Ganefianti¹, Marlin¹, Rustikawati¹

ABSTRACT

Organic material is widely used for propagation of orchids, namely coconut water, extracts of tomatoes, bananas, bean sprouts and potatoes which can be added to certain media as a provider of nutrients, amino acid minerals, growth regulators. This study aims to determine the effect of the concentration of organic matter in coconut water and banana extract on MS media on the regeneration of PLB (protocorn like bodies)

Dendrobium gatton sunray. The study was conducted at the Biotechnology Laboratory, Faculty of Agriculture, Bengkulu University, from September to December 2019. This study used a Complete Randomized Block Design (RCBD) with two factors. The first factor was the concentration of coconut water with 3 levels namely: A0 = 0 (Control), A1 = 75 ml/l, A2 = 150 ml/l, and the second factor was the concentration of banana extract with 5 levels namely: B0 = 0 (Control), B1 = 75 g/l, B2 = 150 g/l. The results showed that coconut water did not affect all observed variables, however the banana extract treatment had a significant effect on all observed variables except for the number of shoots. There was an interaction between the two treatments, namely the variable plantlet weight. Orthogonal polynomial analysis showed that the interaction pattern of coconut water and banana extract treatment occurred in treatment 0-50, where the meeting point of the two treatments, namely the variable shoot length, leaf length, shoot number, and plantlet weight. Whereas in the variable number of leaves, the interaction occurs in the 100-150 treatment.

Keywords: coconut water, bananas extracts, Dendrobium gatton sunray, MS media

1. INTRODUCTION

Dendrobium is a type of orchid that is favored by orchid enthusiasts because it has a variety of forms, shapes, and even sizes, it is even easy to maintain and cultivate, and the price is relatively affordable. In addition, Dendrobium also has other features such as the freshness of long-lasting flowers, flexible flower stalks [1] so that it is widely used as an ornamental plant in the form of cut flowers that can decorate spaces with good quality [2]. According to Suryana [3] orchids had entered the international market for export to destination countries, including Japan, the Netherlands, Korea and Singapore. The Indonesian Statistics Agency [4] notes that the value of orchid production in Indonesia from 2016 to 2017 had increased between 19,978,078 stalks to 20,045,577 stalks with an average export value of 120,560 US dollars. Financially the orchid farming gives a profit, where in one growing season it provides a profitability (ROI) of 70% of the funds invested. Value added along the marketing chain show a reasonable profit for the business (farmers and

traders) as well, so that this commodity business has good prospects [5].

In general, orchids are only able to reproduce in nature at less than 1%, this is because orchid seeds are very small and do not have an endosperm so that orchids are symbiotic with mycorrhizae in nature. The role of mycorrhizae as a supplier of carbon sources for orchid seed germination in general has been replaced by tissue culture media. Optimization of tissue culture techniques continues to be carried out in an effort to accelerate the propagation of orchids, this technique only requires a small part of the plant to obtain the same plantlets as the parent [6].

The orchid seeds will grow into protocorms in the germination medium. Protocorm can form a secondary protocorm (protocorm like body/PLB). In vitro regeneration of PLB Dendrobium for shoot multification is generally carried out on media enriched with growth regulators and vitamins. One of the keys to success is the use of media types and growth regulators at the right concentration. The composition of the media used greatly determines the growth rate of protocorms and plantlets and is useful for increasing the quality and quantity of seedlings [7]. The composition of the media needed in

Comment [u1]: and

Comment [u2]: it would be better you put the interpretation of this statistical term

Comment [u3]: favour?

Comment [u4]: Multiplication?

1

¹Agroecotechnology at Crop Production Departement, Faculty of Agriculture, University of Bengkulu, Bengkulu 38122, Indonesia

^{*}Corresponding author. Email: reny.herawati@unib.ac.id

tissue culture must contain nutrients that are useful for plants, namely consisting of carbohydrates, sugars and vitamins. Tissue culture media usually uses artificial media compositions, namely Murashige and Skoog and Knudson C media, either half or full concentration. The composition of the media is a determining factor in the success of in vitro orchid culture. Growth and reproduction rates of many species of orchids enhanced by adding some organic supplements such as coconut water (CW) or potato extract to culture medium [8-9]. Growth regulators are usually added to the medium to promote growth of explants. The growth regulators commonly used are auxins and cytokinins. The composition of the media can also be obtained from organic materials which already have natural nutrients and hormones in the form of auxins and cytokinins known as phytohormones. Complex organic materials can be used as additives that can encourage the development and growth of propagation explants in tissue culture [10;9]. The addition of organic materials such as extracts bananas, potato pulp and vegetable substances others have content high carbohydrate can increase growth and differentiation of cells in plants [11].

Organic materials that are widely used for orchid propagation are coconut water, tomato extracts, bananas, bean sprouts and potatoes which can be added with certain media as a provider of nutrients, amino acids, and growth regulators for orchid growth. Coconut water has been widely used as an additive in tissue culture media. The content of coconut water is in the form of active ingredients that are useful for the growth of plantlets which are rich in vitamins, sugars, amino acids and phytohormones [12-14]. Nurfadilah et al. [15] research showed that the combination of Ambon banana and BAP on concentration 10⁻⁶M BAP and 2.5% banana extract Ambon produces the best growth on time of emergence of shoots, number of shoots and number of leaves. This research was conducted to modify the MS media with added coconut water and banana extract to stimulate the regeneration of PLB Dendrobium gatton sunray.

2. MATERIAL AND METHODS

The research was conducted at the Laboratory of Agricultural Cultivation, Division of Tissue Culture and Biotechnology, Faculty of Agriculture, Bengkulu University. This research was conducted from September to December 2019. The materials used were PLB which had formed 2-3 mm buds as plantlets, banana extract, coconut water, Murashige & Skoog (MS) media, sugar, 70% alcohol, alcohol. 96%, and aquadest.

The design method used was a factorial completely randomized design (CRD) with 2 factors, namely: the first factor was coconut water with 3 levels, namely: A0 = 0 (Control), A1 = 75 ml, L-1, A2 = 150 ml.L-1. The second factor was banana extract with 3 levels, namely: B0 = 0 (Control), B1 = 75 g.L-1, B2 = 150 g.L-1. Each treatment combination was repeated 5 times. One experimental unit consisted of one culture bottle planted with 3 PLBs.

1/2 MS medium was added to treatment, added sugar as much as 30 g / l, gelatin as much as 7 grams / l, then the media pH was measured 5.8. The media was cooked until the gelatin was dissolved and well blended, then immediately poured into a sterile bottle with a volume of 20 ml bottle-1, then the media was sterilized by autoclave at a temperature of 121 $^{\circ}$ C, 15 psi pressure for 15 minutes. The explants used in the study were not uniformed into other media and were directly planted in the experimental media. The explants were removed from the bottle and selected for uniform growth. The selected explants consisted of 2 explants per bottle which were sterile, then the bottles were covered with plastic and tied with a rubber band and given a tight wrap. The culture bottles were maintained in the culture room at a temperature of 19-20 ° C with \pm 1,000 lux irradiation for 12-16 hours / day.

Observations were made one week after planting (WAF) to 15 weeks (WAF). Every day the plants were checked for contaminants and browning, while the last week observations were made on the variables of the number of leaves, number of roots, length of leaves, length of shoots, number of shoots, and weight of plantlets.

Data were analyzed using analysis of variance at the 5% level, and further tests with LSD at the 5% level. The orthoganal polynomial test was used to determine the treatment and interaction patterns. Data were analyzed using SAS version 9.1.

3. RESULTS AND DISCUSSION

Variance analysis showed that coconut water had no effect on all observed variables, however banana extract had a significant effect on all observed variables except for the number of shoots (Table 1). There was an interaction between the two treatments, namely the plantlet weight.

The orthogonal polynomial analysis showed that the pattern of coconut water on the leaf length was very significant in a quadratic curve, while the banana extract pattern was very significant quadratic on the variable shoot length, leaf length, root length, number of leaves, number of roots, and plantlet weight, except that the number of shoots tended to be linear. (Table 1). Even though there was only an interaction on plantlet weight, the interaction pattern between the addition of coconut water and banana extract tended to be quadratic in the variables of shoot length, number of leaves, number of shoots, number of leaves, and plantlet weight (Table 1).

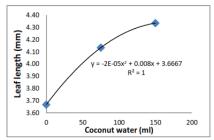
3.1. The effect of coconut water to MS media on the regeneration of PLB (Protocorm Like Bodies) Dendrobium sp

The effect of coconut water on PLB (Protocorm Like Bodies) regeneration was not significantly different in all observed variables. However, the pattern of coconut water tends to be quadratic in leaf length (Figure 1) with the regression equation $Y = -0.005X^2 + 0.008X + 3.667$ and the value of $R^2 = 1$. The addition of coconut water up to 150 ml to the media had not shown a significant effect,

Comment [u5]: ?

Comment [u6]: Any reference? You can add Vargas et al (2014) .. DOI: 10.2134/agronj13.0405

Comment [u7]: is it licensed? If not, it is better to drop it.


because the curve tends to increase and has not shown an optimal point, however, it was estimated that the optimal

point was achieved in the addition of 150-200 ml/l coconut water

Table 1 Analysis of variance and orthogonal polynomials on the addition of coconut water and banana extract to MS media to stimulate the regeneration of PLB (Protocorm Like Bodies) Dendrobium gatton sunray

				F value			
Source of variance	Shoot	Leaf	Root	Number	Number	Number	Weight
	length	length	length	of shoot	of leaf	of root	plantlet
Coconut water	0.07	0.48	0.22	0.11	0.27	0.17	0.14
Banana extract	1.56*	1.41*	0.94*	0.39	0.94*	1.71*	1.48*
C. water x B. extact	0.59	0.63	0.19	0.48	0.46	0.08	1.10*
C. water linier	0.07	0.46	0.09	0.10	0.10	0.16	0.29
C. water kuadratic	0.06	0.50*	0.34	0.12	0.44	0.19	0.01
B. extract linier	1.49*	0.15	0.12	0.76*	1.06*	0.09	0.26
B. extract kuadratic	1.63*	2.67*	1.77*	0.01	0.82*	3.33*	2.69*
C. water linier x B. extract linier	0.93*	0.59*	0.07	0.13	0.03	0.14	1.40*
C. water linier x B. extract kuadratic	0.03	0.56*	0.53*	0.14	0.01	0.04	1.43*
C. water kuadratic x B. extract linier	1.33*	0.98*	0.02	1.06*	1.39*	0.06	1.43*

Note:*significant different at F test 5%

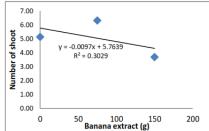
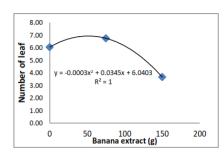



Figure 1 Respon of coconut water on the leaf length

Figure 2 Respon of Banana extract on the number of shoot

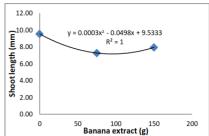
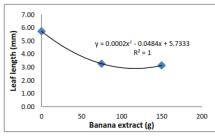



Figure 3 Respon of Banana extract on the number of leaf Figure 4 Respon of Banana extract on the shoot length

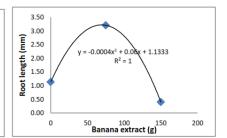
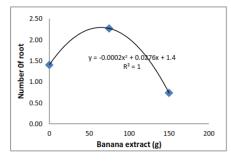



Figure 5 Respon of Banana extract on the leaf length

Figure 6 Respon of Banana extract on the root length

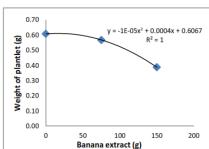


Figure 7 Respon of Banana extract on the number of root Figure 8 Respon of Banana extract on the weight of plantlet

Similar research by Pranata et al. [18] showed that the addition of 22.5% coconut water gave the best shoot length, then added with the addition of 15% coconut water. In addition, refers to Erfa et al. [19] in their research reported that the addition of coconut water up to 150 ml in the Phalaenopsis orchid growing medium resulted in better seedling height growth. Kristina et al. [16] stated that coconut water contains IAA (auxin) and cytokinins which were very good for stimulating plant growth and shoot growth. Coconut water has been used in tissue culture methods because of its growth regulating properties and cytokinin activity that supports cell division and promoting rapid growth [17]. The higher coconut water concentrations promoted better growth and shoot propagation in some orchid species, and the coconut water effect depending on the species and the explants [8-9].

3.2. The effect of banana extract on MS media on the regeneration of PLB Dendrobium gatton sunray

The effect of banana extract on PLB regeneration is presented in Table 2. The results showed that although it was significantly different in the F test, the average between treatments did not show a significant difference. The addition of banana extract 75 g / l had the highest root length with an average of 3.2 mm, the number of leaves was 6.74, and the number of roots was 2.27 (Table 2). Giving banana extract to the media because it was a source of carbohydrates and contains several minerals and various vitamins such as vitamin C and especially thiamine. Refer to Kasutjianingati and Irawan's [20] research showed that Ambon banana extract has a good effect on the root length of Dendrobium.

The orthogonal polynomial analysis showed that the banana extract response was very significant with a quadratic pattern on the variable shoot length, leaf length, root length, number of leaves, number of roots, and plantlet weight (Table 1), except that the number of shoots tended to be linear (Figure 2). This indicated that the

optimum point has not been reached for the variable number of shoots.

The addition of banana extract forms a quadratic pattern on the number of leaves with the equation Y=-0.0003X2+0.035+6.04 (R2 = 1), and reaches an optimum point in the addition of 50-100 mg of banana extract (Figure 3). The same pattern was also found in root length (Figure 6), number of roots (Figure 7), and plantlet weight (Figure 8). Different patterns were found in shoot length (Figure 4) and leaf length (Figure 5), where it reached the lowest point at the addition of 50-100 mg of banana extract. Refer to Hendaryono [21] in his study on banana extract 300 g/l resulted in a lower number of leaves.

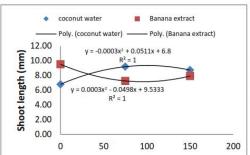
The highest average shoot length, leaf length, and plantlet weight without banana extract treatment (B0) were 9.53, 5.73, and 0.61 respectively, while in treatment (B1) the root length, number of leaves and number of roots, respectively amounting to 3.20, 6.74, and 2.27 (Table 2). Banana extract apart functions as a coenzyme for several reactions in metabolism and also plays a role in the metabolism of energy derived from carbohydrates. Giving Ambon banana fruit extract in the sub-culture plantlet can stimulated the growth of Dendrobium. Banana fruit also contains natural hormones auxins and gibberellins which can stimulate growth plantlets [20;22].

3.3. The interaction effect of coconut water and banana extract on MS media on the regeneration of PLB Dendrobium gatton sunray

The interaction effect of coconut water and banana extract on plantlet weight variables is presented in Table 3. The best treatment for plantlet weight variables was A1B1 (75 ml coconut water + 75 mg banana extract) which was 0.90 g and the lowest treatment was A2B2 which was 0.16 g. Based on orthogonal polynomial analysis, it showed that although there was only an interaction on plantlet weight, the interaction pattern between coconut water and banana extract tends to be quadratic in the variables shoot length, number of leaves, number of shoots, number of leaves, and plantlet weight (Table 1).

 $\textbf{Table 2} \ \, \textbf{Effect of banana extract on the Shoot length, Leaf length, Root length, Number of leaf, Number of root, and Weight plantlet}$

	Means of treatment						
Treatment		Leaf	Root	Number of	Number of	Weight	
	Shoot length	length	length	leaf	root	plantlet	
В0	9.53a	5.73a	1.13a	6.04a	1.40a	0.61a	
B1	7.27a	3.27a	3.20b	6.74a	2.27a	0.57a	
B2	7.93a	3.13a	0.40a	3.66b	0.73a	0.39a	


Note: LSD 5%

Comment [u8]: is it interaction effect or combination?

Table 3 Effect of coconut water and banana extract on the weight plantlet

Treatment	Means of weight plantlet (g)
A0B0	0.62a
A0B1	0.28c
A0B2	0.54a
A1B0	0.68a
A1B1	0.90b
A1B2	0.46a
A2B0	0.52a
A2B1	0.52a
A2B2	0.16c

Note: LSD 5%

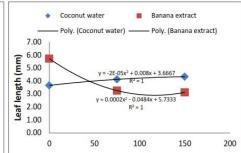


Figure 9 Respon of coconut water and banana extract on the shoot length

Figure 10 Respon of coconut water and banana extract on the leaf length

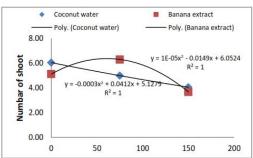


Figure 11 Respon of coconut water and banana extract on the number of shoot

Figure 12 Respon of coconut water and banana extract on the number of leaf

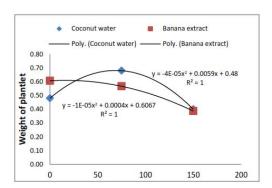


Figure 13 Respon of coconut water and banana extract on the weight of plantlet

The orthogonal polynomial analysis showed the interaction pattern of coconut water and banana extract treatments occurred in treatment 0-50, where the meeting point of the two treatments, namely the shoot length variable (Figure 9), leaf length (Figure 10), number of

shoots (Figure 11), and plantlet weights (Figure 13). Meanwhile, the variable number of leaves requires quite a lot of coconut water and banana extract, namely 100-150 to get the interaction between the two treatments (Figure 12). This showed that there was a different interaction

Comment [u9]:

- What is "numbar"?
- What is the title and unit of the X axis?
- It seems no need to put the decimal in the

Comment [u10]: It would be better to put so explanation of the meaning or the merit of the finding.

What is the importance of the meeting point What is the implication of the meeting point the media formulation?

response to the observed variables. MS is one of the media that is often used in the process of in vitro propagation or tissue culture. This is because MS media contains vitamin B1 which is very useful for plant growth. MS media has this feature because MS media contains high levels of nitrate, potassium, ammonium and the amount of inorganic nutrients for the cell multiplication, so it is thought to strongly influence the number of shoots of Dendrobium sp. Razdan [23] stated that MS medium was commonly used for shoot induction and contains appropriate nutrients to support optimal growth of plants in vitro. According to Suhartanto. et al. [24] that bananas are often used as a source of organic matter in tissue culture media, because 100 grams of banana flesh contain protein (1%), fat (0.3%), carbohydrates (27%), energy (116 -128 kcal), minerals (Ca 15 mg, K 380 mg, Fe 0.5 mg, Na 1.2 mg, and Vitamins (Vit. A 0.3 mg, Vit. B1 0.1 mg, B2 0.1 mg, B6 0.7 mg, Vit. C. Hadi's research (2006) states that the

4. CONCLUSION

Coconut water did not affect all observed variables, however the banana extract treatment had a significant effect on all observed variables except for the number of shoots. There was an interaction between the two treatments, namely the variable plantlet weight. Orthogonal polynomial analysis showed that the interaction pattern of coconut water and banana extract treatment occurred in treatment 0-50, where the meeting point of the two treatments, namely the variable shoot length, leaf length, shoot number, and plantlet weight. Whereas in the variable number of leaves, the interaction occurs in the 100-150 treatment.

REFERENCES

- [1] D. Puchooa, Comparison of different culture media for the in vitro culture of Dendrobium (Orhidaceae). Int. J. Agric. Biol. 6 (2004) 884-888. DOI: 1560-8530/2004/06-5-884-888
- [2] Talukder et al., In vitro root formation on orchid plantlets with IBA and NAA. Progress. Agric. 13(1&2)(2002) 25–28.
- [3] A. Suryana, Prospects and Directions for Orchid Agribusiness (Prospek dan Arah Pengembangan Agribisnis Anggrek). Development. Agricultural Research and Development Agency. Jakarta, 2005.
- [4] The Indonesian Statistics Agency, Statistik-tanaman-hias-indonesia-2017. https://www.bps.go.id/site/publication/2018/10/05/statistik-tanaman-hias-indonesia-2017.Jun 2019 17:45:28

addition of banana pulp as much as 100 g / l in the medium combined with Vitabloom 2 g/l can increase the shoots and number of Dendrobium kanayou leaves. Addition of BAP 2 mg / l, coconut water 150 ml/l and 50 g/l Ambon banana extract had the same effect on increase in the number of shoots, an average of 2 shoots of Phalaenopsis amabilis [20]. The highest number of shoots was produced in media supplemented with 50 ml /l coconut water and 50 g/l potato extract, while media supplemented with 150 ml /l coconut water and 50 potato extracts increased the number of leaves and the number of roots [9].

- [5] K.B. Andri, W.J.F.A. Tumbuan, Potential development of orchid flower agribusiness in Batu City, East Java (Potensi pengembangan agribisnis bunga anggrek di kota batu Jawa Timur). Jurnal LPPM Bidang EkoSosBudKum. 2(1)(2015) 19-30.
- [6] Indonesian Environmental and Forestry Research and Development Center, Plant Propagation Through Tissue Culture (Perbanyakan Tanaman Melalui Kultur Jaringan). Makassar. Bogor. Bogor. 304 p. 2013.
- [7] D. Widiastoety, A. Santi, N. Solvia, Effect of myoinositol and activated charcoal on growth of dendrobium orchid plantlets in in vitro culture (Pengaruh Myoinositol dan Arang Aktif terhadap— Pertumbuhan Planlet Anggrek Dendrobium dalam Kultur In vitro). J. Hort. 22(3) (2012) 205.
- [8] W. Pakum, S. Watthana, K. Srimuang, A. Kongbangkerd, Influence of Medium Component on In vitro Propagation of Thais Endangered Orchid: Bulbophyllum nipondhii Seidenf, Plant Tissue Cult. & Biotech., 26(1) (2016) 37-46. https://doi.org/10.3329/ptcb.v26i1.29765
- [9] T. Punjansing, M. Nakkuntod, S.Homchan, P. Inthima, A. Kongbangkerd, Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. Alba. Int. J. of Agric. and Biosyst. Eng. 13(4) (2019) 105-109.
- [10] S. Rahmah, T. Rahayu, A. Hayati, Study Adding Organic Substances on VW Media for Organogenesis the Dendrobium Orchid in Vitro. e-Jurnal Ilmiah SAINS ALAMI (Known Nature) 1(1) (2018) 3 - 103
- [11] Djajanegara, Utilization of banana and coconut water waste as a medium for tissue culture for the Moon Orchid (Phalaenopsis amabilis) Type 229

Comment [u11]: It would be better to put the practical meaning of this statistical term. What is the "interaction" and what is "meet point" in the practical tissue culture?

- (Pemanfaatan limbah buah pisang dan air kelapa sebagai bahan media kultur jaringan anggrek bulan (Phalaenopsis amabilis) Tipe 229). J.Teknologi Lingkungan 11(3) (2010) 373-380.
- [12] M.Humaira, Z. Thomy, E. Harnelly, The effect of giving coconut water and banana pulp to MS medium on the growth of rabbit orchid plantlets (Dendrobium antennatum lindl.) In vitro (Pengaruh pemberian air kelapa dan bubur pisang pada media ms terhadap pertumbuhan planlet anggrek kelinci (dendrobium antennatum lindl.) secara in vitro). Proc. of Biotic Nasional Seminar Nasional, 2015.
- [13] J. Pratama, Modification of MS Media with Addition of Coconut Water for Subculture I Cymbidium Orchids (Modifikasi Media MS Dengan Penambahan Air Kelapa Untuk Subkultur I Anggrek Cymbidium). Jurnal Agrium 15(2) (2018) 91-109
- [14] N.P.Y.A. Dewi, The Effect of Giving Coconut Water on Embryo Development in Dendrobium anosmum Lindl (Pengaruh Pemberian Air Kelapa terhadap Perkembangan Embrio pada Dendrobium anosmum Lindl). JBE 4 (1) (2019) 22-28.
- [15] Nurfadilah, Mukarlina, E. Rusmiyanto P.W, The multiplication of black orchids (Coelogyne pandurata Lindl) on murashige skoog (MS) media with the addition of Ambon banana extract and benzyl amino purine (BAP) (Multiplikasi anggrek hitam (Coelogyne pandurata Lindl) pada media murashige skoog (MS) dengan penambahan ekstrak pisang ambon dan benzyl amino purin (BAP)). Protobiont 7(3) (2018) 47 –53.
- [16] N.N. Kristina, Syahid, S. Fatimah, The Effect of Coconut Water on In Vitro Shoot Multipication, Rhizome Production, and Xanthorrhizol Content of Temulawak in the Field (Pengaruh Air Kelapa Terhadap Multipikasi Tunas In Vitro, Produksi Rimpang, dan Kandungan Xanthorrhizol Temulawak di Lapangan). Jurnal Litri 18 (3) (2012) 125-134.
- [17] J. Yong, L. Ge, Y.F. Ng, S. Tan, The chemical composition and biological properties of coconut (Cocos nucifera L.) water, Molecules 14(12) (2009) 5144-5164. https://doi.org/10.3390/molecules14125144
- [18] M.G. Pranata, A. Yunus, B. Pujiasmanto, The effect of NAA concentrations and coconut water on the multiplication of ginger (curcuma xanthorrizha roxb.)

 In vitro (Pengaruh konsentrasi naa dan air kelapa terhadap mult iplikasi temulawak (curcuma xanthorrizha roxb.) secara in vitro). J. of Sustainable Agric. 30(2) (2015)

- [19] L. Erfa, Ferziana, Growth of Phalaenopsis orchid seedling into plantlets in subculture II media with addition of tripton and atonic (Pertumbuhan seedling anggrek Phalaenopsis menjadi plantlet pada media subkultur II dengan penambahan tripton dan atonik). Jurnal Penelitian Pertanian Terapan. Vol. 12. (Spec. Ed.) (2012) 52-58.
- [20] Kasutjianingati, R. Irawan, Alternative media for in vitro orchid propagation (Phalaenopsis amabilis) (Media alternatif perbanyakan in vitroanggrek Bulan (Phalaenopsis amabilis)). J. Agroteknos. 3(3) (2013) 184-189.
- [21] D.P.S. Hendaryono, Orchid nursery in bottles (Pembibitan anggrek dalam botol). Kanisius: Yogyakarta. 2000
- [22] S. Damiska, R.S. Wulandari, H. Darwati, Addition of Yeast and Corn Seed Extract to In-Vitro Growth of Mangosteen Shoots (Penambahan Ragi dan Ekstrak Biji Jagung terhadap Pertumbuhan Tunas Manggis Secara In-Vitro). J Hutan Lestari 3(1) (2015) 35-42.
- [23] M.K. Razdan, Introduction to Plant Tissue. 2nd Edition. Qxford & IBH Publishing Co. Pvt. Ltd. New Delhi. 2003.
- [24] M.R. Suhartanto, Sobir, H. Harti, Healthy Technology for Banana Cultivation: From Seed to Post Harvest (Teknologi Sehat Budidaya Pisang: dari Benih sampai Pasca Panen). Pusat Kajian Hortikultura Tropika, LPPM-IPB. 2012.

Comment [u12]: C

Re: Iseprolocal Manuscript Revision_RenyH

2 pesan

Reny Herawati <reny.herawati@unib.ac.id>

1 Februari 2021 pukul 00.10

Kepada: ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id>

Cc: umisalamah@unib.ac.id

Dear Iseprolocal Committee,

I have made revisions according to reviewer suggestions, please kindly find the attached file. Thank you for your attention

Best regards, Reny et al.

Revised_266-422-1-SP(1)_rev1.docx

548K

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id>

Kepada: Reny Herawati < reny.herawati@unib.ac.id>

Cc: umisalamah@unib.ac.id

Well received with thanks.

[Kutipan teks disembunyikan]

2 Februari 2021 pukul 14.03

Addition of Coconut Water and Banana Extract on MS Media to Stimulate PLB (Protocorm Like Bodies) Regeneration of *Dendrobium gatton sunray*

Reny Herawati^{1*}, Habibi¹, Atra Romeida¹, Dwi Wahyuni Ganefianti¹, Marlin¹, Rustikawati¹

ABSTRACT

Organic material is widely used for propagation of orchids, namely coconut water, extracts of tomatoes, bananas, bean sprouts and potatoes which can be added to certain media as a provider of nutrients, amino acid minerals, and growth regulators. This study aims to determine the effect of the concentration of organic matter in coconut water and banana extract on MS media on the regeneration of PLB (protocorn like bodies) Dendrobium gatton sunray. The study was conducted at the Biotechnology Laboratory, Faculty of Agriculture, Bengkulu University, from September to December 2019. This study used a Complete Randomized Block Design (RCBD) with two factors. The first factor was the concentration of coconut water with 3 levels namely: A0 = 0 (Control), A1 = 75 ml. L^{-1} , A2 = 150 ml. L^{-1} , and the second factor was the concentration of banana extract with 5 levels namely: B0 = 0 (Control), B1 = 75 g. L^{-1} , B2 = 150 g. L^{-1} . The results showed that coconut water did not affect all variables, however the banana extract had a significant effect on all variables except for the number of shoots. There was an interaction between the two treatments, namely the variable plantlet weight. Orthogonal polynomial analysis showed that there was an interaction between the two treatments, where coconut water and banana extract had a good response on the plantlet growth when given together as much as 75 ml. L^{-1} (A1) and 75 g. L^{-1} (B1). The concentration of both treatment was lower than it was given individually.

Keywords: coconut water, bananas extracts, Dendrobium gatton sunray, MS media

1. INTRODUCTION

Dendrobium is a type of orchid that is favoured by orchid enthusiasts because it has a variety of forms, shapes, and even sizes, it is even easy to maintain and cultivate, and the price is relatively affordable. In addition, Dendrobium also has other features such as the freshness of long-lasting flowers, flexible flower stalks [1] so that it is widely used as an ornamental plant in the form of cut flowers that can decorate spaces with good quality [2]. According to Suryana [3] orchids had entered the international market for export to destination countries, including Japan, the Netherlands, Korea and Singapore. The Indonesian Statistics Agency [4] notes that the value of orchid production in Indonesia from 2016 to 2017 had increased between 19,978,078 stalks to 20,045,577 stalks with an average export value of 120,560 US dollars. Financially the orchid farming gives a profit, where in one growing season it provides a profitability (ROI) of 70% of the funds invested. Value added along the marketing chain show a reasonable profit for the business (farmers and traders) as well, so that this commodity business has good prospects [5].

In general, orchids are only able to reproduce in nature at less than 1%, this is because orchid seeds are very small and do not have an endosperm so that orchids are symbiotic with mycorrhizae in nature. The role of mycorrhizae as a supplier of carbon sources for orchid seed germination in general has been replaced by tissue culture media. Optimization of tissue culture techniques continues to be carried out in an effort to accelerate the propagation of orchids, this technique only requires a small part of the plant to obtain the same plantlets as the parent [6].

The orchid seeds will grow into protocorms in the germination medium. Protocorm can form a secondary protocorm (protocorm like body/PLB). In vitro regeneration of PLB Dendrobium for shoot multiplication is generally carried out on media enriched with growth regulators and vitamins. One of the keys to success is the use of media types and growth regulators at the right concentration. The composition of the media used greatly determines the growth rate of protocorms and plantlets and is useful for increasing the quality and quantity of seedlings [7]. The composition of the media needed in tissue culture must contain nutrients that are useful for plants, namely consisting of carbohydrates, sugars and vitamins. Tissue culture media usually uses artificial

¹Agroecotechnology at Crop Production Departement, Faculty of Agriculture, University of Bengkulu, Bengkulu 38122, Indonesia

^{*}Corresponding author. Email: reny.herawati@unib.ac.id

media compositions, namely Murashige and Skoog and Knudson C media, either half or full concentration. The composition of the media is a determining factor in the success of in vitro orchid culture. Growth and reproduction rates of many species of orchids enhanced by adding some organic supplements such as coconut water (CW) or potato extract to culture medium [8-9]. Growth regulators are usually added to the medium to promote growth of explants. The growth regulators commonly used are auxins and cytokinins. The composition of the media can also be obtained from organic materials which already have natural nutrients and hormones in the form of auxins and cytokinins known as phytohormones. Complex organic materials can be used as additives that can encourage the development and growth of propagation explants in tissue culture [10;9]. The addition of organic materials such as extracts bananas, potato pulp and vegetable substances others have content high carbohydrate can increase growth and differentiation of cells in plants [11].

Organic materials that are widely used for orchid propagation are coconut water, tomato extracts, bananas, bean sprouts and potatoes which can be added with certain media as a provider of nutrients, amino acids, and growth regulators for orchid growth. Coconut water has been widely used as an additive in tissue culture media. The content of coconut water is in the form of active ingredients that are useful for the growth of plantlets which are rich in vitamins, sugars, amino acids and phytohormones [12-14]. Nurfadilah et al. [15] research showed that the combination of Ambon banana and BAP on concentration 10⁻⁶M BAP and 2.5% banana extract Ambon produces the best growth on time of emergence of shoots, number of shoots and number of leaves. This research was conducted to modify the MS media with added coconut water and banana extract to stimulate the regeneration of PLB Dendrobium gatton sunray.

2. MATERIAL AND METHODS

The research was conducted at the Laboratory of Agricultural Cultivation, Division of Tissue Culture and Biotechnology, Faculty of Agriculture, Bengkulu University. This research was conducted from September to December 2019. The materials used were PLB which had formed 2-3 mm buds as plantlets, banana extract, coconut water, Murashige & Skoog (MS) media, sugar, 70% alcohol, alcohol. 96%, and aquadest.

The design method used was a factorial completely randomized design (CRD) with 2 factors, namely: the first factor was coconut water with 3 levels, namely: A0 = 0 (Control), A1 = 75 ml.L⁻¹, A2 = 150 ml.L⁻¹. The second factor was banana extract with 3 levels, namely: B0 = 0 (Control), B1 = 75 g.L⁻¹, B2 = 150 g.L⁻¹. Each treatment combination was repeated 5 times. One experimental unit consisted of one culture bottle planted with 3 PLBs.

½ MS medium was added to treatment, added sugar as much as 30 g.L⁻¹, gelatin as much as 7 g.L⁻¹, then the media pH was measured 5.8. The media was cooked until the gelatin was dissolved and well blended, then

immediately poured into a sterile bottle with a volume of 20 ml bottle-1, then the media was sterilized by autoclave at a temperature of 121 °C, 15 psi pressure for 15 minutes. The explants used in the study were not uniformed into other media and were directly planted in the experimental media. The explants were removed from the bottle and selected for uniform growth. The selected explants consisted of 2 explants per bottle which were sterile, then the bottles were covered with plastic and tied with a rubber band and given a tight wrap. The culture bottles were maintained in the culture room at a temperature of 19-20 ° C with \pm 1,000 lux irradiation for 12-16 hours / day.

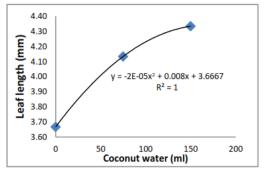
Observations were made one week after planting (WAF) to 15 weeks (WAF). Every day the plants were checked for contaminants and browning, while the last week observations were made on the variables of the number of leaves, number of roots, length of leaves, length of shoots, number of shoots, and weight of plantlets.

Data were analyzed using analysis of variance at the 5% level, and further tests with LSD at the 5% level. The orthogonal polynomial test was used to determine the treatment and interaction patterns [16].

3. RESULTS AND DISCUSSION

Variance analysis showed that coconut water had no effect on all observed variables, however banana extract had a significant effect on all observed variables except for the number of shoots (Table 1). There was an interaction between the two treatments, namely the plantlet weight. The orthogonal polynomial analysis showed that the

The orthogonal polynomial analysis showed that the pattern of coconut water on the leaf length was very significant in a quadratic curve, while the banana extract pattern was very significant quadratic on the variable shoot length, leaf length, root length, number of leaves, number of roots, and plantlet weight, except that the number of shoots tended to be linear. (Table 1). Even though there was only an interaction on plantlet weight, the interaction pattern between the addition of coconut water and banana extract tended to be quadratic in the variables of shoot length, number of leaves, number of shoots, number of leaves, and plantlet weight (Table 1).


3.1. The effect of coconut water to MS media on the regeneration of PLB (Protocorm Like Bodies) Dendrobium sp

The effect of coconut water on PLB (Protocorm Like Bodies) regeneration was not significantly different in all observed variables. However, the pattern of coconut water tends to be quadratic in leaf length (Figure 1) with the regression equation $Y = -0.005X^2 + 0.008X + 3.667$ and the value of $R^2 = 1$. The addition of coconut water up to 150 ml to the media had not shown a significant effect, because the curve tends to increase and has not shown an optimal point, however, it was estimated that the optimal point was achieved in the addition of 150-200 ml/l coconut water.

Table 1 Analysis of variance and orthogonal polynomials on the addition of coconut water and banana extract to MS media to stimulate the regeneration of PLB (Protocorm Like Bodies) Dendrobium gatton sunray

				F value			
Source of variance	Shoot	Leaf	Root	Number	Number	Number	Weight
	length	length	length	of shoot	of leaf	of root	plantlet
Coconut water	0.07	0.48	0.22	0.11	0.27	0.17	0.14
Banana extract	1.56*	1.41*	0.94*	0.39	0.94*	1.71*	1.48*
C. water x B. extact	0.59	0.63	0.19	0.48	0.46	0.08	1.10*
C. water linier	0.07	0.46	0.09	0.10	0.10	0.16	0.29
C. water kuadratic	0.06	0.50*	0.34	0.12	0.44	0.19	0.01
B. extract linier	1.49*	0.15	0.12	0.76*	1.06*	0.09	0.26
B. extract kuadratic	1.63*	2.67*	1.77*	0.01	0.82*	3.33*	2.69*
C. water linier x B. extract linier	0.93*	0.59*	0.07	0.13	0.03	0.14	1.40*
C. water linier x B. extract kuadratic	0.03	0.56*	0.53*	0.14	0.01	0.04	1.43*
C. water kuadratic x B. extract linier	1.33*	0.98*	0.02	1.06*	1.39*	0.06	1.43*

Note:*significant different at F test 5%

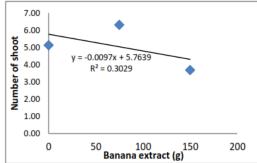
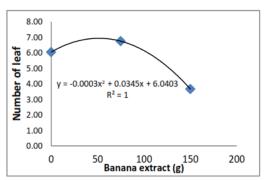



Figure 1 Respon of coconut water on the leaf length

Figure 2 Respon of Banana extract on the number of shoot

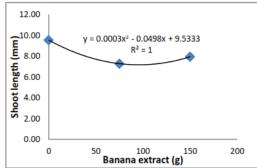
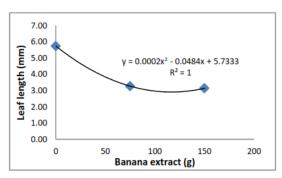
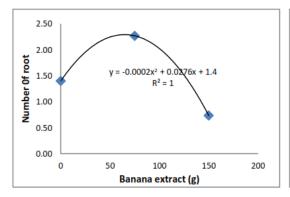



Figure 3 Respon of Banana extract on the number of leaf Figure 4 Respon of Banana extract on the shoot length



3.50 3.00 2.50 2.00 1.50 0.50 0.00 0 50 Banana extract (g)

3.50 y = -0.0004x² + 0.06x + 1.1333 R² = 1

Figure 5 Respon of Banana extract on the leaf length

Figure 6 Respon of Banana extract on the root length

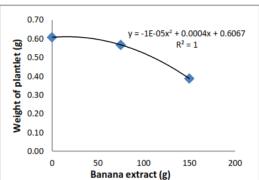


Figure 7 Respon of Banana extract on the number of root Figure 8 Respon of Banana extract on the weight of plantlet

Similar research by Pranata et al. [17] showed that the addition of 22.5% coconut water gave the best shoot length, then added with the addition of 15% coconut water. In addition, refers to Erfa et al. [18] in their research reported that the addition of coconut water up to 150 ml in the Phalaenopsis orchid growing medium resulted in better seedling height growth. Kristina et al. [19] stated that coconut water contains IAA (auxin) and cytokinins which were very good for stimulating plant growth and shoot growth. Coconut water has been used in tissue culture methods because of its growth regulating properties and cytokinin activity that supports cell division and promoting rapid growth [20]. The higher coconut concentrations promoted better growth and shoot propagation in some orchid species, and the coconut water effect depending on the species and the explants [8-9].

3.2. The effect of banana extract on MS media on the regeneration of PLB Dendrobium gatton sunray

The effect of banana extract on PLB regeneration is presented in Table 2. The results showed that although it was significantly different in the F test, the average between treatments did not show a significant difference. The addition of banana extract 75 g L⁻¹ had the highest root length with an average of 3.2 mm, the number of leaves was 6.74, and the number of roots was 2.27 (Table 2). Giving banana extract to the media because it was a source of carbohydrates and contains several minerals and various vitamins such as vitamin C and especially thiamine. Refer to Kasutjianingati and Irawan's [21] research showed that Ambon banana extract has a good effect on the root length of Dendrobium.

The orthogonal polynomial analysis showed that the banana extract response was very significant with a quadratic pattern on the variable shoot length, leaf length, root length, number of leaves, number of roots, and plantlet weight (Table 1), except that the number of shoots tended to be linear (Figure 2). This indicated that the optimum point has not been reached for the variable number of shoots.

The addition of banana extract forms a quadratic pattern on the number of leaves with the equation Y=-0.0003X2+0.035+6.04 (R2 = 1), and reaches an optimum point in the addition of 50-100 mg of banana extract (Figure 3).

The same pattern was also found in root length (Figure 6), number of roots (Figure 7), and plantlet weight (Figure 8). Different patterns were found in shoot length (Figure 4) and leaf length (Figure 5), where it reached the lowest point at the addition of 50-100 g of banana extract. Refer to Hendaryono [22] in his study on banana extract 300 g/l resulted in a lower number of leaves.

The highest average shoot length, leaf length, and plantlet weight without banana extract treatment (B0) were 9.53, 5.73, and 0.61 respectively, while in treatment (B1) the root length, number of leaves and number of roots, respectively amounting to 3.20, 6.74, and 2.27 (Table 2). Banana extract apart functions as a coenzyme for several reactions in metabolism and also plays a role in the metabolism of energy derived from carbohydrates. Giving Ambon banana fruit extract in the sub-culture plantlet can stimulated the growth of Dendrobium. Banana fruit also contains natural hormones auxins and gibberellins which can stimulate growth plantlets [21;23]

3.3. The interaction effect of coconut water and banana extract on MS media on the regeneration of PLB Dendrobium gatton sunray

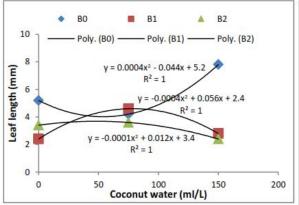
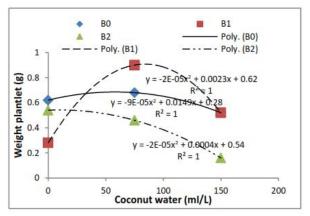

Based on orthogonal polynomial analysis, it showed that although there was only an interaction on plantlet weight, the interaction pattern between coconut water and banana extract tends to be quadratic in the variables shoot length. number of leaves, number of shoots, number of leaves, and plantlet weight (Table 1). The interaction effect between coconut water at various levels of banana extract was found in the variables of leaf length, root length, and plantlet weight (Figure 9-11). The effect of the interaction between coconut water at various levels of banana extract was found in the variables of leaf length, root length, and plantlet weight. Meanwhile, the effect of the interaction between banana extracts at various levels of coconut water was found in the variable shoot length, number of shoots, leaf length, number of leaves, and plantlet weight (Figure 12-16). Coconut water treatment gives a good response when given together with banana extract as much as 75 mg (B1) on the variable leaf length (Figure 9), root length (Figure 10), and plantlet weight (Figure 11), where coconut water reaches its optimum. at concentrations between 50-100 ml.L⁻¹.

Table 2 Effect of banana extract on the Shoot length, Leaf length, Root length, Number of leaf, Number of root, and Weight plantlet

	Means of treatment					
Treatment		Leaf	Root	Number of	Number of	Weight
	Shoot length	length	length	leaf	root	plantlet
В0	9.53a	5.73a	1.13a	6.04a	1.40a	0.61a

B1	7.27a	3.27a	3.20b	6.74a	2.27a	0.57a
B2	7.93a	3.13a	0.40a	3.66b	0.73a	0.39a


Note: LSD 5%

BO ■ B1 ▲ B2 Poly. (B0) -Poly. (B1) — --- Poly. (B2) 6 5 -0.0001x2 + 0.0307x - 2E-15 Root lengthn (mm) $R^2 = 1$ 4 3 $y = -0.0005x^2 + 0.064x + 3.4$ 2 1 0.012x - 4E-16 0 50 100 150 200 0 -1 Coconut water (ml/L

Figure 9 Response of leaf length on the coconut water at the various levels of banana extract

Figure 10 Response of root length on the coconut water at the various levels of banana extract

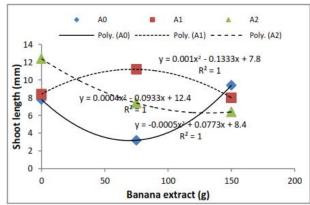
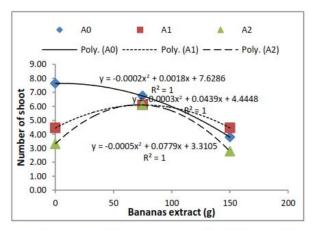



Figure 11. Response of weight plantlet on the coconut water at the various levels of banana extract

Figure 12. Response of shoot length on the banana extract at the various levels of coconut water

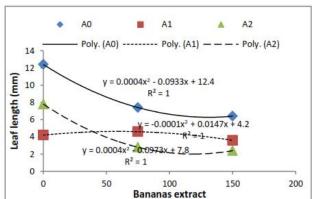
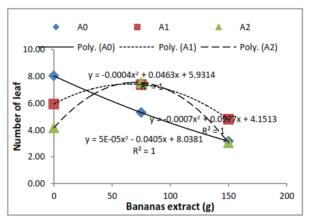



Figure 13. Response of number of shoot on the banana extract at the various levels of coconut water

Figure 14. Response of leaf length on the banana extract at the various levels of coconut water

Figure 15. Response of number of leaf on the banana extract at the various levels of coconut water

Otherwise, the banana extract treatment gave a good response at a coconut water concentration of 75 ml.L⁻¹ (A1) to the variable shoot length (Figure 12), number of shoots (Figure 13), leaf length (Figure 14), number of leaves (Figure 15), and plantlet weight (Figure 16), where banana extract reaches the optimum between 50-100 g. It was due to the presence of nutrients and growth regulators in coconut water as well as mineral content in bananas, causing interactions to spur plantlet growth, so that the concentration of both treatment was lower than given individually.

According to Suhartanto. et al. [24] that bananas are often used as a source of organic matter in tissue culture media, because 100 grams of banana flesh contain protein (1%), fat (0.3%), carbohydrates (27%), energy (116 -128 kcal), minerals (Ca 15 mg, K 380 mg, Fe 0.5 mg, Na 1.2 mg, and

4. CONCLUSION

Coconut water did not affect all observed variables, however the banana extract treatment had a significant effect on all observed variables except for the number of shoots. There was an interaction between the two treatments, where coconut water and banana extract had a good response on the plantlet growth when given together as much as 75 ml.L⁻¹ (A1) and 75 g. L⁻¹ (B1). The concentration of both treatment was lower than it was given individually based on the results of previous studies.

REFERENCES

[1] D. Puchooa, Comparison of different culture media for the in vitro culture of Dendrobium (Orhidaceae). Int. J. Agric. Biol. 6 (2004) 884-888.

DOI: 1560-8530/2004/06-5-884-888

[2] Talukder et al., In vitro root formation on orchid plantlets with IBA and NAA. Progress. Agric. 13(1&2)(2002) 25–28.

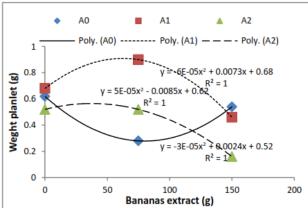


Figure 16. Response of weight plantlet on the banana extract at the various levels of coconut water

Vitamins (Vit. A 0.3 mg, Vit. B1 0.1 mg, B2 0.1 mg, B6 0.7 mg, Vit. C. Addition of BAP 2 mg.L⁻¹l, coconut water 150 ml.L⁻¹ and 50 g.L⁻¹ Ambon banana extract had the same effect on increase in the number of shoots, an average of 2 shoots of Phalaenopsis amabilis [21]. The highest number of shoots was produced in media supplemented with 50 ml.L⁻¹ coconut water and 50 g.L⁻¹ potato extract, while media supplemented with 150 ml.L⁻¹ coconut water and 50 potato extracts increased the number of leaves and the number of roots [9].

- [3] A. Suryana, Prospects and Directions for Orchid Agribusiness (Prospek dan Arah Pengembangan Agribisnis Anggrek). Development. Agricultural Research and Development Agency. Jakarta, 2005.
- [4] The Indonesian Statistics Agency, Statistiktanaman-hias-indonesia-2017. https://www.bps.go.id/site/publication/2018/10/05/statistik-tanaman-hias-indonesia-2017.Jun 2019 17:45:28 GMT.
- [5] K.B. Andri, W.J.F.A. Tumbuan, Potential development of orchid flower agribusiness in Batu City, East Java (Potensi pengembangan agribisnis bunga anggrek di kota batu Jawa Timur). Jurnal LPPM Bidang EkoSosBudKum. 2(1)(2015) 19-30.
- [6] Indonesian Environmental and Forestry Research and Development Center, Plant Propagation Through Tissue Culture (Perbanyakan Tanaman Melalui Kultur Jaringan). Makassar. Bogor. Bogor. 304 p. 2013.

- [7] D. Widiastoety, A. Santi, N. Solvia, Effect of myoinositol and activated charcoal on growth of dendrobium orchid plantlets in in vitro culture (Pengaruh Myoinositol dan Arang Aktif terhadap Pertumbuhan Planlet Anggrek Dendrobium dalam Kultur In vitro). J. Hort. 22(3) (2012) 205.
- [8] W. Pakum, S. Watthana, K. Srimuang, A. Kongbangkerd, Influence of Medium Component on In vitro Propagation of Thais Endangered Orchid: Bulbophyllum nipondhii Seidenf, Plant Tissue Cult. & Biotech., 26(1) (2016) 37-46. https://doi.org/10.3329/ptcb.v26i1.29765
- [9] T. Punjansing, M. Nakkuntod, S.Homchan, P. Inthima, A. Kongbangkerd, Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. Alba. Int. J. of Agric. and Biosyst. Eng. 13(4) (2019) 105-109.
- [10] S. Rahmah, T. Rahayu, A. Hayati, Study Adding Organic Substances on VW Media for Organogenesis the Dendrobium Orchid in Vitro. e-Jurnal Ilmiah SAINS ALAMI (Known Nature) 1(1) (2018) 3 103
- [11] Djajanegara, Utilization of banana and coconut water waste as a medium for tissue culture for the Moon Orchid (*Phalaenopsis amabilis*) Type 229 (Pemanfaatan limbah buah pisang dan air kelapa sebagai bahan media kultur jaringan anggrek bulan (*Phalaenopsis amabilis*) Tipe 229). J.Teknologi Lingkungan 11(3) (2010) 373-380.
- [12] M.Humaira, Z. Thomy, E. Harnelly, The effect of giving coconut water and banana pulp to MS medium on the growth of rabbit orchid plantlets (*Dendrobium antennatum* lindl.) In vitro (Pengaruh pemberian air kelapa dan bubur pisang pada media ms terhadap pertumbuhan planlet anggrek kelinci (*Dendrobium antennatum* lindl.) secara in vitro). Proc. of Biotic Nasional Seminar Nasional, 2015.
- [13] J. Pratama, Modification of MS Media with Addition of Coconut Water for Subculture I Cymbidium Orchids (Modifikasi Media MS Dengan Penambahan Air Kelapa Untuk Subkultur I Anggrek Cymbidium). Jurnal Agrium 15(2) (2018) 91-109
- [14] N.P.Y.A. Dewi, The Effect of Giving Coconut Water on Embryo Development in Dendrobium anosmum Lindl (Pengaruh Pemberian Air Kelapa terhadap Perkembangan Embrio pada Dendrobium anosmum Lindl). JBE 4 (1) (2019) 22-28.

- [15] Nurfadilah, Mukarlina, E. Rusmiyanto P.W, The multiplication of black orchids (*Coelogyne pandurata* Lindl) on murashige skoog (MS) media with the addition of Ambon banana extract and benzyl amino purine (BAP) (Multiplikasi anggrek hitam (*Coelogyne pandurata* Lindl) pada media murashige skoog (MS) dengan penambahan ekstrak pisang ambon dan benzyl amino purin (BAP)). Protobiont 7(3) (2018) 47 –53.
- [16] M. Vargas, B. Glaz, G. Alvarad, J. Pietragalla, A. Morgounov, Y. Zelenskiy, and J. Crossa, Analysis and Interpretation of Interactions in Agricultural Research. Agronomy Journal, 107(2)(2015)748. doi:10.2134/agronj13.0405
- [17] M.G. Pranata, A. Yunus, B. Pujiasmanto, The effect of NAA concentrations and coconut water on the multiplication of ginger (*Curcuma xanthorrizha* roxb.) In vitro (Pengaruh konsentrasi naa dan air kelapa terhadap mult iplikasi temulawak (*curcuma xanthorrizha* roxb.) secara in vitro). J. of Sustainable Agric. 30(2) (2015)
- [18] L. Erfa, Ferziana, Growth of Phalaenopsis orchid seedling into plantlets in subculture II media with addition of tripton and atonic (Pertumbuhan seedling anggrek Phalaenopsis menjadi plantlet pada media subkultur II dengan penambahan tripton dan atonik). Jurnal Penelitian Pertanian Terapan. Vol. 12. (Spec. Ed.) (2012) 52-58.
- [19] N.N. Kristina, Syahid, S. Fatimah, The Effect of Coconut Water on In Vitro Shoot Multipication, Rhizome Production, and Xanthorrhizol Content of Temulawak in the Field (Pengaruh Air Kelapa Terhadap Multipikasi Tunas In Vitro, Produksi Rimpang, dan Kandungan Xanthorrhizol Temulawak di Lapangan). Jurnal Litri 18 (3) (2012) 125-134.
- [20] J. Yong, L. Ge, Y.F. Ng, S. Tan, The chemical composition and biological properties of coconut (*Cocos nucifera* L.) water, Molecules 14(12) (2009) 5144-5164. https://doi.org/10.3390/molecules14125144
- [21] Kasutjianingati, R. Irawan, Alternative media for in vitro orchid propagation (*Phalaenopsis amabilis*) (Media alternatif perbanyakan in vitroanggrek Bulan (*Phalaenopsis amabilis*). J. Agroteknos. 3(3) (2013) 184-189.
- [22] D.P.S. Hendaryono, Orchid nursery in bottles (Pembibitan anggrek dalam botol). Kanisius: Yogyakarta. 2000

[23] S. Damiska, R.S. Wulandari, H. Darwati, Addition of Yeast and Corn Seed Extract to In-Vitro Growth of Mangosteen Shoots (Penambahan Ragi dan Ekstrak Biji Jagung terhadap Pertumbuhan Tunas Manggis Secara In-Vitro). J Hutan Lestari 3(1) (2015) 35-42..

[24] M.R. Suhartanto, Sobir, H. Harti, Healthy Technology for Banana Cultivation: From Seed to Post Harvest (Teknologi Sehat Budidaya Pisang: dari Benih sampai Pasca Panen). Pusat Kajian Hortikultura Tropika, LPPM-IPB. 2012.

Revision for your manuscript

2 pesan

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id> Kepada: Reny Herawati <reny.herawati@unib.ac.id>

12 Maret 2021 pukul 22.50

Dear authors,

I herewith attached the originality report on your manuscript submitted to Atlantis Press proceeding. There some issues with the similarity index, reference style, and template of the manuscript. Please refer to the Atlantis Press template: https://drive.google.com/file/d/1 zpVKEPe9O5oVbtllnyUW-5 Gh9bSsOn/view?usp=sharing. The revisions should be submitted by Tuesday 16 March 2021.

Sincerely yours,

Dr. Nurmeiliasari Secretary

Addition_of_Coconut_Water_and_Banana_Extract_on_MS.pdf 2306K

Kepada: ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id> 15 Maret 2021 pukul 14.29

Dear editor ISEPROLOCAL team,

With all due respect, we have made the revisions according to the suggestions of the commitee

We have also attach additional files containing information about the plagiarism check results before it's submitted in ISEPROCAL system a few months ago.

Thank you for your kind attention, We hope to get a good response as soon as possible

Best regards,

Reny Herawati

[Kutipan teks disembunyikan]

2 lampiran

Revised_266-422-1-SP(1)_rev2.docx 552K

Turnitine cek.pdf

Addition of Coconut Water and Banana Extract on MS Media to Stimulate PLB (Protocorm Like Bodies) Regeneration of Dendrobium gatton sunray

by Author: Herawati Et.al.

Submission date: 05-Nov-2020 09:57AM (UTC+0100)

Submission ID: 1436789254

File name: R. Herawati et al iseprocal2020.docx (416.68K)

Word count: 3921

Character count: 20850

Addition of Coconut Water and Banana Extract on MS Media to Stimulate PLB (Protocorm Like Bodies) Regeneration of *Dendrobium gatton sunray*

Reny Herawati^{1*}, Habibi¹, Atra Romeida¹, Dwi Wahyuni Ganefianti¹, Marlin¹, Rustikawati¹

¹Agroecotechnology at Crop Production Departement, Faculty of Agriculture, University of Bengkulu, Bengkulu 38122, Indonesia

*Corresponding author. Email: reny.herawati@unib.ac.id

ABSTRACT

Organic material is widely used for propagation of orchids, namely coconut water, extracts of tomatoes, bananas, bean sprouts and positoes which can be added to certain media as a provider of nutrients, amino acid minerals, growth regulators. This study aims to determine the effect of the concentration of organic matter in coconut water and banana e 16 act on MS media on the regeneration of PLB (protocorn like bodies) Dendrobium gatton sunray. The study was conducted at the Biotechnol y Laboratory, Faculty of Agriculture, Bengkulu University, from September to December 2019. This study used a Complete Randomized Block Design (RCBD) with two factors. The first factor was concentration of coconut water with 3 levels namely: A0 = 0 (Control), A1 = 75 ml/l, A2 = 150 ml/l, and the second factor was concentration of banana extract with 5 levels namely: B0 = 0 (Control), B1 = 75 g/l, B2 = 150 g/l. The restass showed that coconut water did not affect all observed variables, however the banana extract treatment had a significant effect on all observed variables except for the number of shoots. There was an interaction between the two treatments, namely the variable plantlet weight. Orthogonal polynomial analysis showed that the interaction pattern of coconut water and banana extract treatment occurred in treatment 0-50, where the meeting point of the two treatments, namely the variable shoot length, leaf length, shoot number, and plantlet weight. Whereas in the variable number of leaves, the interaction occurs in the 100-150 treatment.

Keywords: coconut water, bananas extracts, Dendrobium gatton sunray, MS media

1. INTRODUCTION

Dendrobium is a type of orchid that is favored by orchid enthusiasts because it has a variety of forms, shapes, and even sizes, it is even easy to maintain and cultivate, and the price is relatively affordable. In addition, Dendrobium also has other features such as the freshness of long-lasting flowers, flexible flower stalks [1] so that it is widely used as an ornamental plant in the form of cut flowers that can decorate spaces with good quality [2]. According to Suryana [3] orchids had entered the international market for export to destination countries, including Japan, the Netherlands, Korea and Singapore. The Indonesian Statistics Agency [4] notes that the value of orchid production in Indonesia from 2016 to 2017 had increased between 19,978,078 stalks to 20,045,577 stalks with an average export value of 120,560 US dollars. Financially the orchid farming gives a profit, where in one growing season it provides a profitability (ROI) of 70% of the funds invested. Value added along the marketing chain show a reasonable profit for the business (farmers and

traders) as well, so that this commodity business has good prospects [5].

In general, orchids are only able to reproduce in nature at less than 1%, this is because orchid seeds are very small and do not have an endosperm so that orchids are symbiotic with mycorrhizae in nature. The role of mycorrhizae as a supplier of carbon sources for orchid seed germination in general has been replaced by tissue culture media. Optimization of tissue culture techniques continues to be carried out in an effort to accelerate the propagation of orchids, this technique only requires a small part of the plant to obtain the same plantlets as the parent [6].

The orchid seeds will grow into protocorms in the germination medium. Protocorm can form a secondary protocorm (protocorm like body/PLB). In vitro regeneration of PLB Dendrobium for shoot multification is generally carried out on media enriched with growth regulators and vitamins. One of the keys to success is the use of media types and growth regulators at the right concentration. The composition of the media used greatly determines the growth rate of protocorms and plantlets and is useful for increasing the quality and quantity of seedlings [7]. The composition of the media needed in

tissue culture must contain nutrients that are useful for plants, namely consisting of carbohydrates, sugars and vitamins. Tissue culture media usually uses artificial media compositions, namely Murashige and Skoog and Knudson C media, either 1301 or full concentration. The composition of the media is a determining factor in the success of in vitro orchid culture. Growth and reproduction rates of many species of orchids enhanced by adding some organic supplements such as coconut water (CW) or potato extract to culture medium [8-9]. Growth regulators are usually added to the medium to promote growth of explants. The growth regulators commonly used are auxins and cytokinins. The composition of the media can also be obtained from organic materials which already have natural nutrients and hormones in the form of auxins and cytokinins known as phytohormones. Complex organic materials can be used as additives that can encourage the development and growth of propagation explants in tissue culture [10;9]. The addition of organic materials such as extracts bananas, potato pulp and vegetable substances others have content high carbohydrate can increase growth and differentiation of cells in plants [11].

Organic materials that are widely used for orchid propagation are coconut water, tomato extracts, bananas, bean sprouts and potatoes which can be added with certain media as a provider of nutrients, amino acids, at 20 rowth regulators for orchid growth. Coconut water has been widely used as an additive in tissue culture media. The content of coconut water is in the form of active ingredients that are useful for the growth of plantlets which are rich in vitamins, sugars, amino acids and phytohormones [12-14]. Nurfadilah et al. [15] research showed that the combination of Ambon banana and BAP on concentration 10-6M BAP and 2.5% banana extract Ambon produces the best growth on time of emergence of shoots, number of shoots and number of leaves. This researd was conducted to modify the MS media with added coconut water and banana extract to stimulate the regeneration of PLB Dendrobium gatton sunray.

2. MATERIAL AND METHODS

The research was conducted at the Laboratory of Agricultural Cultivation, Division of Tissue Culture and Biotechnology, Faculty of Agriculture, Bengkulu University. This research was conducted from September to December 2019. The materials used were PLB which had formed 2-3 mm buds as plantlets, banana extract, coconut water, Murashige & Skoog (MS) media, sugar, 70% alcohol, alcohol. 96%, and aq 23 st.

The design method used was a factorial completely randomized design (CRD) with 2 factors, namely: the first factor was coco 8 t water with 3 levels, namely: A0 = 0 (Control), A1 = 75 ml, L-1, A2 = 150 ml.L-1. The second factor was banana extract with 3 levels, namely: B0 = 0 (Control), B1 = 75 g.L-1, B2 = 150 g.L-1. Each treatment combination was repeated 5 times. One experimental unit consisted of one culture bottle planted with 3 PLBs.

1/2 MS medium was added to treatment, added sugar as much as 30 g / 1, gelatin as much as 7 grams / 1, then the media pH was measured 5.8. The media was cooked until the gelatin 5 as dissolved and well blended, then immediately poured into 25 sterile bottle with a volume of 20 ml bottle-1, then the media was sterilized by autoclave at a temperature of 121 °C, 15 psi pressure for 15 minutes. The explants used in the study were not uniformed into other media and were directly planted in the experimental media. The explants were removed from the bottle and selected for uniform growth. The selected explants consisted of 2 explants per bottle which were sterile, then the bottles were covered with plastic and tied with a ru 20 r band and given a tight wrap. The culture bottles were maintained in the culture room at a temperature of 19-20 ° C with \pm 1,000 lux irradiation for 12-16 hours / day.

Observations were made one week after planting (WAF) to 15 weeks (WAF). Every day the plants were checked for contaminants and browning, while 28 he last week observations were made on the variables of the number of 46 yes, number of roots, length of leaves, length of shoots, number of shoots, and weight of plantlets.

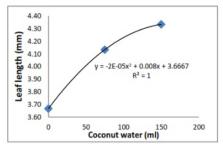
Data were analyzed using analysis of variance at the 5% level, and further tests with LSD at the 5% level. The orthogonal polynomial test was used to determine the 34 tment and interaction patterns. Data were analyzed using SAS version 9.1.

3. RESULTS AND DISCUSSION

Variance analysis showed that coconut water had no effect on all observed variables, however banana extract had a significant effect on all observed variables except for the number of shoots (Table 1). There was an interaction between the two treatments, namely the p3 ntlet weight. The orthogonal polynomial analysis showed that the pattern of coconut water on the leaf length was very significant in a quadratic curve, while the banana extract pattern was 4 ry significant quadratic on the variable shoot length, leaf length, root length, number of leaves, number of roots, and plantlet weight, except that the number of shoots tended to be linear. (Table 1). Even though there was only an intestion on plantlet weight, the interaction pattern between the addition of coconut water and batana extract tended to be quadratic in the variables of shoot length, number of leaves, number of shoots, number of leaves, and plantlet weight (Table 1).

3.1. The effect of coconut water to MS media on the regeneration of PLB (Protocorm Like Bodies) Dendrobium sp

The effect of coconut water on PLB (Protocorm Like Bodies) regeneration was not significantly different in all observed variables. However, the pattern of coconut water tends to be quadratic in leaf length (Figure 1) with the regression equation $Y = -0.005X^2 + 0.008X + 3.667$ and the value of $R^2 = 1$. The addition of coconut water up to 150 ml to the media had not shown a significant effect,


because the curve tends to increase and has not shown an optimal point, however, it was estimated that the optimal

point was achieved in the addition of 150-200 ml/l coconut water.

Table 1 Analysis of variance and orthogonal polynomials on the addition of coconut water and banana extract to MS media to stimulate the regeneration of PLB (Protocorm Like Bodies) Dendrobium gatton sunray

				F value			
Source of variance	Shoot	Leaf	Root	Number	Number	Number	Weight
	length	length	length	of shoot	of leaf	of root	plantlet
Coconut water	0.07	0.48	0.22	0.11	0.27	0.17	0.14
Banana extract	1.56*	1.41*	0.94*	0.39	0.94*	1.71*	1.48*
C. water x B. extact	0.59	0.63	0.19	0.48	0.46	0.08	1.10*
C. water linier	0.07	0.46	0.09	0.10	0.10	0.16	0.29
C. water kuadratic	0.06	0.50*	0.34	0.12	0.44	0.19	0.01
B. extract linier	1.49*	0.15	0.12	0.76*	1.06*	0.09	0.26
B. extract kuadratic	1.63*	2.67*	1.77*	0.01	0.82*	3.33*	2.69*
C. water linier x B. extract linier	0.93*	0.59*	0.07	0.13	0.03	0.14	1.40*
C. water linier x B. extract kuadratic	0.03	0.56*	0.53*	0.14	0.01	0.04	1.43*
C. water kuadratic x B. extract linier	1.33*	0.98*	0.02	1.06*	1.39*	0.06	1.43*

Note:*significant different at F test 5%

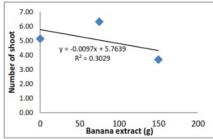
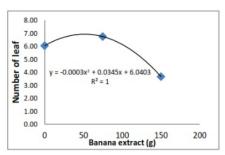



Figure 1 Respon of coconut water on the leaf length

Figure 2 Respon of Banana extract on the number of shoot

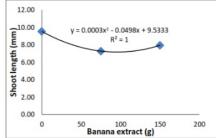
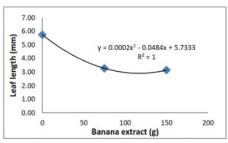



Figure 3 Respon of Banana extract on the number of leaf Figure 4 Respon of Banana extract on the shoot length

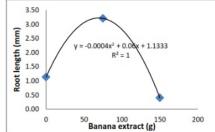
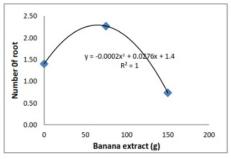



Figure 5 Respon of Banana extract on the leaf length

Figure 6 Respon of Banana extract on the root length

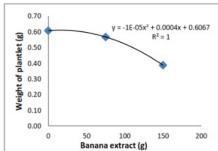


Figure 7 Respon of Banana extract on the number of root Figure 8 Respon of Banana extract on the weight of plantlet

Similar research by Pranata et al. [18] showed that the addition of 22.5% cocanut water gave the best shoot length, then added with the addition of 15% coconut water. In addit 32 refers to Erfa et al. [19] in their research reported that the addition of coconut water up to 150 ml in the Phalaenopsis orchid g 31 ng medium resulted in better seedling height growth. Kristina et al. [16] stated that coconut water contains IAA (auxin) and cytokinins which were very good for stimulating plant growth and shoot growth. Coconut wa 24 has been used in tissue culture methods because of its growth regulating properties and cytokinin activity that supports cell division and promoting rapid growth [17]. The higher coconut water concentrations promoted better growth and shoot propagation in some orchid species, and the coconut water effect depending on the species and the explants [8-9].

3.2. The effect of banana extract on MS media on the regeneration of PLB Dendrobium gatton sunray

The effect of banana extract on PLB regeneration is presented in Table 2. The results showed that although it was significantly different in the F test, the average between treatments did not show a significant difference. The addition of banana extract 75 g / 1 had the highest root length with an average of 3.2 mm, the number of leaves was 6.74, and the number of roots was 2.27 (Table 2). Giving banana extract to the media because it was a source of carbohydrates and contains several minerals and various vitamins such as vitamin C and especially this 2 inc. Refer to Kasutjianingati and Irawan's [20] research showed that Ambon banana extract has a good effect on the root length of Dendrobium.

The orthogonal polynomial analysis showed that the banana extract response was very significant 4th a quadratic pattern on the variable shoot length, leaf length, root length, number of leaves, number of roots, and plantlet weight (Table 1), except that the number of shoots tended to be linear (Figure 2). This indicated that the

optimum point has not been reached for the variable number of shoots.

The addition of banana extract forms a quadratic pattern on the number of leaves with the equation Y = -0.0003X2 + 0.035 + 6.04 (R2 = 1), and reaches an optimum point in the addition of 50-100 mg of banana extract (Figure 3). The same pattern was also found in root length (Figure 6), number of roots (Figure 7), and plantlet weight (Figure 8). Different patterns were found in shoot length (Figure 8) and leaf length (Figure 5), where it reached the lowest point at the addition of 50-100 mg of banana extract. Refer to Hendaryono [21] in his study on banana extract 300 g/l resulted in a lower number of leaves.

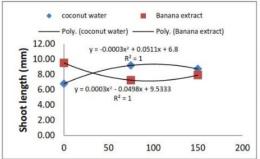
The highest average shoot length, leaf length, and plantlet weight without banana extract treatment (B0) were 9.53, 473, and 0.61 respectively, while in treatment (B1) the root length, number of leaves and number of roots, respectively amounting to 3.20, 6.74, and 2.27 (Table 2). Banana extract apart functions as a coenzyme for several reactions in metabolism and also plays a role in the metabolism of energy derived from carbohydrates. Giving Ambon banana fruit extract in the sub-culture plantlet can stimulated the growth of Dendrobium. Banana fruit also contains natural hormones auxins and gibberellins which can stimulate growth plantlets [20;22].

3.3. The interaction effect of coconut water and banana extract on MS media on the regeneration of PLB Dendrobium gatton

panana extract on MS media on the regeneration of PLB Dendrobium gatton sunray

The interaction effect of coconut water and banana extract on plantlet weight variables is presented in Table 3. The best treatment for plantlet weight variables was A1B1 (75 ml coconut water + 75 mg banana extract) which was 0.90 g and the lowest treatment was A2B2 which was 0.16 g. Based on orthogonal polynomial analysis, it showed that although there was only an interaction on plantlet weight, the interaction pattern between coconut water 191 d banana extract tends to be quadratic in the variables shoot length, number of leaves, number of shoots, number of leaves, and plantlet weight (Table 1).

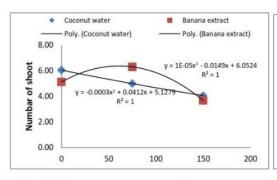
Table 2 Effect of banana extract on the Shoot length, Leaf length, Root length, Number of leaf, Number of root, and Weight plantlet


	Means of treatment						
Treatment		4 eaf	Root	Number of	Number of	Weight	
	Shoot length	length	length	leaf	root	plantlet	
В0	9.53a	5.73a	1.13a	6.04a	1.40a	0.61a	
B1	7.27a	3.27a	3.20b	6.74a	2.27a	0.57a	
B2	7.93a	3.13a	0.40a	3.66b	0.73a	0.39a	

Note: LSD 5%

Table 3 Effect of coconut water and banana extract on the weight plantlet

Treatment	Means of weight plantlet (g)
A0B0	0.62a
A0B1	0.28c
A0B2	0.54a
A1B0	0.68a
A1B1	0.90b
A1B2	0.46a
A2B0	0.52a
A2B1	0.52a
A2B2	0.16c


Note: LSD 5%

Coconut water Banana extract Poly. (Coconut water) Poly. (Banana extract) 7.00 6.00 5.00 4.00 3.00 $v = -2E - 05x^2 + 0.008x + 3.6667$ 2.00 Leaf 1.00 0.00 0 50 100 150 200

Figure 9 Respon of coconut water and banana extract on the shoot length

Figure 10 Respon of coconut water and banana extract on the leaf length

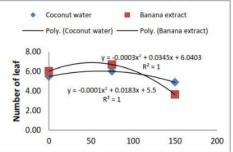


Figure 11 Respon of coconut water and banana extract on the number of shoot

Figure 12 Respon of coconut water and banana extract on the number of leaf

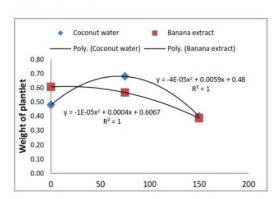


Figure 13 Respon of coconut water and banana extract on the weight of plantlet

The orthogonal polynomial analysis showed the interaction pattern of coconut water and banana extract treatments occurred in treatment 0-50, where the meeting point of the two treatments, namely the shoot length variable (Figure 9), leaf length (Figure 10), number of

shoots (Figure 11), and plantlet weights (Figure 13). Meanwhile, the variable number of leaves requires quite a lot of coconut water and banana extract, namely 100-150 to get the interaction between the two treatments (Figure 12). This showed that there was a different interaction

response to the observed variables. MS is one of the media that is often used in the process of in vitro propagation or tissue culture. This is because MS media contains vitamin B1 which is very useful for plant growth. MS media has this feature because MS media contains high levels of nitrate, potassium, ammonium and the amount of inorganic nutrients for the cell multiplication, so it is thought to strongly influence the number of shoots of Dendrobium sp. Razdan [23] stated that MS medium was commonly used for shoot induction and contains appropriate nutrients to support optimal growth of plants in vitro. According to Suhartanto, et al. [24] that bananas are often used as a source of organic matter in tissue culture media, because 100 grams of banana flesh contain protein (1%), fat (0.3%), d6 bohydrates (27%), energy (116 -128 kcal), minerals (Ca 15 mg, K 380 mg, Fe 0.5 mg, Na 1.2 mg, and Vitamins (Vit. A 0.3 mg, Vit. B1 0.1 mg, B2 0.1 mg, B6 0.7 mg, Vit. C. Hadi's research (2006) states that the

4. CONCLUSION

Coconut water did not affect all observed variables, however the banana extract treatment had a significant effect on all observed variables except for the number of shoots. There was an interaction between the two treatments, namely the variable plantlet weight. Orthogonal polynomial analysis showed that the interaction pattern of coconut water and banana extract treatment occurred in treatment 0-50, where the meeting point of the two treatments, namely the variable shoot length, leaf length, shoot number, and plantlet weight. Whereas in the variable number of leaves, the interaction occurs in the 100-150 treatment.

REFERENCES

- [1] D. Puchooa, Comparison of different culture media for the in vitro culture of Dendrobium (Orhidaceae). Int. J. Agric. Biol. 6 (2004) 884-888.
- DOI: 1560-8530/2004/06-5-884-888
- [2] Talukder et al., In vitro root formation on orchid plantlets with IBA and NAA. Progress. Agric. 13(1&2)(2002) 25–28.
- [3] A. Suryana, Prospects and Directions for Orchid Agribusiness (Prospek dan Arah Pengembangan Agribisnis Anggrek). Development. Agricultural Research and Development Agency. Jakarta, 2005.
- [4] The Indonesian Statistics Agency, Statistiktanaman-hias-indonesia-2017. https://www.bps.go.id/site/publication/2018/10/05/statis tik-tanaman-hias-indonesia-2017 Jun 2019 17:45:28 GMT.

addition of banana pulp as much as 100 g / 1 in the medium combined with Vitabloom 2 g/l can increase the shoots and next er of Dendrobium kanayou leaves. A ition of BAP 2 mg / 1, coconut water 150 ml/l and 50 g/l Ambon banana extract had the same effect on increase in the number of shoots, an average of 2 shoots of Phalaenopsis amabilis [20]. A highest number of shoots was produced in media supplemented with 50 ml /l coconut water and 50 g/l potato extract, while media supplemented with 150 ml coconut water and 50 potato extracts increased the number of leaves and the number of roots [9].

- [5] K.B. Andri, W.J.F.A. Tumbuan, Potential developmes of orchid flower agribusiness in Batu City, East Java (Potensi pengembangan agribisnis bunga anggrek di kota batu Jawa Timur). Jurnal LPPM Bidang EkoSosBudKum. 2(1)(2015) 19-30.
- [6] Indonesian Environmental and Forestry Research and Developme 36 enter, Plant Propagation Through Tissue Culture (Perbanyakan Tanaman Melalui Kultur Jaringan). Makassar. Bogor. Bogor. 304 p. 2013.
- [7] D. Widiastoety, A. Santi, N. Solvia, Effect of myoinositol and activated charcoal on growth of dendrobium orchid plantlets in in vitro culture (Pengaruh Myoinositol dan Arang Aktif terhadap Pertumbuhan Planlet Anggrek Dendrobium dalam Kultur In vitro). J. Hort. 22(3) (2012) 205.
- [8] W. Pakum, S. Watthana, K. Srimuang, A. Kongbangkerd, Influence of Medium Component on In vitro Propagation of Thais Endangered Orchid: Bulbophyllum nipondhii Seidenf, Plant Tissue Cult. & Biotech., 26(1) (2016) 37-46. https://doi.org/10.3329/ptcb.v26i1.29765
- [9] T. Punjansing, M. Nakkuntod, S.Homchan, P. Inthima, A. Kongbangkerd, Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. Alba. Int. J. of Agric. and Biosyst. Eng. 13(4) (2019) 105-109.
- [10] S. Rahmah, T. Rahayu, A. Hayati, Study Adding Organic Substances on VW Media for Organogenesis the Dendrobium Orchid in Vitro. e-Jurnal Ilmiah SAINS ALAMI (Known Nature) 1(1) (2018) 3 - 103
- [11] Djajanegara, Utilization of banana and coconut water waste as a medium for tissue culture for the Moon Orchid (Phalaenopsis amabilis) Type 229

- (Pemanfaatan limbah buah pisang dan air kelapa sebagai bahan media kultur jaringan anggrek bulan (Phalaenopsis amabilis) Tipe 229). J.Teknologi Lingkungan 11(3) (2010) 373-380.
- [12] M.Humaira, Z. Thomy, E. Harnelly, The effect of 17 ing coconut water and banana pulp to MS medium on the growth of rabbit orcl 10 plantlets (Dendrobium antennatum lindl.) In vitro (Pengaruh pemberian air kelapa dan bubur pisang pada media ms terhadap pertumbuhan planlet anggrek kelinci (dendrobium antennatum lindl.) secara in vitro). Proc. of Biotic Nasional Seminar Nasional, 2015.
- [13] J. Pratama, Modification of MS Media with Addition of Coconut 21 er for Subculture I Cymbidium Orchids (Modifikasi Media MS Dengan Penambahan Air Kelapa Untuk Subkultur I Anggrek Cymbidium). Jurnal Agrium 15(2) (2018) 91-109
- [14] N.P.Y.A. Dewi, The Effect of Giving Coconut Water on Embry 17 evelopment in Dendrobium anosmum Lindl (Pengaruh Pemberian Air Kelapa terhadap Perkembangan Embrio pada Dendrobium anosmum Lindl). JBE 4 (1) (2019) 22-28.
- [15] Nurfadilah, Zukarlina, E. Rusmiyanto P.W, The multiplication of black orchids (Coelogy 2) pandurata Lindl) on murashige skoog (MS) media with the addition of An 2 n banana extract and benzyl amino purine (BAP) (Multiplikasi anggrek hitam (Coelogyne pandurata Lindl) pada media murashige skoog (MS) dengan penambahan ekstrak pisang ambon dan benzyl amino purin (BAP)). Protobiont 7(3) (2018) 47 –53.
- [16] N.N. Kristina, Syahid, S. Fatimah, The Effect of spoonut Water on In Vitro Shoot Multipication, Rhizome Production, and Xanthorrhizol Content of Temulawak in the Field (Pengaruh Air Kelapa Terhadap Multipikasi Tunas In Vitro, Produksi Rimpang, dan Kandungan Xanthorrhizol Temulawak di Lapangan). Jurnal Litri 18 (3) (2012) 125-134.
- 35] J. Yong, L. Ge, Y.F. Ng, S. Tan, The chemical composition and biological properties of coconut (Cocos nucifera L.) water, Molecules 14(12) (2009) 5144-5164. https://doi.org/10.3390/molecules14125144
- [18] M.G. Pranata, A. Yunus, B. Pujiasmanto, The

 15 ct of NAA concentrations and coconut water on the
 multiplic 18 n of ginger (curcuma xanthorrizha roxb.)

 In vitro (Pengaruh konsentrasi naa dan air kelapa
 terhadap mult iplikasi temulawak (curcuma
 xanthorrizha roxb.) secara in vitro). J. of Sustainable
 Agric. 30(2) (2015)

- [19] L. Erfa, Ferziana, Growth of Phalaenopsis orchid seedling into plantlets in subcutar II media with addition of tripton and atonic (Pertumbuhan seedling anggrek Phalaenopsis menjadi plantlet pada media subkultur II dengan penambahan tripton dan atonik). Jurnal Penelitian Pertanian Terapan. Vol. 12. (Spec. Ed.) (2012) 52-58.
- [20] Kasutjianingati, R. Irawan, Alternative media for i 37 tro orchid propagation (Phalaenopsis amabilis) (Media alternatif perbanyakan in vitroanggrek Bulan (Phalaenopsis amabilis)). J. Agroteknos. 3(3) (2013) 184-189.
- [21] D.P.S. Hendaryono, Orchid nursery in bottles (Pembibitan anggrek dalam botol). Kanisius: Yogyakarta. 2000
- [22] S. Damiska, R.S. Wulandari, H. Darwati, Addition of Yeast and Corn Seed Extract to In-Vitro Growth of Mangosteen Shoots (Penambahan Ragi dan Ekstrak Biji Jagung terhadap Pertumbuhan Tunas Manggis Secara In-Vitro). J Hutan Lestari 3(1) (2015) 35-42.
- [23] M.K. Razdan, Introduction to Plant Tissue. 2nd Edition. Qxford & IBH Publishing Co. Pvt. Ltd. New Delhi. 2003.
- [24] M.R. Suhartanto, Sobir, H. Harti, Healthy Technology for Banana Cultivation: From Seed to Post Harvest (Teknologi Sehat Budidaya Pisang: dari Benih sampai Pasca Panen). Pusat Kajian Hortikultura Tropika, LPPM-IPB. 2012.

Addition of Coconut Water and Banana Extract on MS Media to Stimulate PLB (Protocorm Like Bodies) Regeneration of Dendrobium gatton sunray

ORIGINALITY REPORT 15% 13% SIMILARITY INDEX INTERNET SOURCES **PUBLICATIONS** STUDENT PAPERS **PRIMARY SOURCES** semcon.unib.ac.id 2% Internet Source jurnal.untan.ac.id Internet Source Hafsan Hafsan, Muhammad Khalifah Mustami, Masriany Masriany, Isna Rasdianah Aziz, Mustakim Mustakim. "The Utilization of Coconut Water Waste As A Growth Media of The In Vitro Potato Cutting", Scientiae Educatia, 2019 Publication krishikosh.egranth.ac.in Internet Source A Mollah, Kaimuddin, E Hamdi, F Haring, F Ulfa, 5 I Ridwan, M Sarif. " Enrichment of organic complex compounds of coconut water and mungbean extract in chrysanthemum (L.) tissue

culture media ", IOP Conference Series: Earth

and Environmental Science, 2020

6	zuhroniah.blogspot.com Internet Source	1%
7	jurnal.fp.unila.ac.id Internet Source	1%
8	publikasi.polije.ac.id Internet Source	1%
9	docplayer.net Internet Source	1%
10	fsd.unsyiah.ac.id Internet Source	1%
11	emiliaafi.blogspot.com Internet Source	1%
12	Wagner A. Vendrame, Ricardo T. Faria. "Phloroglucinol enhances recovery and survival of cryopreserved Dendrobium nobile protocorms", Scientia Horticulturae, 2011 Publication	1%
13	jurnal.polinela.ac.id Internet Source	1%
14	publications.waset.org Internet Source	1%
15	L A Bidhari, E Purwanto, A Yunus. "Effect of utilization of tomato extract and foliar fertilizer as	1%

media on shoots multiplication of banana cv Ambon in vitro", IOP Conference Series: Earth and Environmental Science, 2018

Publication

16	digilib.uinsgd.ac.id Internet Source	1%
17	www.neliti.com Internet Source	1%
18	ojs.unimal.ac.id Internet Source	<1%
19	Submitted to Napier University Student Paper	<1%
20	Y.K. Bansal, Mamta Gokhale. "Chapter 10 Effect of Additives on Micropropagation of an Endangered Medicinal Tree Oroxylum indicum L. Vent", IntechOpen, 2012	<1%
21	jbioua.fmipa.unand.ac.id Internet Source	<1%
22	banglajol.info Internet Source	<1%
23	proseanet.org Internet Source	<1%
24	Prando, M.A. Sandoval, P. Chiavazza, A. Faggio, and C. Contessa. "Effect of coconut	<1%

water and growth regulator supplements on in vitro propagation of Corylus avellana L", Scientia Horticulturae, 2014.

Publication

25	www.ajol.info Internet Source	<1%
26	www.ebupress.com Internet Source	<1%
27	B. Ngampanya, W. Homla-aor. "SIMPLE MEDIA FOR DENDROBIUM ORCHID SEED GERMINATION AND PROTOCORM DEVELOPMENT", Acta Horticulturae, 2010 Publication	<1%
28	Submitted to Rochester Institute of Technology Student Paper	<1%
29	media.neliti.com Internet Source	<1%
30	"The Coconut Palm (Cocos nucifera L.) - Research and Development Perspectives", Springer Science and Business Media LLC, 2018 Publication	<1%
31	Mangara W Sianipar, Rustikawati Rustikawati, Yudhy H Bertham, Catur Herison, Mukhtasar Mukhtasar. "Effect of Several Types and	<1%

Concentrations of Complex Organic

Compounds on Growth of Pineapple In Vitro", Akta Agrosia, 2019

Publication

32	Carlos Henrique S. Carvalho, Usha B. Zehr, Nilupa Gunaratna, Joseph Anderson et al. "Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency", Genetics and Molecular Biology, 2004 Publication	<1%
33	journal.unpad.ac.id Internet Source	<1%
34	M Chozin, Hartal, Y Guspitasari, S Sudjatmiko. "The potential use of plant extracts for controlling northern leaf blight on organic sweet corn production", IOP Conference Series: Earth and Environmental Science, 2018 Publication	<1%
35	jurnal2.krbogor.lipi.go.id Internet Source	<1%
36	Shinta Nurdika Meilani, Septarini Dian Anitasari, Fatimatuz Zuhro. "EFEKTIFITAS PENAMBAHAN MEDIA ORGANIK EKSTRAK UBI JALAR (Ipomoea batatas L) PADA PERTUMBUHAN SUBKULTUR ANGGREK Cattleya sp.", Florea: Jurnal Biologi dan Pembelajarannya, 2017	<1%

ejurnal.litbang.pertanian.go.id Internet Source

<1%

Exclude quotes Off Exclude matches Off

Exclude bibliography On

Reny Herawati <reny.herawati@unib.ac.id>

Final Proofreading-Iseprolocal

1 pesan

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id> Kepada: Reny Herawati < reny.herawati@unib.ac.id>

20 April 2021 pukul 07.13

Dear author,

The article attached is the final version of the article submitted to Iseprolocal. The committee suggest you to do a final proofreading particularly in-text citation and list of references. The committee provides the guidance in the attachment link. Please send us the final version by April the 21st, 2021.

https://drive.google.com/file/d/1YtkUlzrvjzqsRspmMOs-PiYhsvPeil3e/view?usp=sharing

Best regards,

Secretary

266-422-1-SP.DOCX-Reny Herawati-Unib- Final.docx 540K

Reny Herawati <reny.herawati@unib.ac.id>

Revised of FINAL Proofreading-Iseprolocal

1 pesan

Kepada: ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id> 20 April 2021 pukul 14.51

Dear Editor Tim Iseprolocal,

Please find the revised manuscript below, Thank you for the cooperation

Best Regards, Reny H

266-422-1-SP.DOCX-Reny Herawati-Unib- Final Revisi.docx

Addition of Coconut Water and Banana Extract on MS Media to Stimulate PLB (Protocorm Like Bodies) Regeneration of *Dendrobium gatton sunray*

Reny Herawati^{1*}, Dwi Wahyuni Ganefianti¹, Atra Romeida¹, Marlin¹, Rustikawati¹,

¹Agroecotechnology at Crop Production Dept, Fac. of Agriculture, Univ. of Bengkulu, Bengkulu 38122, Indonesia ²Student of Agroecotechnology Study Programme, Fac. of Agriculture, Univ. of Bengkulu, Bengkulu 38122, Indonesia *Corresponding author. Email: reny.herawati@unib.ac.id

ABSTRACT

Organic material is widely used for propagation of orchids, namely coconut water, extracts of tomatoes, bananas, bean sprouts and potatoes which can be added to certain media as a provider of nutrients, amino acid minerals, and growth regulators. This study aims to determine the effect of the concentration of organic matter in coconut water and banana extract on MS media on the regeneration of PLB (protocorn like bodies) Dendrobium gatton sunray. The study was conducted at the Biotechnology Laboratory, Faculty of Agriculture, Bengkulu University, from September to December 2019. This study used a Complete Randomized Block Design (RCBD) with two factors. The first factor was the concentration of coconut water with 3 levels namely: A0 = 0 (Control), A1 = 75 ml.L⁻¹, A2 = 150 ml.L⁻¹, and the second factor was the concentration of banana extract with 5 levels namely: B0 = 0 (Control), B1 = 75 g.L⁻¹, B2 = 150 g.L⁻¹. The results showed that coconut water did not affect all variables, however the banana extract had a significant effect on all variables except for the number of shoots. There was an interaction between the two treatments, namely the variable plantlet weight. Orthogonal polynomial analysis showed that there was an interaction between the two treatments, where coconut water and banana extract had a good response on the plantlet growth when given together as much as 75 ml. L⁻¹ (A1) and 75 g.L⁻¹ (B1). The concentration of both treatment was lower than it was given individually.

Keywords: coconut water, bananas extracts, Dendrobium gatton sunray, MS media

1. INTRODUCTION

Dendrobium is a type of orchid that is favoured by orchid enthusiasts because it has a variety of forms, shapes, and even sizes, it is even easy to maintain and cultivate, and the price is relatively affordable. In addition, Dendrobium also has other features such as the freshness of long-lasting flowers, flexible flower stalks [1] so that it is widely used as an ornamental plant in the form of cut flowers that can decorate spaces with good quality [2]. According to Suryana [3] orchids had entered the international market for export to destination countries, including Japan, the Netherlands, Korea and Singapore. The Indonesian Statistics Agency [4] notes that the value of orchid production in Indonesia from 2016 to 2017 had increased between 19,978,078 stalks to 20,045,577 stalks with an average export value of 120,560 US dollars. Financially the orchid farming gives a profit, where in one growing season it provides a profitability (ROI) of 70% of the funds invested. Value added along the marketing chain show a reasonable profit for the business (farmers and traders) as well, so that this commodity business has good prospects [5].

In general, orchids are only able to reproduce in nature at less than 1%, this is because orchid seeds are very small and do not have an endosperm so that orchids are symbiotic with mycorrhizae in nature. The role of mycorrhizae as a supplier of carbon sources for orchid seed germination in general has been replaced by tissue culture media. Optimization of tissue culture techniques continues to be carried out in an effort to accelerate the propagation of orchids, this technique only requires a small part of the plant to obtain the same plantlets as the parent [6].

The orchid seeds will grow into protocorms in the germination medium. Protocorm can form a secondary protocorm (protocorm like body/PLB). In vitro regeneration of PLB Dendrobium for shoot multiplication is generally carried out on media enriched with growth regulators and vitamins. One of the keys to success is the use of media types and growth regulators at the right concentration. The composition of the media used greatly determines the growth rate of protocorms and plantlets and is useful for increasing the quality and quantity of seedlings [7]. The composition of the media needed in tissue culture must contain nutrients that are useful for

plants, namely consisting of carbohydrates, sugars and vitamins. Tissue culture media usually uses artificial media compositions, namely Murashige and Skoog and Knudson C media, either half or full concentration. The composition of the media is a determining factor in the success of in vitro orchid culture. Growth and reproduction rates of many species of orchids enhanced by adding some organic supplements such as coconut water (CW) or potato extract to culture medium [8-9]. Growth regulators are usually added to the medium to promote growth of explants. The growth regulators commonly used are auxins and cytokinins. The composition of the media can also be obtained from organic materials which already have natural nutrients and hormones in the form of auxins and cytokinins known as phytohormones. Complex organic materials can be used as additives that can encourage the development and growth of propagation explants in tissue culture [10;9]. The addition of organic materials such as extracts bananas, potato pulp and vegetable substances others have content high carbohydrate can increase growth and differentiation of cells in plants [11].

Organic materials that are widely used for orchid propagation are coconut water, tomato extracts, bananas, bean sprouts and potatoes which can be added with certain media as a provider of nutrients, amino acids, and growth regulators for orchid growth. Coconut water has been widely used as an additive in tissue culture media. The content of coconut water is in the form of active ingredients that are useful for the growth of plantlets which are rich in vitamins, sugars, amino acids and phytohormones [12-14]. Nurfadilah et al. [15] research showed that the combination of Ambon banana and BAP on concentration 10⁻⁶M BAP and 2.5% banana extract Ambon produces the best growth on time of emergence of shoots, number of shoots and number of leaves. This research was conducted to modify the MS media with added coconut water and banana extract to stimulate the regeneration of PLB Dendrobium gatton sunray.

2. MATERIAL AND METHODS

The research was conducted at the Laboratory of Agricultural Cultivation, Division of Tissue Culture and Biotechnology, Faculty of Agriculture, Bengkulu University. This research was conducted from September to December 2019. The materials used were PLB which had formed 2-3 mm buds as plantlets, banana extract, coconut water, Murashige & Skoog (MS) media, sugar, 70% alcohol, alcohol. 96%, and aquadest.

The design method used was a factorial completely randomized design (CRD) with 2 factors, namely: the first factor was coconut water with 3 levels, namely: A0 = 0 (Control), A1 = 75 ml.L⁻¹, A2 = 150 ml.L⁻¹. The second factor was banana extract with 3 levels, namely: B0 = 0 (Control), B1 = 75 g.L⁻¹, B2 = 150 g.L⁻¹. Each treatment combination was repeated 5 times. One experimental unit consisted of one culture bottle planted with 3 PLBs.

1/2 MS medium was added to treatment, added sugar as much as 30 g.L⁻¹, gelatin as much as 7 g.L⁻¹, then the media pH was measured 5.8. The media was cooked until the gelatin was dissolved and well blended, then immediately poured into a sterile bottle with a volume of 20 ml bottle-1, then the media was sterilized by autoclave at a temperature of 121 °C, 15 psi pressure for 15 minutes. The explants used in the study were not uniformed into other media and were directly planted in the experimental media. The explants were removed from the bottle and selected for uniform growth. The selected explants consisted of 2 explants per bottle which were sterile, then the bottles were covered with plastic and tied with a rubber band and given a tight wrap. The culture bottles were maintained in the culture room at a temperature of 19-20 ° C with \pm 1,000 lux irradiation for 12-16 hours / day.

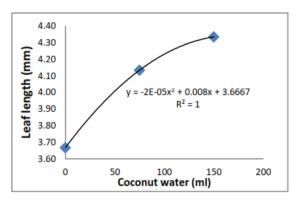
Observations were made one week after planting (WAF) to 15 weeks (WAF). Every day the plants were checked for contaminants and browning, while the last week observations were made on the variables of the number of leaves, number of roots, length of leaves, length of shoots, number of shoots, and weight of plantlets.

Data were analyzed using analysis of variance at the 5% level, and further tests with LSD at the 5% level. The orthogonal polynomial test was used to determine the treatment and interaction patterns [16].

3. RESULTS AND DISCUSSION

Variance analysis showed that coconut water had no effect on all observed variables, however banana extract had a significant effect on all observed variables except for the number of shoots (Table 1). There was an interaction between the two treatments, namely the plantlet weight. The orthogonal polynomial analysis showed that the pattern of coconut water on the leaf length was very significant in a quadratic curve, while the banana extract pattern was very significant quadratic on the variable shoot length, leaf length, root length, number of leaves, number of roots, and plantlet weight, except that the number of shoots tended to be linear. (Table 1). Even though there was only an interaction on plantlet weight, the interaction pattern between the addition of coconut water and banana extract tended to be quadratic in the variables of shoot length, number of leaves, number of shoots, number of leaves, and plantlet weight (Table 1).

3.1. The effect of coconut water to MS media on the regeneration of PLB (Protocorm Like Bodies) Dendrobium sp


The effect of coconut water on PLB (Protocorm Like Bodies) regeneration was not significantly different in all observed variables. However, the pattern of coconut water tends to be quadratic in leaf length (Figure 1) with the regression equation $Y = -0.005X^2 + 0.008X + 3.667$ and the value of $R^2 = 1$. The addition of coconut water up to 150 ml to the media had not shown a significant effect, because the curve tends to increase and has not shown an optimal point, however, it was estimated that the optimal

point was achieved in the addition of 150-200 ml/l coconut

Table 1 Analysis of variance and orthogonal polynomials on the addition of coconut water and banana extract to MS media to stimulate the regeneration of PLB (Protocorm Like Bodies) Dendrobium gatton sunray

	F value						
Source of variance	Shoot	Leaf	Root	Number	Number	Number	Weight
	length	length	length	of shoot	of leaf	of root	plantlet
Coconut water	0.07	0.48	0.22	0.11	0.27	0.17	0.14
Banana extract	1.56*	1.41*	0.94*	0.39	0.94*	1.71*	1.48*
C. water x B. extact	0.59	0.63	0.19	0.48	0.46	0.08	1.10*
C. water linier	0.07	0.46	0.09	0.10	0.10	0.16	0.29
C. water kuadratic	0.06	0.50*	0.34	0.12	0.44	0.19	0.01
B. extract linier	1.49*	0.15	0.12	0.76*	1.06*	0.09	0.26
B. extract kuadratic	1.63*	2.67*	1.77*	0.01	0.82*	3.33*	2.69*
C. water linier x B. extract linier	0.93*	0.59*	0.07	0.13	0.03	0.14	1.40*
C. water linier x B. extract kuadratic	0.03	0.56*	0.53*	0.14	0.01	0.04	1.43*
C. water kuadratic x B. extract linier	1.33*	0.98*	0.02	1.06*	1.39*	0.06	1.43*

Note:*significant different at F test 5%

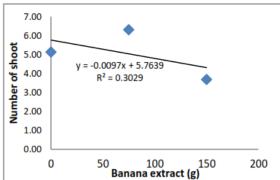
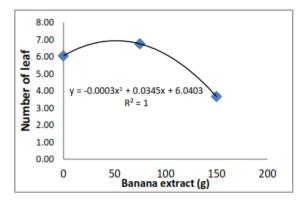



Figure 1 Respon of coconut water on the leaf length

Figure 2 Respon of Banana extract on the number of shoot

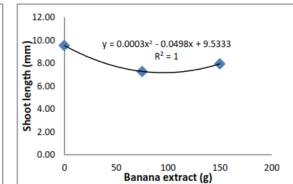
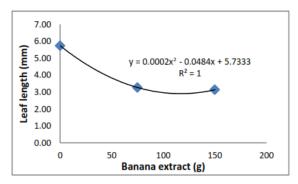



Figure 3 Respon of Banana extract on the number of leaf Figure 4 Respon of Banana extract on the shoot length

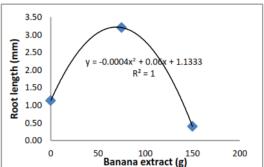
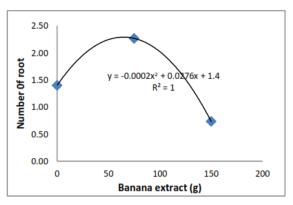



Figure 5 Respon of Banana extract on the leaf length

Figure 6 Respon of Banana extract on the root length

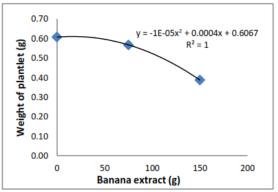


Figure 7 Respon of Banana extract on the number of root

Figure 8 Respon of Banana extract on the weight of plantlet

Similar research by Pranata et al. [17] showed that the addition of 22.5% coconut water gave the best shoot length, then added with the addition of 15% coconut water. In addition, refers to Erfa et al. [18] in their research reported that the addition of coconut water up to 150 ml in the Phalaenopsis orchid growing medium resulted in better seedling height growth. Kristina et al. [19] stated that coconut water contains IAA (auxin) and cytokinins which were very good for stimulating plant growth and shoot growth. Coconut water has been used in tissue culture methods because of its growth regulating properties and cytokinin activity that supports cell division and promoting growth [20]. The higher coconut concentrations promoted better growth and propagation in some orchid species, and the coconut water effect depending on the species and the explants [8-9].

3.2. The effect of banana extract on MS media on the regeneration of PLB Dendrobium gatton sunray

The effect of banana extract on PLB regeneration is presented in Table 2. The results showed that although it was significantly different in the F test, the average between treatments did not show a significant difference. The addition of banana extract 75 g L⁻¹ had the highest root length with an average of 3.2 mm, the number of leaves was 6.74, and the number of roots was 2.27 (Table

2). Giving banana extract to the media because it was a source of carbohydrates and contains several minerals and various vitamins such as vitamin C and especially thiamine. Refer to Kasutjianingati and Irawan's [21] research showed that Ambon banana extract has a good effect on the root length of Dendrobium.

The orthogonal polynomial analysis showed that the banana extract response was very significant with a quadratic pattern on the variable shoot length, leaf length, root length, number of leaves, number of roots, and plantlet weight (Table 1), except that the number of shoots tended to be linear (Figure 2). This indicated that the optimum point has not been reached for the variable number of shoots.

The addition of banana extract forms a quadratic pattern on the number of leaves with the equation Y=-0.0003X2+0.035+6.04 (R2 = 1), and reaches an optimum point in the addition of 50-100 mg of banana extract (Figure 3). The same pattern was also found in root length (Figure 6), number of roots (Figure 7), and plantlet weight (Figure 8). Different patterns were found in shoot length (Figure 4) and leaf length (Figure 5), where it reached the lowest point at the addition of 50-100 g of banana extract. Refer to Hendaryono [22] in his study on banana extract 300 g/l resulted in a lower number of leaves.

The highest average shoot length, leaf length, and plantlet weight without banana extract treatment (B0) were

9.53, 5.73, and 0.61 respectively, while in treatment (B1) the root length, number of leaves and number of roots, respectively amounting to 3.20, 6.74, and 2.27 (Table 2). Banana extract apart functions as a coenzyme for several reactions in metabolism and also plays a role in the metabolism of energy derived from carbohydrates. Giving Ambon banana fruit extract in the sub-culture plantlet can stimulated the growth of Dendrobium. Banana fruit also contains natural hormones auxins and gibberellins which can stimulate growth plantlets [21;23]

3.3. The interaction effect of coconut water and banana extract on MS media on the regeneration of PLB Dendrobium gatton sunray

Based on orthogonal polynomial analysis, it showed that although there was only an interaction on plantlet weight, the interaction pattern between coconut

water and banana extract tends to be quadratic in the variables shoot length, number of leaves, number of shoots, number of leaves, and plantlet weight (Table 1). The interaction effect between coconut water at various levels of banana extract was found in the variables of leaf length, root length, and plantlet weight (Figure 9-11). The effect of the interaction between coconut water at various levels of banana extract was found in the variables of leaf length, root length, and plantlet weight. Meanwhile, the effect of the interaction between banana extracts at various levels of coconut water was found in the variable shoot length, number of shoots, leaf length, number of leaves, and plantlet weight (Figure 12-16). Coconut water treatment gives a good response when given together with banana extract as much as 75 mg (B1) on the variable leaf length (Figure 9), root length (Figure 10), and plantlet weight (Figure 11), where coconut water reaches its optimum. at concentrations between 50-100 ml.L⁻¹.

Table 2 Effect of banana extract on the Shoot length, Leaf length, Root length, Number of leaf, Number of root, and Weight plantlet

	Means of treatment					
Treatment		Leaf	Root	Number of	Number of	Weight
	Shoot length	length	length	leaf	root	plantlet
В0	9.53a	5.73a	1.13a	6.04a	1.40a	0.61a
B1	7.27a	3.27a	3.20b	6.74a	2.27a	0.57a
B2	7.93a	3.13a	0.40a	3.66b	0.73a	0.39a

Note: LSD 5%

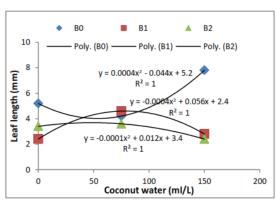


Figure 9 Response of leaf length on the coconut water at the various levels of banana extract

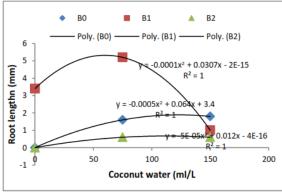


Figure 10 Response of root length on the coconut water at the various levels of banana extract

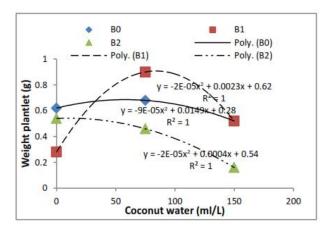


Figure 11. Response of weight plantlet on the coconut water at the various levels of banana extract

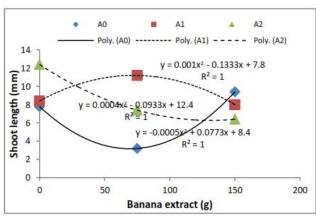


Figure 12. Response of shoot length on the banana extract at the various levels of coconut water

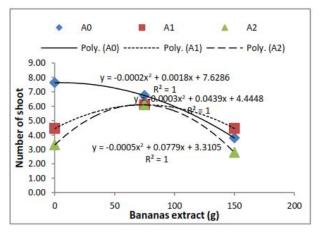


Figure 13. Response of number of shoot on the banana extract at the various levels of coconut water

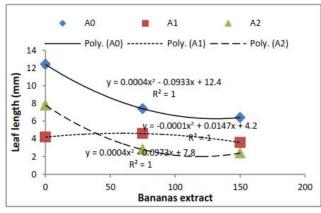


Figure 14. Response of leaf length on the banana extract at the various levels of coconut water

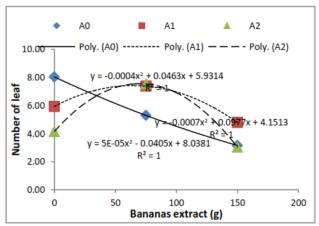


Figure 15. Response of number of leaf on the banana extract at the various levels of coconut water

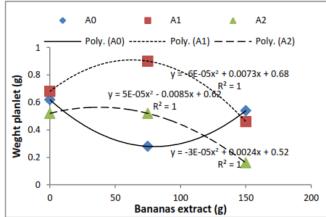


Figure 16. Response of weight plantlet on the banana extract at the various levels of coconut water

Otherwise, the banana extract treatment gave a good response at a coconut water concentration of 75 ml.L⁻¹ (A1) to the variable shoot length (Figure 12), number of shoots (Figure 13), leaf length (Figure 14), number of leaves (Figure 15), and plantlet weight (Figure 16), where banana extract reaches the optimum between 50-100 g. It was due to the presence of nutrients and growth regulators in coconut water as well as mineral content in bananas, causing interactions to spur plantlet growth, so that the concentration of both treatment was lower than given individually.

According to Suhartanto. et al. [24] that bananas are often used as a source of organic matter in tissue culture media, because 100 grams of banana flesh contain protein (1%), fat (0.3%), carbohydrates (27%), energy (116 -128 kcal), minerals (Ca 15 mg, K 380 mg, Fe 0.5 mg, Na 1.2 mg, and Vitamins (Vit. A 0.3 mg, Vit. B1 0.1 mg, B2 0.1 mg, B6 0.7 mg, Vit. C. Addition of BAP 2 mg.L⁻¹l, coconut water 150 ml.L⁻¹ and 50 g.L⁻¹ Ambon banana extract had the same effect on increase in the number of shoots, an average of 2 shoots of Phalaenopsis The highest number of shoots was amabilis [21]. produced in media supplemented with 50 ml.L⁻¹ coconut water and 50 g.L⁻¹ potato extract, while media supplemented with 150 ml.L⁻¹ coconut water and 50 potato extracts increased the number of leaves and the number of roots [9].

4. CONCLUSION

Coconut water did not affect all observed variables, however the banana extract treatment had a significant effect on all observed variables except for the number of shoots. There was an interaction between the two treatments, where coconut water and banana extract had a good response on the plantlet growth when given together as much as 75 ml.L⁻¹ (A1) and 75 g. L⁻¹ (B1). The concentration of both treatment was lower than it was given individually based on the results of previous studies.

REFERENCES

- [1] D. Puchooa, 'Comparison of different culture media for the in vitro culture of Dendrobium (Orhidaceae)'. *Int. J. Agric. Biol.*, vol. 6, pp. 884-888, 2004, doi: 1560–8530/2004/06–5–884–888.
- [2] S. K. Talukder, K. M. Nasiruddin, S. Yesmin, R. Begum, and S. Sarker, S. 'In vitro Root formation on orchid plantlets with IBA and NAA'. *Progressive Agric*. Vol. 13, no.1-2, pp. 25-28, 2002.
- [3] A. Suryana, 'Prospects and Directions for Orchid Agribusiness (Prospek dan Arah Pengembangan Agribisnis Anggrek)'. *Dev. Agric. Res. and Dev. Agency.* Jakarta, 2005.

- [4] The Indonesian Statistics Agency, Statistik-tanaman-hias-indonesia-2017. Accessed: Oct. 2, 2020.[Online].Available:
- https://www.bps.go.id/site/publication/2018/10/05/statis tik-tanaman-hias-indonesia-2017.Jun 2019 17:45:28 GMT.
- [5] K.B. Andri, W.J.F.A, 'Tumbuan, Potential development of orchid flower agribusiness in Batu City, East Java (Potensi pengembangan agribisnis bunga anggrek di kota batu Jawa Timur)'. *Jurnal LPPM Bidang EkoSosBudKom.* Vol. 2, no. 1, pp.19-30, 2015.
- [6] Indonesian Environmental and Forestry Research and Development Center, 'Plant Propagation Through Tissue Culture (Perbanyakan Tanaman Melalui Kultur Jaringan)'. *Makassar. Bogor.* Bogor, 2013.
- [7] D. Widiastoety, A. Santi, N. Solvia, 'Effect of myoinositol and activated charcoal on growth of dendrobium orchid plantlets in in vitro culture (Pengaruh Myoinositol dan Arang Aktif terhadap Pertumbuhan Planlet Anggrek Dendrobium dalam Kultur In vitro)'. *J. Hort.* Vol. 22, no. 3, pp. 205-209, 2012.
- [8] W. Pakum, S. Watthana, K. Srimuang, A. Kongbangkerd, 'Influence of medium component on in vitro propagation of Thais Endangered orchid: Bulbophyllum nipondhii Seidenf'. *Plant Tissue Cult. & Biotech.*, vol. 26, no. 1, pp. 37-46, 2016, doi: https://doi.org/10.3329/ptcb.v26i1.29765
- [9] T. Punjansing, M. Nakkuntod, S.Homchan, P. Inthima, A. Kongbangkerd, 'Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. Alba'. Int. J. of Agric. and Biosyst. Eng, vol 13, no. 4, pp.105-109, 2019.
- [10] S. Rahmah, T. Rahayu, A. Hayati, 'Study Adding Organic Substances on VW Media for Organogenesis the Dendrobium Orchid in Vitro'. *e-Jurnal Ilmiah SAINS ALAMI (Known Nature)*, vol. 1, no. 1, pp. 93 103, 2018.
- [11] Djajanegara, 'Utilization of banana and coconut water waste as a medium for tissue culture for the Moon Orchid (Phalaenopsis amabilis) Type 229 (Pemanfaatan limbah buah pisang dan air kelapa sebagai bahan media kultur jaringan anggrek bulan (Phalaenopsis amabilis) Tipe 229)'. *J.Teknologi Lingkungan*, vol. 11, no. 3, pp. 373-380, 2010.
- [12] M.Humaira, Z. Thomy, E. Harnelly, 'The effect of giving coconut water and banana pulp to MS medium

- on the growth of rabbit orchid plantlets (Dendrobium antennatum lindl.) In vitro (Pengaruh pemberian air kelapa dan bubur pisang pada media ms terhadap pertumbuhan planlet anggrek kelinci (dendrobium antennatum lindl.) secara in vitro)'. *Proc. of Biotic Seminar Nasional*, pp. 326-330, 2015.
- [13] J. Pratama, 'Modification of MS Media with Addition of Coconut Water for Subculture I Cymbidium Orchids (Modifikasi Media MS Dengan Penambahan Air Kelapa Untuk Subkultur I Anggrek Cymbidium)'. *Jurnal Agrium*, vol. 15, no. 2, pp. 91-109, 2018.
- [14] N.P.Y.A. Dewi, 'The Effect of Giving Coconut Water on Embryo Development in Dendrobium anosmum Lindl (Pengaruh Pemberian Air Kelapa terhadap Perkembangan Embrio pada Dendrobium anosmum Lindl)'. *JBE*, vol. 4, no. 1. Pp. 22-28, 2019.
- [15] Nurfadilah, E. Mukarlina, P.W. Rusmiyanto, 'The multiplication of black orchids (Coelogyne pandurata Lindl) on murashige skoog (MS) media with the addition of Ambon banana extract and benzyl amino purine (BAP) (Multiplikasi anggrek hitam (Coelogyne pandurata Lindl) pada media murashige skoog (MS) dengan penambahan ekstrak pisang ambon dan benzyl amino purin (BAP)'. *Protobiont*, vol. 7, no. 3, pp. 47 53, 2018.
- [16] M. Vargas, B. Glaz, G. Alvarad, J. Pietragalla, A. Morgounov, Y. Zelenskiy, and J. Crossa, 'Analysis and Interpretation of Interactions in Agricultural Research'. *Agronomy Journal*, vol. 107, no. 2, pp.748, 2015, doi:10.2134/agronj13.0405
- [17] M.G. Pranata, A. Yunus, B. Pujiasmanto, 'The effect of NAA concentrations and coconut water on the multiplication of ginger (curcuma xanthorrizha roxb.) In vitro (Pengaruh konsentrasi naa dan air kelapa terhadap multiplikasi temulawak (curcuma xanthorrizha roxb.) secara in vitro)'. *Caraka Tani-J. of Sustainable Agric*, vol. 30, no. 2, pp. 62-68, 2015.
- [18] L. Erfa, Ferziana, 'Growth of Phalaenopsis orchid seedling into plantlets in subculture II media

- with addition of tripton and atonic (Pertumbuhan seedling anggrek Phalaenopsis menjadi plantlet pada media subkultur II dengan penambahan tripton dan atonik)'. *Jurnal Penelitian Pertanian Terapan*. Vol. 12. (Spec. Ed.), pp. 52-58, 2012.
- [19] N.N. Kristina, Syahid, S. Fatimah, 'The Effect of Coconut Water on In Vitro Shoot Multipication, Rhizome Production, and Xanthorrhizol Content of Temulawak in the Field (Pengaruh Air Kelapa Terhadap Multipikasi Tunas In Vitro, Produksi Rimpang, dan Kandungan Xanthorrhizol Temulawak di Lapangan)'. *Jurnal Litri*, vol. 18, no. 3, pp. 125-134, 2012.
- [20] J. Yong, L. Ge, Y.F. Ng, S. Tan, 'The chemical composition and biological properties of coconut (Cocos nucifera L.) water'. *Molecules, vol.* 14, no. 12, pp. , 5144-5164, 2009, doi: https://doi.org/10.3390/molecules14125144
- [21] Kasutjianingati, R. Irawan, 'Alternative media for in vitro orchid propagation (Phalaenopsis amabilis) (Media alternatif perbanyakan in vitroanggrek Bulan (Phalaenopsis amabilis)'. *J. Agroteknos*, vol. 3, no. 3, pp. 184-189, 2013.
- [22] D.P.S. Hendaryono, 'Orchid nursery in bottles (Pembibitan anggrek dalam botol)'. *Kanisius*: Yogyakarta. 2000
- [23] S. Damiska, R.S. Wulandari, H. Darwati, 'Addition of Yeast and Corn Seed Extract to In-Vitro Growth of Mangosteen Shoots (Penambahan Ragi dan Ekstrak Biji Jagung terhadap Pertumbuhan Tunas Manggis Secara In-Vitro)'. *J Hutan Lestari*, vol. 3, no. 1, pp. 35-42, 2015.
- [24] M.R. Suhartanto, Sobir, H. Harti, 'Healthy Technology for Banana Cultivation: From Seed to Post Harvest (Teknologi Sehat Budidaya Pisang: dari Benih sampai Pasca Panen)'. *Pusat Kajian Hortikultura Tropika*, LPPM-IPB. 2012.