

Proceeding of the International Seminar on Science Education Volume III

ISSN: 2476-9533

PROCEEDING

International Seminar on Science Education
Volume III

Enhancing Interdisciplinary Practice of Science
Education in the Realization of NGSS
(Next Generation Science Standard)

PREFACE

Praise to Allah SWT for all the blessings and guidance given to us all, so that the program of the International Seminar on Science Education (ISSE) 2017 with the topic about Enhancing Interdisciplinary Practice of Science Education in The Realization of NGSS (Next Generation Science Standards) which held on October 28th 2017 at Rectorate Hall, Yogyakarta State University can be completed successfully.

This proceeding is presented in four sections: 1) Science; 2) Physics; 3) Biology Chemistry; and 4) General Education. This comprises number of papers that have been presented in the seminar, written by lecturers and students from Yogyakarta State University and other universities.

We owe many parties for the success of the seminar. Therefore, we would like to sincerely extend our gratitude to:

1. The rector of Yogyakarta State University, Prof. Dr. Sutrisna Wibawa, M.Pd for facilitating all the activities of the International Seminar on Science Education (ISSE) 2017;
2. The director of Graduate School of Yogyakarta State University, Dr. Moch. Bruri Triyono for providing all the facilities of the International Seminar on Science Education (ISSE) 2017;
3. The invited speakers for their willingness to share thoughts and insights on science teaching and learning in the seminar;
4. All committee members for the time, effort, and thoughts for the success of this activity; and
5. All presenters and participants who have come a long way to contribute to the success of the seminar.

However, we truth fully understand that some imperfections might be find in this proceeding and in the seminar. Thus, suggestions and constructive criticisms are very much welcome. Finally, we hope that this proceeding may contribute in science and science education

Yogyakarta, Oktober 28th 2017

Chair Person

Prof. Dr. I Gusti Putu Suryadarma, M.S

TABLE OF CONTENTS

Preface	i
Table of Contents	ii

Code	Title of the paper	Page
S1	Learning Based Education For Sustainable Development To Enhance Scientific Literacy (<i>Anita Ekantini, Vioni Kurnia Armus, Dwi Safriani Pangestika</i>).....	1
S2	Part of Science Teacher Training Program: Science Teacher's Opinion about Lesson Plan (<i>Marisa Christina Tapilouw, Harry Firman, Sri Redjeki, Didi Teguh Chandra</i>).....	4
S4	Effectiveness of POE-based Student Worksheet to Improving Student's Argumentation Ability in Energy Materials (<i>Cahyani Lestari, Abdurrahman, Tri Jalmo</i>).....	9
S5	Enhancing Generic Science Skills Through Cooperative Learning Group Investigation Model (<i>Rasimah, Saefudin, Ida Kaniawati</i>).....	18
S6	Optimization of Learning Science by Using Teaching Materials Based Local Wisdom to Improve Science Process Skills of Junior High School Students (<i>Kodirin, Novi Nurmayanti, Nur Balqis Mutia</i>).....	27
S8	Facilitating Students' Conceptual Development of Light Refraction through STEM-based Virtual Lab Utilization (<i>Muhammad Rifqi Rofiuddin, Anna Permanasari, and Riandi</i>).....	30
S11	Assesing Pedagogical Content Knowledge in STEM Education: Literature Review (<i>Pramudya Dwi Aristya Putra, Yoshisuke Kumano</i>)	38
S14	Studies on Experiential Science Education Program Development for Young Children and Their Parents at the Shizuoka Science Museum; RUKURU (<i>Shoko SAKATA</i>).....	45

S16	Science Learning Integrated Local Potential Through Video To Optimize Science Process Skills Ofstudents (<i>Sofyan Dwi Nugroho, Jumriani, Insih Wilujeng, Zuhdan Kun Prasetyo, IGP. Suryadarma</i>).....	52
S17	The Influence Of Collaborative Learning On The Science Student's Achievement On Primary School (<i>Winda Oktavia, Esti Nofiani</i>).....	55
S18	Development of STEM Learning Materials and Lessons through Project Based Learning Model for Middle School: NGSS Framework (<i>Lely Mutakinati, Yoshisuke Kumano</i>).....	59
S19	Effectiveness Of Learning With Collaborative Problem Solving (Cps) Model To Improve Science Literacy Skill In Unipdu Jombang (<i>Miftakhul Ilmi S. Putra, Wahono Widodo, Budi Jatmiko</i>).....	65
S20	Development of Game Based Learning in STEM Education: Validation Case Study (<i>Nuriman, Fahrobbey Adnan, Pramudya Dwi Aristya Putra</i>)	78
S22	Use of Lesson Study During Microteaching Student Prospective Teachers: Effects on Planning and Teaching of Science (<i>Maya Istiyadji, Rizky Febriyani Putri</i>)	82
P1	Student's Response to The Virtual Science Laboratory Learning Media-based Website (LAB SITE) on Physical Education in High School (<i>Aang Zainul Abidin, Muthmainnah, Yohan Aurino Brian Patria, Nunung Fadilah</i>)	87
P3	The Impact of E-Modules Assisted by Scaffolding Based Android by Using Plickerson The Achievement of Understanding Concepts and Student Independency (<i>Amar Amrullah, Desy Kumala Sari, Jamiatul Khairunnisa Putri</i>) ...	93
P4	The Implementation of Digital Learning to Increase Higher Order Thinking Skills (HOTS) in Physics Learning (<i>Seftyan Agustihana, Syamiah Alfi</i>)	98
P5	Effectiveness of SSP on PBL Assisted by E-Learning Based on Physics Learning Completeness and Learning Outcomes (<i>Bayu Setiaji, Pri Ariadi Cahya Dinata, Arneta Dwi Safitri, Jumadi, Ari Satriana</i>)	104
P8	Blended Learning Based on Edmodo Assistance to Optimize Achievement of Student Learning Outcomes Class XI IPA Man 1 Yogyakarta (<i>Dedi Sastradika, Arif Rahamat Zain, Bety Rahayu, Jumadi</i>)	110
P9	Profile of Students' Level of Understanding and Model Mental on Hydrostatic Pressure Concept (<i>P. Zakiyatul Jannah, T. Ramlan Ramalis, A. Setiawan</i>)	116

P13	The Implementation of Problem Based Learning Model Toward Conceptual Understanding at Senior High School (<i>Indri Eka Putri, Herman, Bunga Dara Amin</i>).....	120
P15	Shifting Attitude from Receiving to Characterisation as an Interdisciplinary Learning Toward Ecological Phenomena (<i>Nurasyah Dewi Napitupulu, Achmad Munandar, Sri Redjeki, Bayong Tjasyono</i>)	124
P17	Development Media Of Physics Learning Based Animated Flash Pro Cs6 On The Senior High School, Cilincing, North Jakarta (<i>Siwi Puji Astuti, Alhidayatuddinayah T. W., Ria Asep Sumarni</i>)	129
P19	Development of Physics Learning Strategies Based on Dynamic Problem Solving (<i>Abdul Haris, Herman, Aeman Hakim, Sirajuddin Jalil, Nur Dwiyana Alwi, Nurul Kusuma Wardani</i>)	135
P20	Developing PhyCCTM Android Application on Work and Energy Material for Improving Higher Order Thinking Skills (HOTS) of Senior High School (<i>Syayid Qosim M. Jafar Al-idrus, Suparno, Mundilarto, Edi Istiyono, Muhammad Zaini, Rattiwizal Alpin Yulianto, Nugroho Prasetya Adi</i>)	141
P21	Effectiveness of Snake Ladder Game on Physics Instruction: Student's Response View (<i>Syella Ayunisa Rani, Rizki Ageng Mardikawati, Nunung Fadilah, Sumarna</i>)	147
P22	The Electricity and Magnetism Phenomenon Modelling with Visual Studio for Senior High School Students (<i>Asri Setyaningrum, Muhammad Zaki</i>)	152
P24	Developing Kinect-Based Instructional Media on Collisions Topic (<i>Laifa Rahmawati, Fajar Fitri</i>)	161
P25	Potential of Blended Learning to Optimize Performance Outcome, Motivation and Science Communication Skill in Physics Course (<i>Widya Rahmawati, Rahmi Putri Z, Yhona Arinda, Devi Afriani</i>)	169
P14	Implementation of Physics Learning Instrument Based On Hypermedia to Increase Science Process Skill (<i>Bunga dara Amin, Abdul Haris, Ahmad Swandi</i>) ...	175
P6	The Design of Android-BasedPhysics Mobile Pocket Learning Media (<i>Dasmo, Irnin Agustina Dwi Astuti, Nurullaeli</i>).....	183
P11	Enhancing Physics Student's Achievement Throught Problem Based Learning Assisted PhET on High School (<i>Andalia Ayu Putry, Alfan Cahya Pratama , Eisty Delima</i>).....	189

P23	Learning Model Comparison Problem Posing mode Solution Posing Pre with Learning Model Problem Solving Achievement Motivation Against Seen From Physics Student Learning Outcomes (<i>Tri Isti Hartini, Martin</i>)	193
B1	Group Investigation: increase learning motivation, cooperative skill, and biology science process skill of students SMA (<i>Anteng Saraswati, Djukri</i>)	200
B2	Efficient And Effective Learning: An Innovative Idea Of Approach Scientific In Learning Science (<i>Armen</i>)	207
B3	Multimedia Worksheet Development On Environment Pollution As Learning Media For High School Students Class X (<i>Mieke Miarsyah, Diana Vivanti, Adsiyahputra, Rahmat Fadrikal</i>)	211
B6	Science Learning Based On Serukam's Local Culture To Improve Analysis Skill And Student Environment Caring Attitude (<i>Frastika Sasmitatias, Eka Kharisma Handayani, Asri S. Tamalene</i>)	217
B9	The Development of Snake and Ladder Game Based Flash of Excretory System Subject on Eleventh grade in Senior High School (<i>Assyifa Al Khansa</i>)	222
B10	10 th Grade Biology Teacher's PCK Capability in All Surakarta in Preparing Lesson Plan in 2015/2016 Academic Year (<i>Galuh Arga Wisnu Saputra, Riantina Fitra Aldiya, Riska Septia Wahyuningtyas, Nandhika Wahyu Sahputra, Sutisna</i>)	226
B11	Correlation between Conservation Knowledge and Conservation Attitude of Fishermento Conserve Anadaraspp at Lada Bay of Sunda Strait (<i>Ratna Komala, Ernawati, Eka Dewi Sriyani</i>)	232
B12	The Local Knowledge By Karo Ethnic In Doulu Village, Karo District To Intercropping Agricultural (<i>Marina Silalahi, Nisyawati, Endang Christine Purba, Rani Nur Aini, Avif</i>)	238
B13	Influence of Type Mastery and Performance Goal Orientation on Learning Result at SMAN 64 Jakarta (<i>Nurmasari Sartono, Rusdi, Dwi Hadianto</i>)	245
B14	An Analysis Of Ability To Create (C6) Of Biology At Eleventh Grade Of Senior High School Students In Indonesia (<i>Paidi, Tika Mayang Sari, Iis Aida Yustiana</i>) ...	250
B16	Effectiveness Of Question Student Have Strategies And Macromedia Flash Ecosystem On Student Learning Outcome (<i>Lady Rahmawati, Rama Cahyati, Aminatun Wakhidah, M. Sukandi Hamzah, Wahyu Oktamarsetyani</i>)	255

B17	Survey Of Medicinal Plants In Pangandaran Nature Reserve (<i>Ratna Dewi Wulaningsih</i>)	260
B18	The Effect of Project- Based Learning and Problem- Based Learning to Thinking Skills in Learning Biology (<i>Rizqa Devi Anazifa, Djukri</i>)	267
B19	Implementing Jelajah Alam Sekitarteaching Approaches On Animal Ecology Course (<i>Sri Ngabekti, Bambang Priyono</i>)	279
B21	Developing Module Integrated Multimedia With Laboratory Guidelines For High School Students On Human Circulation System (Research And Development) (<i>Refirman, Supriyatn, Mahrawi Suprapto, Jajang Miharja, Lidya Banila</i>)	287
B22	An Innovation In Developing Module Integrated Multimedia For High School Students On Metabolism Material (Research and Development) (<i>Yulilina Retno Dewahrani, Sri Rahayu, Mahrawi Suprapto, Rini Puspitasari, Lidya Banila</i>)	293
C1	The Effect of Scientific Approach to High Order Thinking Skill (HOTS) of Student at 10th Grade (<i>Ahmad Nurkohlis Majid, Metridewi Primastuti, Dita Putri Utami, Meidiana Nur Budi Prastiwi, Nani Rahmah, Nur Khayati</i>)	300
C2	Metacognitive Knowledge in Chemical Equilibrium Problem Solving: Students' Judgment vs. Teachers' Judgment (<i>Benny Yodi Sawuwu</i>)	305
C3	The Effect of Maternal Pre-Pregnancy Body Mass Index (BMI) on Initiation and Duration of Breastfeeding-Systematic Review (<i>Esti Katherini Adhi</i>)	311
C5	Chemistry Laboratory Equipment Inventory Media: An Alternative Media for Students' in Learning of Laboratory Management (<i>E. Priyambodo, A. Wiyarsi, Dina, A.R.E. Nugraheni</i>)	319
C7	Campus Yard Management and Utilization as a Learning Facility and Source in Universitas Kristen Indonesia (<i>Hotmaulina Sihotang, Erni Murniarti, Marina Silalahi</i>)	325
C4	Developing Student's Global Awareness Through Chemical Literacy: Problems and Possibilities (<i>Annisa Fadillah, Desfi Annisa, Eka Ad'hiya, Ni Putu Laksmi Cintya Dewi, Satya Sadhu</i>)	333
C8	Synthesis Of Methyl Ester From Pome Assisted By Ultrasonic Irradiation And Cracking Using Zeolite Catalyst (<i>Agus Sundaryono, M. Lutfi Firdaus, Dewi Handayani</i>)	338

C9	Student Perception of Analytical Thinking Skills on Electrochemistry (<i>Meidiana Nur Budi Prastiwi, Nani Rahmah, Nur Khayati, Ahmad Nur Kholis Majid, Dita Putri Utami, Metridewi Primastuti</i>).....	345
C10	A Comparative Study of Learning Outcomes in Redox Reaction material by Cooperative Learning Model on NHT and TPS types in SMAN 6 Jambi (<i>Novaliah, Revnika Faizah, Hazlynda Bt Atta</i>).....	351
C12	Chemistry Learning: Perception and Interest of Vocational High School Student of Automotive Engineering Program (<i>Antuni Wiyarsi, Heru Pratomo, Erfan Priyambodo</i>).....	359
O1	Mathematics Value and Its Position in Other Subjects: 9 High Schools in Yogyakarta Province (<i>Martin Iryayo, Devi Anggriyani</i>).....	367
O2	Analysis School of the Future: Transitioning Traditional Classroom to Digital (<i>Achmad Farchan</i>).....	375
O3	Perception Of Students To The Act Of Plagiarism In The Preparation Student Final Assignment (<i>Hana Silvana, Gema Rullyana, Angga Hadiapurwa</i>)	380

Synthesis Of Methyl Ester From *Pome* Assisted By Ultrasonic Irradiation And Cracking Using Zeolite Catalyst

Agus Sundaryono¹, M. Lutfi Firdaus², and Dewi Handayani³

¹Graduate School of Science Education University of Bengkulu, Bengkulu, Indonesia

² Graduate School of Science Education University of Bengkulu, Bengkulu, Indonesia

³Under Graduate School of Chemistry Education University of Bengkulu, Bengkulu

¹E-mail address: sundaryono_2005@yahoo.fr

Abstract. The purpose of this research is to convert the Palm Oil Mill Effluent (POME) into biofuel to find alternative energy as a substitute for petroleum-based energy supply. This study began with the synthesis of methyl esters, the synthesis of methyl ester was carried out in two stages of reaction: esterification with the aid of ultrasonic irradiation using acid catalyst and transesterification reaction with base catalyst. The result of the synthesis then cracked by heating at a temperature of 380 °C for 2 hours using natural zeolite catalysts that have impregnated by active metals, i.e. Cr/HZa and Ni/HZa catalysts. The Ni/HZa catalyst produced 2.4% hydrocarbons, equivalent oil gas, 14.1% short-chain methyl ester and 83.2% long-chain methyl ester. The Cr/HZa catalyst was able to crack methyl esters to produce hydrocarbons of 5.4%, equivalent oil gas, 15.19% short-chain methyl ester and long-chain methyl ester of 79.4%. Characteristics of biofuel that was resulted from catalytic cracking of methyl ester using Ni/HZa catalyst: density 0,799 g /mL, kinematic viscosity 1,391 cSt, fog point 1,67 °C, pour point 0°C, acid number 1,86 mg KOH/g oil and water content 0,932 %. Characteristics of biofuel resulted from catalytic cracking of methyl ester using Cr/HZa catalyst: density 0,795 g / mL, kinematic viscosity 1,322 cSt, fog point 1°C, pour point 0°C, acid number 1,68 mg KOH/g oil and water content 2,102%.

Keywords: ultrasonic irradiation, biofuel, methyl ester, zeolite-based catalyst, Palm Oil Mill Effluent

1. Introduction

In the period of petroleum thinning, a lot of research is done to get fuel from non-petroleum materials. Utilization of vegetable oil as a fuel is hampered because vegetable oil has an average viscosity of 10 up to 20 times higher than diesel oil. This problem can be solved by transesterification of triglycerides present in vegetable oils [1]. Transesterification is the reaction between oil and alcohol to produce a methyl ester [2]. Methyl esters are considered safe to use as biodiesel, because they are not toxic, lower in sulfur and more environmentally friendly [3]. The use of CPO as a fuel is still a problem, that is, the viscosity is too high when compared to diesel petroleum [4]. To overcome it, the CPO is converted to methyl esters [5],[6].

Catalytic cracking is the process of breaking long-chain hydrocarbon compounds into hydrocarbons with shorter chains assisted by a catalyst. The MgO catalyst in the cracking reaction of palm oil produces a hydrocarbon mixture of olefin and paraffin [7]. The Cu metal catalyst impregnated in ZSM-5 was able to convert 34.96 wt% of oil palm to gasoline [8], while the Al₂O₃ impregnated Co catalyst transformed 100% palm oil to paraffin in the diesel component range [9].

Palm oil has high exposure in the community which, if the palm oil is used as biogasoline, there is a substantial chance that it will disturb the current condition. The methyl ester of Palm Oil Mill Effluent (POME) has been done by esterification followed by transesterification[10], [11]. The methyl ester is then developed into liquid hydrocarbons through catalytic cracking [12], [13], [14]. The quality test results of catalytic cracking, that the viscosity is still greater than the gasoline's. The major difficulty encountered in converting methyl esters from POME a caused by Free Fatty Acid is very high (reaching $\geq 40\%$), and it takes a long time to converting (ie, 4 hours at the esterification stage and 2 hours at the transesterification stage). CPO was succeeded converting to methyl ester, by

reacting methanol and CPO (6.44: 1) using ultrasonic irradiation aid at a frequency of 40 KHz, 400W, at 38.44 ° C and 25.29 minutes yield 97.85% [15].

In this study, POME was converted to methyl ester by ultrasonic irradiation method to shorten esterification reaction time just 20 minutes only and also transesterification reaction. The resulting methyl ester is further reacted to the catalytic cracking reaction to produce biogasoline (biokerosene or biosolar) fuel with a Ni / HZa and Cr / HZa catalyst, which is a zeolite catalyst impregnated with Ni, and Cr.

2. Material and Method

2.1. Preparation of POME

A total of 350 g of POME is inserted into a beaker, heated over a hot plate, then the mixture is filtered, the filter oil is heated at 105 ° C, and degumming the oil, from phosphatides, proteins, residues, water, and resins, with added H₃PO₄ % of 1-3% of the amount of POME. After degumming, the POME is poured into Erlenmeyer and then added 10% active zeolite from POME weight, and then stirred while heated to 110 - 120 ° C for 1 hour to bleaching of the POME, and then FFA of the POME was determined. If FFA \leq 2% can be esterified with an alkali catalyst, and if FFA \geq 2% is necessary first esterification stage using acid catalyst (H₂SO₄)

2.2. Preparation Catalyst

2.2.1. Preparation of HZa catalyst. Natural zeolites were washed with distilled water. Zeolites were dried in an oven at 110°C, and It was sieved with a 125µm mesh, the natural zeolite (Za) obtained was fed into the beaker and then added HCl 2 M solution (1: 2), stirred with a magnetic stirrer for 4 hours without heating. It was then filtered and washed with distilled water, zeolite is dried in an oven at 110 °C (HZa)

2.2.2. Preparation of Ni / HZa and Cr / Hz catalyst. The Ni impregnation on HZa was done by mixing the HZa powder into a 0.1 M NiCl₂.9H₂O solution (1: 5 b / v), then refluxing at 85 ° C. for 3 hours, then filtered and heated to 120 ° C for 12 hours, obtained Ni / HZa bifunctional catalyst. Activation of Ni / HZa catalyst was performed by calcination in the muffle furnace at 500°C for 4 hours. The same step was performed to obtain a Cr / HZa bifunctional catalyst by replacing 0.1 M NiCl₂.9H₂O with 0.1 M Cr (NO₃)₂.6H₂O.

2.3. Synthesis of Methyl Ester with Ultrasonic Irradiation

Esterification is operated by reacting methanol and POME (6: 1) in a round bottom flask with concentrated H₂SO₄ as a catalyst (1% by weight of POME). This mixture is in ultrasonic irradiation for 30 minutes at 45 kHz and 60 ° C, the result of the process is inserted in separating funnel and left overnight. After the results were separated, then determined FFA. If FFA \geq 2% it is necessary to re-esterification. The final result of the esterification process was added methoxy (0.4 g NaOH: 40 ml methanol), then is an ultrasonic irradiation for 25 min at 60°C. The mixture was inserted in a separating funnel and held for one night. Methyl ester is washed with warm water.

2.4. Catalytic Cracking Methyl Ester with Ni/HZa and Cr/HZa Catalysts

The catalytic cracking reaction of the methyl ester is carried out using a set of reflux devices. The methyl ester was introduced into a three-neck flask, and a Ni / HZa catalyst (5%) was added, then heated to a temperature of 380°C for 2 hours, after refluxed and then was distilled to separate the biofuel product. The biofuels were analyzed by using GC-MS, and were characterized by density test, viscosity test, fogging test and the acid number test. The same was done for catalytic cracking reactions using Cr / HZa catalysts.

3. Results and Discussion

The catalytic activity of natural zeolite can be increased by activation and impregnation of the active metal on the surface of natural zeolite, as it will form two active sites, namely acid sites and catalytically active metal sites. This catalyst is called a bi-functional catalyst, which have two types of active sites, i.e. acid sites that serve for cracking and metal sites that act for dehydrogenation. In this study the active metals that are impregnated in zeolites were Ni and Cr. The presence of Cr and Ni metals introduced into the zeolite will increase the acidity of the catalyst or Lewis acid site. In addition, active metal exposure may also increase the Si / Al ratio and the specific surface area (SSA) of the catalyst [16]. The impregnation of the active metal on the zeolite surface can increase the SSA [17].

The trans-esterification stage begins by giving treatment to POME including filtering, heating, degumming, and bleaching. Free fatty acids (FFA) of POME 43,76%, to avoid soap formation, conversion of POME to methyl ester is done two stages, esterification and trans-esterification. Esterification is intended to convert FFA to methyl ester with a strong acid catalyst (H_2SO_4). The esterification of this study was performed by ultrasonic irradiation method for 20 minutes. The use of ultrasonic irradiation at this stage can increase the formation, growth and rupture of cavitation, the phenomenon of bubbles forming from the liquid stream, in areas where the liquid pressure falls below the vapor pressure. As a result of the phenomenon is the reaction goes faster [18]. Esterification was done three times. FFA oil decreased to 1.3%. Furthermore, trans-esterification was carried out by reacting the esterification process with a NaOH acting as an alkoxide which is a strong nucleophile and methanol. The ratio of the mole ratio of methanol and oil used in the study was 6: 1, whereas the catalyst used was 1% of the weight of the oil, needed excessive methanol, intended so that the soap does not form solids, but soluble in methanol. In this study the trans-esterification reaction was performed with the aid of ultrasonic irradiation for 20 minutes.

The trans-esterification reaction begins with the formation of soap as a result of a triglyceride reaction with a NaOH, with ultrasonic irradiation, the formation of soap can take place more quickly because of the formation of small droplets of the NaOH catalyst (dissolved in methanol) undergoing cavitation such as methanol. The droplet may expand the surface area for the occurrence of saponification reactions between triglycerides and NaOH catalysts. This formed soap acts as a transfer phase and increases the mixing of oil with methanol, so that the reaction of methyl ester formation can take place more quickly. The yield of methyl ester from POME conversion result was 71,6%.

The components of methyl ester as a result of POME conversion based on GC-MS analysis are presented in **Table 1**.

Table 1. Components of Methyl Ester as a Conversion Result of POME

No	Components	Molecular formula	Molecular weight(g/mol)	(%)
1	Myristic acid methyl ester	$C_{15}H_{30}O_2$	242	1,1
2	Palmitate acid methyl ester	$C_{17}H_{34}O_2$	270	52,4
3	Oleate acid methyl ester	$C_{19}H_{36}O_2$	296	41,1
4	Stearic acid methyl ester	$C_{19}H_{38}O_2$	298	5,4

Characterization of methyl ester of POME conversion results is presented in Table 2.

Table 2. Methyl Ester Characteristics of POME Conversion Results

Parameter	Unit	Methyl Ester	SNI Methyl Ester
The acid number	mg KOH/g oil	1.12	Maks 0,8
Water content	% weight	0.74	Maks 0,05
Density	g/cm ³	0.85	0.85-0.89
Kinematic viscosity 40°C	cSt	1.69	2,3 - 6,0
Pour point	°C	8.50	Maks 18°C
Clouding Point	°C	8.84	Maks 18°C

According to Table 2., the methyl ester parameters have met the SNI, only the acid number and water content are still high enough. The high number of acids can lead to corrosive properties and high water levels allow for hydrolysis reactions that can cause elevated FFA levels [19].

Catalytic cracking is a method of breaking of compounds with long carbon chains into compounds with simpler carbon-chains through the aid of catalysts which can improve the quality and quantity of products, and take place at low temperature and pressure [20]. The reaction step of catalytic cracking of methyl esters is estimated through 3 step of initiation step which is reaction between alcohol with catalyst to form carbonium ion and stabilized radical. Step propagation is the reaction between carbonium ions and stabilized radicals with methyl esters, while the termination step is the re-forming of the catalyst.

The process of catalytic cracking of methyl ester in this study was carried out by heating for 3 hours at 380°C, methyl ester with 5% catalyst (Ni / HZa and Cr / HZa). Results of catalytic cracking of methyl esters were analyzed using GCMS. The component is presented in **Table 3 and 4..**

Table 3. Biofuel component as a result of catalytic cracking Methyl Ester with Ni / HZa catalyst

Component	Number of Carbon Chains	%
Gasoline	C5 - C10	-
Kerosene	C11 - C12	-
Gas oil	C13 - C17	2.44
Heavy gas oil	C18 - C25	-
Short chain methyl esters	C ₁₁₋₁₅ H _y O _z	14.41
Long chain methyl esters	C ₁₆₋₁₉ H _y O _z	83.15

Table 4. Biofuel component as a result of catalytic cracking methyl ester with Cr / HZa catalyst

Component	Number of Carbon Chains	%
Gasoline	C5 - C10	-
Kerosene	C11 - C12	-
Gas oil	C13 - C17	5.44
Heavy gas oil	C18 - C25	-
Short-chain methyl esters	C ₁₁₋₁₅ H _y O _z	15.19
Long-chain methyl esters	C ₁₆₋₁₉ H _y O _z	79.37

Analysis with GCMS showed that hydrocarbon compounds were produced in the catalytic cracking reaction of methyl ester with Ni / HZa catalyst, and Cr / HZa, able to produce equivalent hydrocarbon gas oil respectively by 2, 44%, and 5.44%. The Ni / HZa, and Cr / HZa catalysts were able to convert long-chain methyl esters to methyl esters with shorter-chain respectively by 14.41%, and 15.19%. Cr / HZa catalysts have a better ability to produce hydrocarbon fractions and produce methyl esters with shorter carbon chains

The physical characteristics of biofuel from catalytic cracking methyl ester reaction using Ni / HZa catalyst, and Cr / HZa are presented in **Table 5**

Table 5. Biofuel Characteristics of Catalytic Cracking Methyl Ester Reaction Results

Parameter	Unit	Sample				
		Methyl Ester	Biofuel from catalytic cracking results with catalyst		Gasoline	Kerosene
			Ni/HZa	Cr/HZa		
Kinematic viscosity 40°C	cSt	1,683	1,391	1,322	0,456	1,058
Density	g/cm ³	0,849	0,799	0,795	0,772	0,795
Pour point	°C	5,67	0	0	0	0
Clouding Point	°C	1,67	1,67	1	1	1
Water content	% weight	0,739	0,932	2,102	0,26	0,46
The acid number	mg KOH/g oil	1,122	1,86	1,68	0,748	0,935

Based on Table 5., it is known that biofuel density is 0.799 g / mL (with Ni / HZa catalyst) and 0.795 g / mL (with Cr / HZa catalyst) has approached kerosene density (0.792 g / mL), and the viscosity of biofuel resulted is 1,392 cSt (using Ni / HZa catalyst) and 1,322 cSt (using Cr-HZa) that is smaller than methyl ester viscosity (1,683 cSt), but the viscosity of both biofuels has not equal to kerosene viscosity (1,045 cSt) and gasoline (0.449 cSt), so it can not be used as fuel equivalent kerosene or gasoline with 100% biofuel composition. The decrease in the viscosity of both biofuels can be done by blending biofuel with kerosene or gasoline. On the Table 5. the fog and pour points of both biofuel catalytic cracking of methyl ester using Ni / HZa and Cr / HZa catalysts are similar and almost to the point of fog and pour point of gasoline and kerosene, so that the biofuel can be used in areas with cold climates. The decrease in the viscosity of both biofuels can be done by blending biofuel with kerosene or gasoline. Biofuel acid levels are still high, even higher when compared with methyl esters. This may be possible because the catalyst used is a homogeneous catalyst of sulfuric acid which is difficult to separate apart during the separation process.

The water content of biofuel is still quite high, but the moisture content of methyl ester and biofuel resulted from cracking catalytic methyl ester with Ni / HZ catalyst is near kerosene water content

4. Conclusion

Methyl esters of POME can be synthesized with the help of ultrasonic irradiation, with a yield of 71.6%. The use of Ni / HZa and Cr / HZa catalysts in catalytic cracking methyl ester reaction resulted in 68,191% and 63,867% respectively of biofuels. The use of Ni / HZa catalyst capable of cracking methyl ester into gas oil is 2,44%, and short-chain methyl ester is 14,41%. The use of Cr / HZa catalyst capable of cracking methyl esters into gas oil of 5.44%, and short-chain methyl ester of 15.19%. Characteristics of biofuel result using Ni / HZa catalyst is density 0,799 g / mL; kinematic viscosity 1,391 cSt; fog point 1.67°C; pour point 0°C; acid number 1.86 mg KOH / g of oil; water content 0.932%, and using Cr / HZa catalyst is density 0,795 g / mL; kinematic viscosity 1,322 cSt; fog point 1°C; pour point 0°C; acid number 1.68 mg KOH / g of oil; water content of 2.102%

Acknowledgment

Thanks to:

1. Directorate General of Research and Development, Ministry of Research, Technology and Higher Education who had approved funding in Research MP3EI 2017 (Contract Nomer : 061/SP2H/LT/DRPM/IV/2017, April 6, 2017)
2. My beloved daughter Noorlaksmita Yonas R. for enhancing the article.

References

- [1] Meher, LC., Sagar, V. D, and Naik, S.N. 2006. *Techhnical aspect of biodiesel production by transesterification- a review*. Renew sust energy Rev; 10:248-68
- [2] Hideki, Fukuda., Kondo, A., and Noda, H. 2001. Biodiesel fuel production, by transesterification of oil. J biosci Bio eng; 92(5): 405-16
- [3] Vyas, A.P., Verma. J.L., and Subramanyam, N. 2010. A Review on FAME production Processes. Fuel Vol. 89: 1-9
- [4] Jan, L., and Bemd, O., 2004. *The Influence Of Mass Transfer On Biodiesel Production*. Chem Eng Technol: 27 (1) : 1156 – 9
- [5] Hanh, H. O., Nguyen, F., T., , Kenji, O., Maeda, Y., and Rokuro, N. 2007. *Effects of Molar Ratio, Catalyst Concentration and Temperature on Transesterification of Triolein with Ethanol Under Ultrasonic Irradiation*. Jpn J Pet Inst 50 (4) : 1 95-9.
- [6] Tani, H. , Hasegawa, T. Shimouchi, M. , Asami, K., and Fujimoto. K.2011. Selective catalytic decarboxy-cracking of triglyceride to middle-distillate hydrocarbon. Catalysis Today 164 . 410– 414
- [7] Stavarache, Carmen, Vinatoru M, Maeda Y, and Bandow H.2007. *Ultrasonically Driven Continuous Process For Vegetable oil Transesterification*. Ultrason Sonochem 2007:14:413-7.
- [8] Bahnur, T. S., and Saidina, N.A. 2006. CATALYTIC CRACKING OF PALM OIL TO GASOLINE OVER PRETREATED Cu-ZSM-5. *Jurnal Teknologi*, 44(F) Jun : 69–82
- [9] Sotelo-Boyás, R., Trejo-Zárraga, F. and Hernández-Loyo, F. 2012. Hydroconversion of Triglyceridesinto Green Liquid Fuels. InTech Journal.
- [10] Sundaryono, A., 2009. Pengembangan Limbah Cair Pabrik Minyak Kelapa Sawit (PMKS) Sebagai Sumber Energi Alternatif Biokerosene di Provinsi Bengkulu, Proseding Seminar Nasional FMIPA Yogyakarta, Yogyakarta
- [11] Sundaryono, A. 2011. KARAKTERISTIK BIODIESEL dan *Blending BIODIESEL* dari *Oil Losses* LIMBAH CAIR PABRIK MINYAK KELAPA SAWIT. *Jurnal Teknologi Industri Pertanian*. Vol. 21. Bogor :IPB
- [12] Sundaryono, A dan Budiyanto. 2010. Pembuatan Bahan Bakar Hidrokarbon Cair Melalui Reaksi *Cracking* Minyak Pada Limbah Cair Pengolahan Kelapa Sawit. *Jurnal Teknologi Industri Pertanian*. Vol. 20 (1). 14 – 19. Bogor :IPB
- [13] Sundaryono, A., dan Handayani, D. 2012. Pengembangan limbah cair pabrik minyak kelapa sawit sebagai *biogasoline* melalui reaksi perengkahan katalitik dengan katalis berbasis zeolit di Provinsi Bengkulu, Laporan Penelitian Hibah Bersaing, Universitas Bengkulu.
- [14] Sundaryono, A., Handayani, D., Budiman, Winda, S., 2015. Perengkahan katalitik metil ester dari aminyak limbah cair Pabrik Minyak Kelapa Sawit dengan katalis Cr/Mo/HZA dan Ni/Mo/HZA. *Jurnal Teknologi Industri Pertanian* Vol 25, No. 1, 78-84.
- [15] Thaiyasiut, IWP and Pianthong, K. 2011. Ultrasonic Irradiation Assisted Synthesis of Biodiesel from Crude Palm Oil Using Response Surface Methodology. *SWU Engineering Journal* 6(1), 16- 30
- [16] Tarigan, S., 2009. Aktivitas Katalis Cr/Zeolit Dalam Reaksi Konversi Fenol dan Metil Isobutil Keton. UKA: Kabanjahe
- [17] Setyawan. 2002. Pengaruh Perlakuan Asam, Hidrotermal dan Impregnasi Logam Kromium Pada Zeolit Alam dalam Preparasi Katalis. *Jurnal ILMU DASAR*, Vol. 3 No. 2, 2002: 103-109

- [18] Juliastuti, S. R., 2010. Penggunaan Teknologi Hydrothermal (Sub Kritis) Dan Ultrasonik Untuk Menghasilkan Syn Gas Dan Alkohol Dari Gliserol Sebagai Sumber Energi Alternatif Terbarukan. Tesis Institut Teknologi Surabaya
- [19] Prihandana, R., 2006. Menghasilkan Biodiesel Murah : Mengatasi Polusi dan Kelangkaan BBM. Jakarta: Agro Media Pustaka
- [20] Nurjannah. 2010. *Perengkahan Katalitik Minyak Sawit untuk Menghasilkan Biofuel*. Disertasi Jurusan Teknik Kimia Institut Sepuluh November Surabaya

