by Ridwan Yahya

Submission date: 28-May-2023 07:22AM (UTC+0700)

Submission ID: 2103316776

File name: 5._Yahya_IAWA_2020.pdf (547.09K)

Word count: 4029

Character count: 21060

Ridwan Yahya^{1,*}, Yansen Yansen¹, Suyako Tazuru-Mizuno², and Junji Sugiyama²

¹Faculty of Agriculture, University of Bengkulu, Kota Bengkulu 38371 A, Indonesia

²Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan *Corresponding author; email: ridwanyahya@unib.ac.id

Accepted for publication: 10 June 2019

ABSTRACT

Paper quality depends on fiber diameter and wall thickness, and their derivatives. ber deformation occurs due to pressure from the vessel during development. The diameter and wall thickness of the fibers were measured following the direction of pressure exerted by the vessel on the face of the fiber cells. Fiber cell diameter measured perpendicular to and parallel with vessel enlargem was referred to as radial and tangential diameter, respectively, and likewise for fiber wall thickness Differences in radial and tangential diameter and wall thickness of fiber cells in relation to their distance from vessels were analyzed. The radial diameter of fibers adjacent to large vessels decreased from the first to the fifth fiber, and from the first to the second fiber adjacent to small vessels. Conversely, tangential fiber diameter increased from the first to the fifth fiber for fibers adjacent to large vessels, and from the first to the second fiber adjacent to small vessels. The fibers adjacent to the vessel seem to have thicker walls in both the tangential than radial directions up to 2 and 5 fibers for small and large vessels, respectively. The first two fibers adjacent to small diameter vessels may produce higher strength paper than those up to five fibers from large diameter vessels, because the Runkel ratio, Coefficient of rigidity and Muhlsteph ratio values of fibers adjacent to small vessels are lower than fibers adjacent to large vessels. The opposite occurs for flexibility coefficient values.

Keywords: A. mangium; fiber diameter; fiber wall thickness; vessel size.

INTRODUCTION

Fast-growing *Acacia mangium* Willd. is a major for plantation timber species in Indonesia (Jasmani & Adnan 2017; Permadi *et al.* 2017). Wood from this species is used for solid wood and paper products (Yong *et al.* 2011; Griffin *et al.* 2014).

© International Association of Wood Anatomists, 2020 Published by Koninklijke Brill NV, Leiden

DOI 10.1163/22941932-00002100

10

It is commonly known that the diameter and wall thickness of fibers and their derived values affect the quality of paper (Dutt & Tyagi 2011). Thin-walled fibers, due to their wide lumens, will easily be bonded to other fibers, which consequently increases the strength of the paper produced (Tofani 3 et al. 2011). Thin-walled fibers will also improve the smoothness of the paper surface. The Runkel ratio, Coe 23 ent of rigidity, Muhlstep Ratio and flexibility coefficient determine the suitability of fiber for paper production (Yahya et al. 2010). Therefore, knowing the factors that influence variation in diameter and wall thickness of fibers as well as their derived values is needed in order to increase paper quality.

The diversity of fiber properties is generally driven by specific environmental factors (Briggs 2010; Sisi et al. 2012; Meyer et al. 2013; Zumaya-Mendoza & Terrazas 2016) or internally controlled genetic factors (Yahya et al. 2010; Dutt & Tyagi 2011; Elissetche et al. 2011; El Moussaouiti et al. 2012; Gomes et al. 2015). The effect of these two factors on paper quality has been reported in many studies. However, biomechanical factors may also be important. During tree growth, internal stress due to the development and dimension of fibers always occurs. P 17 sses during maturation determine fiber dimensions (Ridoutt & Sands 1993; Ohshima et al. 2011; Rao et al. 2011; Aref et al. 2014). The fusiform initial is different of the fiber is radial and tangential rows. One factor that determines the length of the fiber is also influted by the state of maturity of other xylem elements in the vicinity (Honjo et al. 2006; Yahya et al. 2011; Yahya et al. 2015). Hence, better knowledge of factors controlling fiber properties will allow more effective use of fiber materials (Pirralho et al. 2014).

The effect of other cells on fiber dimensions, such as diameter and thickness, and their derived values, should be considered. Many cells undergo dimensional enlargement, including elongation and increase in diameter, before they reach maturation (Panshin & de Zeeuw 1980). Among all types of cells in hardwood, vessels experience the most significant increase in diameter. In the wood of *A. mangium*, vessels occupy 12.1% (Yahya *et al.* 2010).

However, it is very difficult to measure fiber dimensions in relation to distance from a vessel. Maceration is the quickest and most direct method to measure fiber dimensions (Yahya et al. 2010). However, as maceration affects the position between cells the wood cell position, including that of fibers and vessels cannot be measured. Consequently, this method cannot be used to study the relationships between vessels and fiber dimensions (Yahya et al. 2017).

The three-dimensional (3D) serial cross-section method was introduced by Honjo *et al.* (2006) and other previous researchers to measure fiber length in relation to distance from vessels. However, this method is complicated, tedious, and time-consuming, and not practical for where large sample sizes are needed, such as tree breeding programs.

The 3D method was refined by Yahya et al. (2011) to speed up the measurement of fiber properties in relation to distance from vessels. Through the newly developed 3D method, fiber length up to five and two fibers away from a vessel in the radial and tangential directions, respectively, was found to be significantly shorter than fibers at greater distances from the vessels (Yahya et al. 2011). The diameter and wall thickness of fibers in A. mangium have also been found to vary based on distance from a vessel (Yahya et al. 2015). The size of

the vessel diameter used in that study ranged from 180–220 μ m. Nugroho et~al. (2012) found that vessel diameter in A.~mangium was varied. Because the vessels cause deformation as mentioned above, it is suspected that variation in vessel diameter will affect the diameter will thickness of fibers and their derived values based on their distance from the vessel. The objective of the present study was to observe the influence of vessel lumen diameter on fiber diameter and wall thickness and their derived values, in A.~mangium.

MATERIALS AND METHODS

A wood block of 10 mm × 5 mm × 20 mm in radial, longitudinal and tangential directions) was cut from near the bark of a seven-year-old *A. mangium* tree. The tree was randomly selected from the trial area of a private forest plantation, Musi Hutan Persada (MHP) Company, in South Sumatra, Indonesia. The sample was prepared as described below.

The wood block was first softened by heating it at 160°C for 15 min in a small autoclave with a mixture of alcohol and glycerol (1:1 ratio). The softened wood block was then serially sectioned resulting in 200 slices of 55 μ m thick cross-sections. The cross-sections were sequentially mounted on glass slides. A confocal laser scanning microscope (LSM 5 Pascal Ver. 2.5; Carl Zeiss, Heidelberg, Germany) was used to observe 20 samples. Photographs were taken of the sections with an image size of 2048 × 2048 pixels and a pixel resolution of 0.45 μ m. The position at the middle of the optical slice was specifically used for further analysis to avoid the distortion of the structure caused by sectioning (Yahya *et al.* 2010)

The software 'Reconstruct' (30 a 2005) was applied to align the series of images of samples. The 3D Viewer function of ImageJ software was used to further examine the aligned set of sequential images. An image containing the largest diameter along the fiber in these serial sections was used for measurement of fiber cell diameter and lumen diameter. Before the measurement, we differentiated between fibers and para 1 cheal parenchyma which has thinner cell walls than the fibers (Fig. 1a; Sahri et al. 1993). Wall thickness of fibers was calculated according to the following formula:

Fiber wall thickness =
$$(fiber diameter - fiber lumen)/2$$
 (1)

Fiber cells that are distant from a vessel have a shape sharply defined by the radial and tangential directions in the tissue. In contrast, fiber cells 3 ljoining a vessel deviate from this well-defined shape as a result of vessel enlargement. Fiber/lumen diameter and fiber wall thickness were measured in radial and tangential directions to the v 2 el (Fig. 1; Yahya et al. 2015). The following formulas were applied to calculate the average diameter and the cell wall thickness of fibers:

Mean fiber wall thickness =
$$(radial thickness + tangential thickness)/2$$
 (3)

Changes in fiber diameter and wall thickness were observed in relation to distance from the vessel. T₂₉ rential lumen diameter of the vessel was used as the basis for measuring the changes in fiber diameter and cell wall thickness. Based on preliminary measurements of

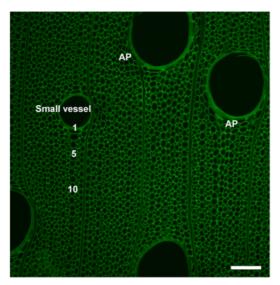


Figure 1. Transverse section of *Acacia mangium* showing fiber cells radiating outwards from the vessel and fiber cell shape changes parallel with and perpendicular to vessel enlargement. AP = axial parenchyma. Scale bar = $100 \mu m$.

lumen diameter, the lumens in the present study were categorized as large (171–212 μ m) and small (85–109 μ m). The radial distance from a vessel was marked by cell number, with the vessel-adjoining fiber as the 1st cell. The radial and tangential diameter and wall thickness of the street compared using the t-test.

Average values of fiber diameter and wall thickness (radial and tangential) were calculated based on their distance from the vessel, then fiber derivative values were calculated as follows:

```
Runkel ratio, RR = 2 \times FWT/FLD (Pirralho et al. 2014) (4)
Coefficient of rigidity, CR = FWT/FD (Tamolang & Wangaard 1961) (5)
Tribility coefficient, FC = FLD/FD (Pirralho et al. 2014) (6)
Muhlsteph ratio, MR = (FD)^2 - (FLD)^2/(FD)^2 (Tamolang & Wangaard 1961) (7)
```

where

FWT = Fiber wall thickness
FLD = Fiber lumen diameter
FD = Fiber diameter

RESULTS AND DISCUSSION

Comparison of fiber diameter and wall thickness in relation to distance from small and large vessels

Fiber cells adjacent to small vessels were larger and more elongated than those adjacent to large vessels (Fig. 2). Cells adjoining small vessels (1st cells) measured 35 μm and 19 μm , in radial and tangential directions respectively, whereas cells adjoining large vessels (1st cells) measured 25 μm and 15 μm in radial and tangential directions, respectively. The pressure exerted by large vessels appeared evident until the 5th cell as radial and tangential diameter values converged at the 6th cell (19 μm for both). Small vessels appeared to exert less influence on cell radial and tangential diameters with distance, radial diameter dropped sharply from the 1st to 2nd cell (35 to 24 μm , respectively) while tangential diameter increased (19 to 21 μm , respectively), such that radial and tangential diameters had converged before the 3rd cell. Following convergence, fiber radial diameters up to the 13th fiber were relatively constant, ranging from 16–20 μm and 18–19 μm , in proximity to small and large vessels, respectively. Likewise, tangential diameters ranged from 20–22 μm and 19–21 μm , in proximity to small and large vessels, respectively.

The average tangential diameter of fibers adjoining small vessels (35 μ m) was much higher than that of fibers adjoining large vessels (25 μ m). This difference could be due to two things. First, small vessels may exert less pressure on fibers than larger vessels resulting in a smaller degree of deformation (flattening) in fibers adjoining the small vessels. Second, fibers adjacent to small vessels may have grown larger than those adjacent to large vessels because for space was available next to the smaller than expected vessels for fiber development. The final dimensity of wood fibers will also be influenced by the maturity level of other surrounding cells (Honjo et al. 2006; Yahya et al. 201).

Further observation showed that the number of flattened fibers in relation to their distances from small or large vessels differed. The number of flattened fibers adjacent to large

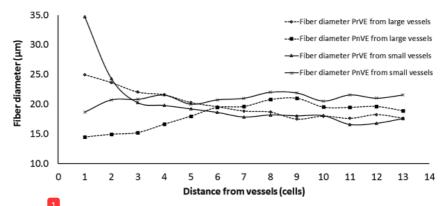


Figure 2. Variation in file and tangential diameter in relation to distance from large and small vessels. PrVE = parallel to vessel enlargement, PnVE = perpendicular to vessel enlargement.

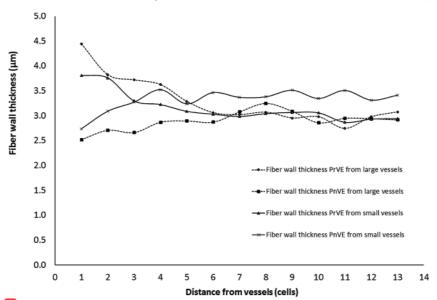


Figure 3 1 ariation in fiber wall thickness in relation to distance from large and small vessels. PrVE = parallel to vessel enlargement, PnVE = perpendicular to vessel enlargement.

vessels was five. In contrast, only two fibers adjacent to small vessels were flattened. This phenomenon was likely due to the higher pressure exerted on the fibers by large vessels as compared with small vessels.

The fibers adjacent to the vessel seem to have thicker walls in the tangential compared to the radial directions (Fig. 1a). For large vessels, fiber tangential wall thickness gradually creased with distance from the vessel. Wall thickness of fibers adjacent to large vessels decreased from 4.5 µm for the first fiber to 3.3 µm for the fifth fiber (Fig. 3). For fiber radial wall thickness there was a gradual increase from vessel-a poining fibers outwards. The increment for fibers adjacent to small vessels was from 2.7 µm for the first fiber to 3.1 µm for the second fiber. For others, there was no detectable difference in the cell wall thickness.

Comparison of fiber quality adjacent to large and small vessels as raw material for paper production

Runkel ratio and coefficient of rigidity values of fibers adjacent to small vessels (up to two fibers away from the vessel) were lower than those for fibers adjacent to large vessels (up to five fibers away from the vessel; Fig. 4). The suitability of fiber for paper production is determined by its Runkel 3 io value. A decrease in the Runkel ratio value tends to indicate increased paper strength (Istikowati et al. 2016; Takeu 25 et al. 2016). The Runkel ratio value is negatively correlated with burst (Elm 22 t al. 2018) and tensile strength of paper (Dutt & Tyagi 2011; El Moussaouiti et al. 2012 10 Runkel ratio lower than 1 is preferred for producing good paper characteristics (Sharma et al. 2011; Kiaei et al. 2014).

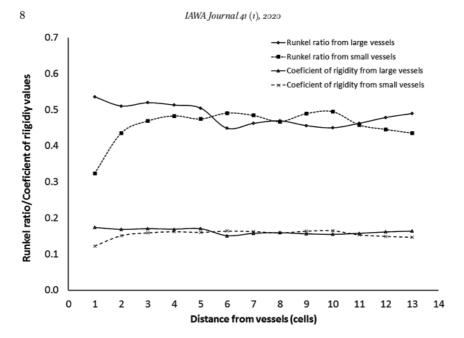


Figure 4. Variation in Runkel ratio and Coefficient of rigidity values in relation to distance from large and small vessels.

Paper strength will decrease if there is an increase in the coefficient of rigidity of the fiber. The coefficient of rigidity value is inversely proportional to the tensile, tear, burst and double fold resistance of paper (Elmas et al. 2018). To produce writing and printing paper, a low coefficient of rigidity is needed (Akgul & Tozluoglu 2009). Based on the results of the present study, we anticipate that A. mangium wood fibers adjacent to small vessels will produce higher strength paper than that utilizing fibers adjacent to large vessels.

Flexibility coefficient values of fibers adjacent to small vessels were higher than those adjacent to large vessels, while the opposite precorded for Muhlstep ratio values (Fig. 5). Fibers with high flexibility coefficient values are flexible, collapse readily and produce good surface contact and fiber to fiber bonding (Kiaei et al. 2014). Fibers with a flexibility coefficient greater than 60 are preferred in paper production (Rydholm 1965) because paper strength is directly proportional to the flexibility coefficient of fibers. Fibers that have a high flexibility coefficient will produce paper that is high in burst, tensile and fold strength (Ogbonnaya et al. 1997).

Muhlsteph ratio is directly proportional to cell wall thickness. Thin-walled produce paper with high burst, tensile strength and folding endurance (Sharma et al. 2011; Tofanica et al. 2011; Kiaei et al. 2014).

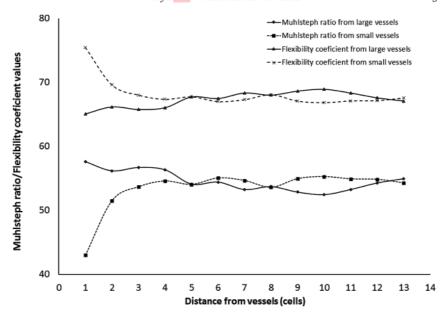


Figure 5. Variation in Muhlsteph ratio and flexibility coefficient values in relation to distance from large and small vessels.

Table 1. Results of t tests on the differences in mean radial and tangential diameter and wall thickness of fibers distant from large and small vessels.

Parameter	Radial		Tangential		p
	Mean	SD	Mean	SD	
Fiber diameter stant from small vessel	21.2	0.62	18.3	1.14	0.000
Fiber diameter dista 1 from large vessel	19.9	0.73	18.3	0.74	0.004
Fiber wall thickness distant from small vessel	3.4	0.99	3.1	0.12	0.000
Fiber wall thickness distant from large vessel	3.0	0.13	3.0	0.11	0.864

Note: Distant fibers for small and large vessels mean starting from the $\Im rd$ and $\Im rd$ and $\Im rd$ fiber respectively, until the $\Im rd$ fiber from a vessel.

This study was financially supported by the Ministry of Research, Technology and Higher Education, Indonesia.

REFERENCES

Akgul M, Tozluoglu A. 2009. Some chemical and morphological properties of juvenile woods from beech (*Fagus orientalis* L.) and pine (*Pinus nigra* A.) plantations. Trends Appl. Sci. Res.: 1–10.

- Aref IM, Khan PR, Al-Mefarrej H, Al-Shahrani T, Ismail A, Iqbal M. 2014. Cambial periodicity and wood production in *Acacia ehrenbergiana* Hayne growing on dry sites of Saudi Arabia. J. Environ. Biol. 35: 301–310.
- Briggs D. 2010. Enhancing forest value productivity through fiber quality. J. For. 108: 174–182. DOI: 10. 1093/jof/108.4174.
- Dutt D, Tyagi CH. 2011. Comparison of various eucalyptus species for their morphological, chemical, pulp and paper making characteristics. Indian J. Chem. Techn. 18: 145–151.
- El Moussaouiti M, Barcha B, Alves EF, Francis RC. 2012. Kraft pulping characteristics of three Moroccan eucalypti. Part 1. Physical and chemical properties of woods and pulps. BioResources 7: 1558–1568.
- Elissetche JP, Valenzuela S, García R, Norambuena M, Iturra C, Rodríguez J, Mendonça RT, Balocchi C. 2011. Transcript abundance of enzymes involved in lignin biosynthesis of *Eucalyptus globulus* genotypes with contrasting levels of pulp yield and wood density. Tree Genet. Genomes 7: 697–705. DOI: 10.1007/s11295-011-0367-5.
- Elmas GM, Gurboy B, Eray IN. 2018. Examining the pulp production compatibility of earlywood and latewood in Willow (*Salix excelsa*) clones in terms of fiber morphology. BioResources 13: 8555–8568. DOI: 10.15376/biores.13.4.8555-8568.
- Fiala J. 2005. Reconstruct: a free editor for serial section microscopy. J. Microscopy 218: 52–61. DOI: 10. 1111/j.1365-2818.2005.01466.x.
- Gomes FJB, Batalha LAR, Colodette JL, Santos ABFA, Demuner IF. 2015. Thorough characterization of Brazilian new generation of Eucalypt clones and grass for pulp production. Int. J. Forestry Res.: 1–10. DOI: 10.1155/2015/814071.
- Griffin AR, Twayi H, Braunstein R, Downes GM, Son DH, Harwood CE. 2014. A comparison of fiber and pulp properties of diploid and tetraploid Acacia mangium grown in Vietnam. Appita J. 67: 43–49.
- Honjo K, Ogata Y, Fujita M. 2006. Introduction and verification of a novel method for measuring wood fiber length using a single cross-section in *Acacia mangium*. Trees 20: 356–362. DOI: 10. 1007/s00468-005-0048-9.
- Istikowati WT, Aiso H, Sunardi, Sutiya B, Ishiguri F, Ohshima J, Iizuka K, Yokota S. 2016. Wood, chemical, and pulp properties of woods from less-utilized fast-growing tree species found in naturally regenerated secondary forest in south Kalimantan, Indonesia. J. Wood Chem. Technol. 36: 250–258. DOI: 10.1080/02773813.2015.1124121.
- Jasmani L, Adnan S. 2017. Preparation and characterization of nanocrystalline cellulose from Acacia mangium and its reinforcement potential. Carbohyd. Polym. 161: 166–171. DOI: 10.1016/j.carbpol. 2016.12.061.
- Kiaei M, Mahdavi S, Kialashaki A, Nemati M, Samariha A, Saghafi A. 2014. Chemical composition and morphological properties of canola plant and its potential application in pulp and paper industry. Cell. Chem. Technol. 48: 105–110.
- Meyer M, Solger A, Krabel D. 2013. Xylem cell length under drought and its value for predicting radial growth of SRF poplar cultivars (*Populus* spp.). Trees 27:1353–1363. DOI:10.1007/s00468-013-0883-z.
- Nugroho WD, Marsoem SN, Yasue K, Fujiwara T, Nakajima T, Hayakawa M, Nakaba S, Yamagishi Y, Jin H-O, Kubo T, Funada R. 2012. Radial variations in the anatomical characteristics and density of the wood of *Acacia mangium* of five different provenances in Indonesia. J. Wood Sci. 58:185–194. DOI:10.1007/s10086-011-1236-4.
- Ogbonnaya CI, Roy-Macauley H, Nwalozie MC, Annerose DJM. 1997. Physical and histochemical properties of kenaf (*Hibiscus cannabinus* L.) grown under water deficit on a sandy soil. Ind. Crop Prod. 7: 9–18. DOI: 10.1016/S0926-6690(97)00034-4.

- Ohshima J, Yokota S, Yoshizawa N, Ona T. 2011. Feasibility study of quality plantation pulpwood breeding on fibre length, vessel element length and their ratio sought by within-tree variations in *Eucalyptus* trees. Forestry Studies 54: 37–47. DOI: 10.2478/v10132-011-0094-6.
- Panshin AJ, de Zeeuw C. 1980. Textbook of wood technology. McGraw-Hill, New York, NY, 722 pp.
- Permadi DB, Burton M, Pandit R, Walker I, Race D. 2017. Which smallholders are willing to adopt *Acacia mangium* under long-term contracts? Evidence from a choice experiment study in Indonesia. Land Use Policy 65: 211–223. DOI: 10.1016/j.landusepol.2017.04.015.
- Pirralho M, Flores D, Sousa VB, Quilhó T, Knapic S, Pereira H. 2014. Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Ind. Crop Prod. 54: 327–334. DOI: 10.1016/j.indcrop.2014.01.040.
- Rao KS, Kim JS, Kim YS. 2011. Early changes in the radial walls of storied fusiform cambial cells during fiber differentiation. IAWA J. 32: 333–340. DOI: 10.1163/22941932-9000061.
- Ridoutt BG, Sands R. 1993. Within-tree variation in cambial anatomy and xylem cell differentiation in Eucalyptus globulus. Trees 8: 18–22. DOI: 10.1007/BF00240977.
- Rydholm SA. 1965. Pulping process. Wiley and Sons, New York, NY, 1270 pp.
- Sharma AK, Dutt D, Upadhyaya JS, Roy TK. 2011. Anatomical, morphological, and chemical characterization of Bambusa tulda, Dendrocalamus hamil Tonii, Bambusa balcooa, Malocana baccifera, Bambusa Arundinaceae and Eucalyptus tereticornis. BioResources 6: 5062–5073.
- Sisi DE, Karimi AN, Pourtahmasi K, Taghiyari HR. 2012. The effect of agroforestry practices on fiber attributes in *Populus nigra var. betulifolia*. Trees 26: 435–441. DOI: 10.1007/s00468-011-0604-4.
- Takeuchi R, Wahyudi I, Aiso H, Ishiguri F, Istikowati WT, Ohkubo T, Ohshima J, Iizuka K, Yokota S. 2016. Wood properties related to pulp and paper quality in two *Macaranga* species naturally regenerated in secondary forests, Central Kalimantan, Indonesia. Tropics 25:107–115. DOI: 10:3759/tropics.MS15-23.
- Tamolang FN, Wangaard FF. 1961. Relationship between hardwood fiber characteristics and pulp sheet properties. TAPPI J. 44: 200–216.
- Tofanica BM, Cappelletto E, Gavrilescu D, Mueller K. 2011. Properties of rapeseed (*Brassica napus*) stalks fibers. J. Nat. Fibers 8: 241–262. DOI: 10.1080/15440478.2011.626189.
- Yahya R, Sundaryono A, Imai T, Sugiyama J. 2015. Distance from vessels changes fiber morphology in Acacia mangium. IAWA J. 36: 36–43. DOI: 10.1163/22941932-0000083.
- Yahya R, Koze K, Sugiyama J. 2011. Fiber length in relation to the distance from vessels and contact with rays in *Acacia mangium*. IAWA J. 32: 341–350. DOI: 10.1163/22941932-9000062.
- Yahya R, Sugiyama J, Silsilia D, Gril J. 2010. Some anatomical features of an Acacia hybrid, A. mangium and A. auriculiformis grown in Indonesia with regard to pulp yield and paper strength. J. Trop. For. Sci. 22: 343–351.
- Yahya R, Yansen Y, Sundaryono A, Horikawa Y, Sugiyama J. 2017. Neighborhood of vessels: chemical composition and microfibril angle of fiber within *Acacia mangium*. J. Trop. For. Sci. 29: 267–274.
- Yong SYC, Choong CY, Cheong PL, Pang SL, Nor Amalina R, Harikrishna JA, Mat-Isa MN, Hedley P, Milne L, Vaillancourt R, Wickneswari R. 2011. Analysis of ESTs generated from inner bark tissue of an Acacia auriculiformis × Acacia mangium hybrid. Tree Genet. Genomes 7: 143–152. DOI: 10. 1007/S11295-010-0321-y.
- Zumaya-Mendoza S, Terrazas T. 2016. Vessel element and fiber length variation in successive cambia of *Iresine latifolia* (Amaranthaceae). Revista Mexicana de Biodiversidad 87: 1315–1320. DOI: 10. 1016/j.rmb.2016.10.006.

ORIGINALITY REPORT

19% SIMILARITY INDEX

7%

INTERNET SOURCES

18%

PUBLICATIONS

1 %

STUDENT PAPERS

PRIMARY SOURCES

Ridwan Yahya, Agus Sundaryono, Tomoya Imai, Junji Sugiyama. "DISTANCE FROM VESSELS CHANGES FIBER MORPHOLOGY IN ACACIA MANGIUM", IAWA Journal, 2015

6%

Publication

Futoshi Ishiguri, Haruna Aiso, Mirai Hirano, Ridwan Yahya, Imam Wahyudi, Jyunichi Ohshima, Kazuya Iizuka, Shinso Yokota. "Effects of radial growth rate on anatomical characteristics and wood properties of 10-year-old *Dysoxylum mollissimum* trees

planted in Bengkulu, Indonesia", Tropics,

1 %

Publication

2016

www.tandfonline.com
Internet Source

1 %

Joanna Jura-Morawiec, Wiesław Włoch, Paweł Kojs, Muhammad Iqbal. "Variability in Apical Elongation of Wood Fibres in Lonchocarpus Sericeus", IAWA Journal, 2008

1%

Publication

5	Tetsuro Sohda. "Reduced expression of low-density lipoprotein receptor in hepatocellular carcinoma with paraneoplastic hypercholesterolemia", Journal of Gastroenterology and Hepatology, 9/3/2007 Publication	1 %
6	knowledgecommons.lakeheadu.ca Internet Source	1 %
7	Kiyoko Honjo, Yoshiyuki Ogata, Minoru Fujita. "Introduction and verification of a novel method for measuring wood fiber length using a single cross section in Acacia mangium", Trees, 2006 Publication	1 %
8	jrtppi.id Internet Source	1%
9	Growing Plantation Forests, 2014. Publication	<1%
10	Khaled T. S. Hassan, El-Sayed A. E. Kandeel, Ibrahim E. A. Kherallah, Hosny A. Abou-Gazia, Fatma M. M. Hassan. "Pinus halepensis and Eucalyptus camaldulensis grown in Egypt: A comparison between stem and branch properties for pulp and paper making", BioResources, 2020 Publication	<1%

histochemical properties of kenaf (Hibiscus cannabinus L.) grown under water deficit on a sandy soil", Industrial Crops and Products, 1997

Publication

12	eprints.ulm.ac.id Internet Source	<1%
13	oaresource.library.carleton.ca	<1%
14	www.cfa-international.org	<1%
15	www.jstage.jst.go.jp Internet Source	<1%
16	Agung Prasetyo, Haruna Aiso-Sanada, Futoshi Ishiguri, Imam Wahyudi, I. Putu G. Wijaya, Jyunichi Ohshima, Shinso Yokota. "Variations in anatomical characteristics and predicted paper quality of three Eucalyptus species planted in Indonesia", Wood Science and Technology, 2019 Publication	<1%

Ana Iris Ribeiro de Castro Souza, Karine Rodrigues Cordeiro, Mayara Pereira Gonçalves, Leonardo Monteiro Ribeiro et al. "The development of anastomosed laticifers in the stem apical meristem and vascular cambium of Hancornia speciosa (Apocynaceae) is related to climatic seasonality", Trees, 2021

<1%

18

Jyunichi Ohshima, Shinso Yokota, Nobuo Yoshizawa, Toshihiro Ona. "Examination of within-tree variations and the heights representing whole-tree values of derived wood properties for quasi-non-destructive breeding of Eucalyptus camaldulensis and Eucalyptus globulus as quality pulpwood", Journal of Wood Science, 2005

<1%

Publication

19

www.mdpi.com

Internet Source

<1%

20

Alana N. Vagnozzi, Jian-Guo Li, Jin Chiu, Roshanak Razmpour, Rebecca Warfield, Servio H. Ramirez, Domenico Praticò. "VPS35 regulates tau phosphorylation and neuropathology in tauopathy", Molecular Psychiatry, 2019

< 1 %

Publication

21

Maneesh S. Bhandari, Aman Dabral, Sandeep Maikhuri, Anchal Bisht et al. "Genetic evaluation and characterization of anatomical and physicochemical properties in Grevillea robusta: an alternative commercial agroforestry species", Journal of the Indian Academy of Wood Science, 2023

<1%

22

revistas.ubiobio.cl

Internet Source

<1%

Dimitrios Tsalagkas, Zoltán Börcsök, Zoltán Pásztory, Vladimir Gryc, Levente Csóka, Kyriaki Giagli. "A comparative fiber morphological analysis of major agricultural residues (used or investigated) as feedstock in the pulp and paper industry", BioResources, 2021

<1%

Publication

J.F. Ma, G.H. Yang, J.Z. Mao, F. Xu.
"Characterization of anatomy, ultrastructure and lignin microdistribution in Forsythia suspensa", Industrial Crops and Products, 2011

<1%

Publication

Lau Sheng Hann Emmclan, Muta Harah Zakaria, Japar Sidik Bujang. "Utilization of aquatic weeds fibers for handmade papermaking", BioResources, 2018

Publication

<1%

Nuno Maçarico da Costa. "The proportion of synapses formed by the axons of the lateral geniculate nucleus in layer 4 of area 17 of the cat", The Journal of Comparative Neurology, 10/01/2009

<1%

R Yahya, Y Sariasih, D Silsia, N Nuriyatin, Desmantoro, Mainaswati, O Elveri. " Chemical composition, fiber morphology, and kraft pulping of empty fruit bunch of

<1%

dura variety (Jack) ", IOP Conference Series: Earth and Environmental Science, 2019

Publication

Exclude quotes

Exclude bibliography On

Off

28	journal.ipb.ac.id Internet Source	<1%
29	www.idosi.org Internet Source	<1%
30	www.researchsquare.com Internet Source	<1%
31	Peter Kitin, John C. Hermanson, Hisashi Abe, Satoshi Nakaba, Ryo Funada. "Light microscopy of wood using sanded surface instead of slides", IAWA Journal, 2021 Publication	<1%

Exclude matches

Off

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	