Peningkatan Produktivitas Padi Sawah dengan Perbaikan Teknologi Budidaya

Increasing of Lowland Rice Productivity Through Management Practices
Improvement on rice cultivation

Azwir dan Ridwan

Balai Pengkajian Teknologi Pertanian Sumatera Barat Jln. Padang-Solok Km 40 Sukarami Sumbar azwir bptp@yahoo.com

ABSTRACT

Increasing of Lowland Rice Productivity Through Management Practices Improvement. Improvement of management practices systems on rice cultivation most important to increase rice yield. Yield of lowland rice depend on many factor as environment factor, climate, soil fertility, and management practices. Two experiments were conducted in Koto Baru Simalanggang village, 50 Kota Regency, West Sumatra Province in the dry season 2007. The first experiment with treatments four technology packages on rice Sijunjung variety (3 technology packages introduction and, 1 farmer's technology). The Second experiment with treatment (Introduction technology packages and farmer's technology) The result of the experiment showed that, introduction technology gave the higher yield of rice than farmer's technology. Three technology packages introduction gave yield of rice Sijunjung variety 5.81, 4.85 and 4.81 ton grain yield ha⁻¹, and farmer's technology 3.87 ton ha⁻¹. The highest yield of rice by A packages with treatments plant spacing 20 x20 cm (legowo 6:1), fertilizer use Urea 150 kg ha⁻¹ + SP 36 100 kg ha⁻¹ + KCl 50 kg ha⁻¹ + organic matter 500 kg ha⁻¹ and crop management intensive. And thefarmer's technology with treatment plant spacing 25 x 25 cm, 7-10 plats hill⁻¹, fertizer use Urea 150 kg ha⁻¹, SP 36 50 kg ha⁻¹ and the crop management not intensive. Application of introduction technology rice Batang Piaman variety gave 6.86 ton ha⁻¹ and farmer's technology gave yield 4.20 ton ha⁻¹, with improvement technology practice yield of rice Batang Piman variety increase 2.66 ton ha⁻¹ (63,33%).

Keywords: lowland rice, productivity, practices improvement, rice cultivation

ABSTRAK

Hasil padi sawah tergatung dari banyak faktor seperti faktor lingkungan, iklim, kesuburan tanah dan sistem budidaya. Dua percobaan dilaksanakan di Desa Koto Baru Simalanggang Kecamatan 50 Kota Propinsi Sumatera Barat pada musim kering 2007. Percobaaan pertama dengan 4 perlakuan paket teknologi pada padi varietas Junjung (tiga paket teknologi introduksi dan satu teknologi yang biasa digunakan petani). Percobaan kedua dengan perlakuan (paket teknologi introduksi dan paket teknologi yang biasa digunakan petani). Hasil percobaan menunjukkan bahwa paket teknologi introduksi memberikan hasil yang lebih tinggi dibandingkan teknologi yang digunakan petani. Ketiga paket teknologi introduksi memberikan hasil padi varietas Sijunjung sebesar 5,81; 4,85 and 4,81 ton biji ha⁻¹, sedangkan teknologi petani 3,87 ton ha⁻¹. Hasil tertinggi ditunjukkan oleh Paket A dengan perlakuan jarak tanam 20 x 20 cm (legowo 6:1), dosis urea 150 kg ha⁻¹ + SP36 1000 kg ha⁻¹ + KCl 50 kg ha⁻¹ + bahan organik 500 kg ha⁻¹ dan pengolahan tanah intensif, dan paket teknologi petani denga perlakuan jarak tanam 25 x 25 cm, 7-10 anakan rumpun⁻¹, dosi pupuk urea 150 kg ha⁻¹, SP 36 50 kg ha⁻¹ dan pengolahan yag kurang intensif. Penerapan teknologi introduksi pada padi Batang Piaman menghasilkan 6,86 ton ha⁻¹ dan teknologi petai menghasilkan 4,20 ton ha⁻¹. Dengan peningkata praktek teknologi hasil padi varietas Batang Piaman meningkat 2,66 ton ha-1 (63,33%).

Kata kunci : padi sawah, produktivitas perbaikan, budidaya padi

PENDAHULUAN

Kebutuhan beras sebagai salah satu sumber pangan utama penduduk Indonesia terus meningkat karena selain jumlah penduduk yang terus bertambah dengan laju peningkatan 2% per tahun, juga adanya perobahan pola konsumsi penduduk yang non beras ke beras. Di lain pihak terjadinya penciutan lahan sawah subur akibat konversi lahan untuk kepentingan selain pertanian, juga terjadinya fenomena produktivitas padi sawah irigasi cenderung turun (Badan Litbang Pertanian, 2008).

Terjadinya penurunan hasil padi sawah disebabkan oleh banyak faktor, antara lain; iklim yang selalu berubah, ketersediaan air, kesuburan tanah, varietas, sistem pengelolaan tanaman, dan perkembangan hama dan penyakit. Andalan produksi padi nasional terfokus pada lahan sawah, sedangkan sumbangan padi gogo (padi lahan kering) sangat terbatas. Pada saat ini produktivitas padi sawah sudah mencapai 5,68 ton ha⁻¹ dan padi gogo 2,44 ton ha⁻¹ (BPS, 2005).

Secara umum pengelolaan sawah irigasi secara intensif belum diikuti oleh penerapan kaedah pelestarian kesuburan tanah. Eksploitasi lapisan olah tanah sawah secara intensif telah berlangsung bertahun-tahun sehingga terjadi detiorasi fisiko kimia tanah (Sembiring et al., 2008). Hal ini menyebabkan produktivitas padi di lahan sawah tidak mencapai optimal. Oleh sebab itu, upaya meningkatkan produktivitas padi perlu dilakukan melalui perbaikan teknologi yang efektif dan efisien serta menjaga kelestarian lahan. Pada lahan sawah yang diusahakan secara intensif telah terjadi pelandaian produksi. Hal ini terutama disebabkan antara lain oleh penurunan kadarbahan organik tanah, penurunan penambatan N2 udara, penurunan kecepatan penyediaan hara N, P, dan K dalam tanah, penimbunan senyawa yang bersifat racun bagi tanaman (H2S), asamasam organik, ketidak seimbangan unsur hara, kahat unsur hara mikro (Cu dan Zn), tanah terlalu reduktif penyimpangan iklim dan tekanan biotik dan varietas (Badan Litbang Pertanian, 2001a).

Berdasarkan permasalahan di atas, jelas bahwa rendahnya hasil yang dicapai pada padi sawah sangat erat hubungannya dengan tingkat kesuburan tanah, pemupukan yang masih dibawah rekomendasi, ketersediaan air dan pengaturan sistem penggunan air, teknologi dan faktor iklim (Fagi et al., 2008). Pada umumnya pemupukan K dan pemberian bahan organik jarang yang dilakukan oleh petani. Pemupukan N dan P saja sepanjang musim akan merangsang kekurangan unsur lain seperti K dan S serta unsur mikro. Penerapan pemupukan yang berimbang sangat penting artinya dalam peninkatan produksi. Tanaman penghasil karbohidrat seperti padi sangat membutuhkan unsur K. Dimana unsur K sangat penting atinya untuk meningkatkan laju fotosintesis dan menyalurkan hasilnya ketempat penyimpanan (Hubber, 1985).

Dengan demikian, upaya peningkatan produktivitas padi dimasa datang nerlu penataan kembali lebih baik, terutama sekali dihubungkan dengan turunnya produksi dan kejenuhan teknologi yang terjadi di lahan sawah irigasi (Abdulrachman dan Makarim, 2008). Dari hasil penelitian yang dilaksanakan di Kenagarian Gando Kabupaten 50 Kota terlihat bahwa, perbaikan teknologi budidaya dengan penerapan sistem tanam jajar legowo 4:1 yang diintegrasikan dengan paket pemupukn lengkap yaitu pemberian pupuk Urea 100 kg ha⁻¹ + SP $36\ 100\ kg\ ha^{-1} + KCl\ 50\ kg\ ha^{-1} + ZA\ 50\ kg$ ha-1 dengan pengelolaan tanaman yang intensif ternyata padi sawah varietas Junjung dapat menghasilkan 4,9 ton ha⁻¹ sedangkan dengan teknologi yang biasa dilakukan oleh petani hasil yang dicapai hanya 3,2 ton ha-1 (Sahar et al., 2004).

Padi sawah varietas lokal Muaro Labuh dan varietas unggul Batang Piaman dengan teknologi petani kedua varietas ini hanya menghasilkan 3,50 dan 4,1 ton ha-1, tetapi dengan pemupukan Urea 150 kg ha-1 + SP 36 100 kg ha-1 + KCl 50 kg ha-1 masing-masing varietas dapat menghasilkan 5,5 dan 6,9 ton ha-1 (Prima Tani Kabupaten 50 Kota, 2007). Berdasarkan hasil penetapan kesuburan tanah dengan menggunakan Perangkat

Uji Tanah Sawah (PUTS) rekomendasi pemupukan untuk lahan sawah di Koto Baru Simalanggang Kabupaten 50 Kota adalah, Urea 200 kg ha⁻¹ + SP 36 100 kg ha⁻¹ + KCl 50 kg ha⁻¹ + kompos Jerami 5 ton ha⁻¹ (Ritung et al., 2007). Rekomendasi ini belum banyak dilakukan oleh petani, di samping teknologi yang diterapkan oleh petani masih sangat beragam terutama adalah penggunaan benih dan bibit, pengaturan sistem jarak tanam, pemupukan, pengendalian hama dan penyakit. Hal ini juga menyebabkan hasil yang dicapai sangat beragam antara petani disetiap lokasi. Untuk peningkatan produktivitas padi sawah perlu dilakukan perbaikan teknologi budidaya pada varietas padi yang berkembang di areal pelaksanaan kegiatan.

Penelitian ini bertujuan untuk membandingkan pengaruh paket teknologi budidaya terhadap pertumbuhan dan peningkatan hasil, serta untuk mendapatkan paket teknologi yang tepat dan hasil yang lebih tinggi.

METODE PENELITIAN

Penelitian dilaksanakan pada lahan sawah irigasi Kenagarian Koto Baru Simalanggang, Kabupaten 50 Kota, Provinsi Sumatera Barat pada MK. 2007. Penelitian ini terdiri dari 2 kegiatan yaitu:

Uji Beberapa Paket Teknologi Budidaya pada Padi Sawah.

Perlakuan terdiri dari beberapa paket teknologi budidaya pada padi sawah varietas Junjung (Tabel 1).

Tabel 1. Perlakuan paket teknologi budidaya pada padi sawah, Koto Baru Simalanggang Kabupaten 50 Kota, MK. 2007.

Komponen Teknologi	Paket A	Paket B	Paket C	Paket D (cara Petani)
Sistem Jarak	Legowo 6:1	Biasa	Biasa	Biasa
Tanam	40x 20x20 cm	20 x 20 cm	20 x20 cm	25 x 25 cm
Jumlah bibit/	2-3 btg	2-3 btg	5 btg	7-10 btg
rumpun				
Takaran Pupuk				
o Urea	150 kg ha ⁻¹	$150~\mathrm{kg~ha^{-1}}$	150 kg ha ⁻¹	150 kg ha ⁻¹
° SP 36	100 kg h ^{a-1}	$100~\mathrm{kg~ha^{-1}}$	100 kg ha ⁻¹	50 kg ha ⁻¹
° KCl	50 kg ha ⁻¹	50 kg ha ⁻¹	-	-
o Pukan	500 kgha ⁻¹		$500~\mathrm{kg~ha^{-1}}$	-
Penyiangan	21 dan 42 hst	21dan 42 hst	21 dan 42 hst	30 hst
Pengendalian hama	Intensif	Intensif	Intensif	Kurang intensif
dan				
Penyakit				
Sisten Pengairan	Berselang	Berselang	Berselang	Terus menerus sampai
	(Intermitten)	(Intermitten)	(Intermitten)	umur 6 minggu
Panen/	Alsintan/	Alsintan/	Alsintan/	Manual/Banting
Prosesing	Tresher	Tresher	Tresher	

Keterangan: 1. Olah tanah sempurna, umur bibit 15 hari pada persemain diatas plastik

Uji Paket Teknologi Introduksi dan Paket Teknologi Petani.

Perlakuan tediri atas dua paket teknologi yaitu paket teknologi introduksi dan paket teknologi petani (Tabel 2). Pada kegiatan ini varietas padi yang dipakai adalah Batang Piaman. Sistem persiapan lahan adalah dengan sistem olah tanah sempurna, yaitu dibajak 2 kali dan digaru sebelum tanam. Pada teknologi introduksi persemaian dilakukan di atas plastik dalam sawah, dan teknologi petani persemaian dilakukan di lahan kering (persemaian kering).

Untuk paket teknologi yang diterapkan pada kegiatan I (paket A, B dan C) dan paket teknologi introduksi pada kegiatan II, pengaturan sistem jarak tanam dilakukan dengan sistem tanam 20 x 20 cm dalam sistem tanam jajar legowo 6: 1 . Seluruh takaran pupuk organik dan pupuk SP 36, diberikan waktu tanam, 1/3 takaran urea dan KCl diberikan umur 15 hst, 30 dan saat primordia. Penyiangan 2 kali yaitu 21 dan 42 hst, pengendalian hama dan penyakit dilakukan secara intensif yaitu menyemprot dengan insektisida Decis dan Kiltop pada saat

pertumbuhan vegetatif dan generatif untuk hama, dan untuk mengendalikan penyakit khususnya blast disemprot dengan Fujiwan pada saat pertumbuhan vegetatif dan generatif. Kemudian pemberian air secara berselang (intermitten) yaitu waktu tanam kondisi air macak-macak sampai umur tanaman 1 minggu, selanjtnya lahan diari secara berselang-seling dengan interval waktu satu minggu dan pemberian air dihentikan setelah tanam berumur 10 minggu. Sedangkan pada teknologi petani pupuk diberikan sekali yaitu pada umur 30 hst Penyiangan hanya sekali yaitu pada umur 30 hst, pengendalian hama tidak dilakukan secara intensif dan penyakit pengendalian hama dan penyakit dilakukan setelah terlihat serangan berat. Pemberian air irigasi tidak beraturan, dan cenderung digenangi secara terus-menerus sampai padi mencapai fase primordia.

Parameter yang diamati terdiri atas, sifatsifat agronomi tanaman yaitu tinggi tanaman, jumlah malai/rumpun, jumlah gabah/malai, persentase gabah hampa, berat 1000 biji dan hasil GKP (ton ha⁻¹).

Tabel 2. Perlakuan paket teknologi introduksi dan paket teknologi petani padi sawah varietas Logawa, Koto Baru Simalanggang Kabupaten 50 Kota, MK. 2007

Komponen Teknologi	Paket Introduksi	Paket D (cara Petani)
Sistem Jarak Tanam	Legowo 6:1 (20x20 cm)	Biasa (25 x 25 cm)
Jumlah bibit/ rumpun	3 batang/rumpun	> 7 bantang/rumpun
Takaran Pupuk		
o Urea	150 kg ha ⁻¹	100 kg ha ⁻¹
∘ SP 36	100 kg ha ⁻¹	50 kg ha ⁻¹
° KCl	50 kg ha ⁻¹	-
Pukan	500 kg ha ⁻¹	-
Penyiangan	2 kali	1 kali
Pengendalian hama dan	Intensif	Tidak intensif
Penyakit		
Sisten Pengairan	Berselang/Intermitten	Terus menerus sampai umur 6 minggu
Panen/ Prosesing	Sabit danTresher	Sabit dan banting

Keterangan: Umur bibit 15 hari pada persemaian di atas plastik (paket teknologi introduksi) Persemaian kering (paket teknologi petani) Olah tanah sempurna.

Tabel 3.	Pertumbuhan, komponen hasil dan hasil padi sawah varietas Cisokan pada beberapa paket
	teknologi budidaya, Koto Baru Simalanggang Kabupaten 50 Kota MK. 2007

Parameter	Paket A	Paket B	Paket C	Paket D
Tinggi tanaman (cm)	98,00 a	100,30 a	98,59 a	100,01 a
Jumlah malai/rumpun	18,10 a	19,11 a	18,50 a	14,81 b
Jumlah gabah/malai	105,50 a	107,00 a	105,20 ab	98,55 b
Gabah hampa (%)	15,05 b	14,50 b	15,00 b	23,01 a
Berat 1000 biji (g)	22,00 a	22,11 a	21,51 a	22,50 a
Hasil (t/ha)	5,81 a	4,85 b	4,81 b	3,87 c

Keterangan : Angka-angka pada kolom yang sama diikuti huruf sama tidak berbeda nyata pada Duncan (p = 0.05)

Tabel 4. Pengaruh paket teknologi budidaya terhadap pertumbuhnan komponen hasil dan hasil padi sawah varietas Batang Piaman, Koto Baru Simalanggang Kabupaten 50 Kota, MK. 2007

Parameter	Paket Petani	Paket Produksi	Peningkatan (%)
TTinggi tanaman (cm)	96,70	103,30	+ 6,60
Jumlah malai/rumpun	12,00	18,41	+ 6,41
Jumlah gabah/malai	98,40	137,10	+ 37,70
Gabah hampa (%)	21,50	18,70	-2,80
Berat 1000 biji (g)	21,50	23,20	+1,70
Hasil (ton ha ⁻¹)	4,20	6,86	+2,66

Keterangan: Nilai rata-rata dari 10 sampel

HASIL DAN PEMBAHASAN

Kegiatan I

Dengan paket teknologi budidaya ternyata dapat memberikan keragaan tanaman yang lebih baik dibandingkan dengan teknologi petani (Tabel 3). Paket A, B dan C merupakan paket teknologi introduksi, ternyata dapat menghasilkan nilai-nilai komponen hasil dan hasil lebih tinggi dibandingkan dengan paket D (paket teknologi petani), meskipun tidak berbeda nyata terhadap tinggi tanaman dan berat 1000 biji. Dari 4 paket teknologi yang diuji ternyata paket A dapat memberikan hasil tertinggi yaitu 5,8 ton GKP ha⁻¹, sedangkan paket B dan C hanya memberikan hasil sebesar 4,8 dan 4,8 GKP ha⁻¹, namun hasil ini jauh lebih tinggi dibandingkan dengan hasil pada paket teknologi petani hanya 3,9 ton GKP ha⁻¹. Berdasarkan hasil penelitian

paket A, meskipun jumlah malai/rumpun, jumlah gabah/malai, persentase gabah hampa dan berat 1000 biji tidak banyak dengan paket teknologi lainya, tetapi pada paket populasi tanaman/ satuan luas lebih banyak, karena jarak tanamnya lebih rapat (20x20 cm) dan diatur dengan sistem jajar legowo 6:1. Rendahnya hasil pada paket D antara lain disebabkan oleh teknologi yang diterapkan oleh petani belum mampu memenuhi persyaratan pertumbuhan tanaman padi untuk berproduksi secara maksimal. Hal ini terlihat pada penggunaan bibit/rumpun yang berlebihan, yang menyebabkan pertumbuhan produktif/rumpun tidak anakan optimal. takaran pupuk yang diberikan masih dibawah rekomendasi, pengendalian hama dan penyakit serta pengendalian gulma yang belum intensif, dan diikuti oleh pengelolaan tanaman yang belum sempurna.

Halini memberi isyarat bahwa untuk mencapai produktivitas yang lebih tinggi tanaman padi memerlukan pengelolaan sistem budidaya yang lebih baik seperti; pengaturan jarak dan sistem tanam yang lebih baik, pemupukan yang sesuai dengan rekomendasi (berdasarkan status hara tanah), dan pemberian bahan organik. Sebab lahan sawah yang selalu diusahakan secara intensif sepanjang tahun sudah terjadi penurunan kadar bahan organik tanah, penambatan N2 udara sudah berkurang, dan penurunan percepatan penyediaan unsur N, P dan K (Badan Litbang Pertanian, 2001b). Kondisinya akan lebih parah bila setiap musim panen jerami dan sisa-sisa tanaman tidak dikembalikan ke lahan.

Kegiatan II

Perbedaan paket teknologi sangat berpengaruh terhadap pertumbuhan tanaman, komponen hasil dan hasil padi sawah (Tabel. 4). Dengan penerapan teknologi introduksi dapat memberikan pertumbuhan tanaman yang lebih baik, jumlah malai/rumpun, dan jumlah gabah/ malai yang lebih banyak, berat 1000 biji dan hasil yang lebih tinggi dan persentase gabah hampa yang lebih rendah dibandingkan dengan paket teknologi petani. Hal ini menunjukan bahwa, untuk hasil yang lebih tinggi, teknologi budidaya yang diterapkan oleh petani perlu diperbaiki atau disempurnakan sesuai dengan kondisi lingkungan. Artinya untuk mencapai hasil yang maksimal suatu varieteas unggul juga perlu didukung oleh teknologi budidaya yang tepat. Komponen teknologi untuk meningkatkan hasil padi sawah mencakup penggunaan bibit umur muda 15 hari setelah semai, jumlah bibit/ rumpun 1-3 batang, penggunaan bahan organik, pemupukan N, P dan K berdasarkan hasil anlisis tanah, dan sistem irigasi berselang (Las et al., 2003), serta peningkatan populasi tanaman per satuan luas dengan penerapan sistem tanam jajar legowo dan pengendalian hama dan penyakit secara intensi (Syamsiah et al., 2004). Dengan perbaikan teknologi budidaya melalui paket teknologi introduksi, hasil rata-rata dapat dicapai 6,86 ton GKP ha⁻¹, lebih tinggi dibandingkan dengan teknologi petani yang hanya dapat

memberikan hasil sebesar 4,20 ton GKP ha⁻¹, atau terjadi peningkatan hasil sebesar 2.7 ton ha⁻¹ 63,33%.

KESIIMPULAN

Hasil tertinggi di capai oleh varietas Junjung dengan menggunakan paket teknologi A dengan kombinasi perlakuan sistem tanam jajar legowo 6:1, pemupukan urea 150 kg/ha + SP36 100 kg ha⁻¹ + KCl 50 kg ha⁻¹ + bahan organik 500 kg ha⁻¹ dan sistem pengairan berselang (intermitten) yaitu sebesar 6,86 ton GKP ha⁻¹. Sedangkan dengan cara petani hanya memberikan hasil 3,87 GKP ha⁻¹.

Varietas padi Batang Piaman dengan metode Pengelolaan Tanaman Terpadu (PTT) memberikan hasil 6,86 GKP ha⁻¹, sementara teknologi petani hanya memberikan hasil 4,20 ton GKP ha⁻¹. Atau terjadi peningkatan hasil 63,33%.

DAFTAR PUSTAKA

- Abdulrachman, A dan A. K. Makarim. 2008. Pengelolaan tanaman terpadu (PTT): Hasil penelitian dan prospek pengembangan pupuk. Assosiasi Produsen Pupuk Indonesia. 3:2-7.
- Badan Litbang Pertanian. 2001 b. Pengelolaan tanaman terpadu: Pendekatan inovatif sistem padi sawah. Warta Penelitian dan Pengembangan Peranian 23 (2):3–5.
- Badan Litbang Pertanian. 2001a Pengelolaan tanamn terpadu dan sumberdaya terpadu pada saawah irigasi. Departemen Pertanian
- BPS. 2005. Statistik Indonesia 2004. Badan Pusat Statistik Jakarta.
- Fagi. A. M, H. Sembiring., dan Suyamto. 2008. Senjang hasil tanaman padi dan implikasinya dan Implikasinya terhadap P2BN IPTEK Tanaman Pangan, Puslitbangtan 3(2):126 144.

- Hubber, H.C. 1985. Role of potassium in photosynthesis and respiration. In Munson, R.D (ed) p.369-398. Potassium in Agriculture ASA, CSSA, SSSA, Madison, USA.
- Las, I., A.K. Makarim., A. Gani., H. Pane., dan S. Abdulrachman. 2003. Pandum teknis pengelolaan tanaman dan sumberdaya terpadu padi sawh irigasi. Departemen Pertanian.
- Prima Tani Kabupaten 50 Kota. 2007. Perabaikan teknologi budidaya padi sawah di Parumpung Kenagarian Koto Baru Simalanggang Kabupaten 50 Kota (Tidak dipublikasikan).
- Ritung.S.,Sunaryo,K.Nugroho,danS.Marwanto. 2007. Laporan Identifikasi dan evaluasi potensi lahan untuk mendukung Prima Tani di Nagari Koto Baru Simalanggang Kabupaen 50 Kotai, Propinsi Sumatera

- Barat. Balai Besar Penelitian Sumber Daya Lahan Pertanian, Bogor.
- Sahar, A, Ridwan dan Burbey. 2004.Paket pemupukan pada padi sawah di desa Gando Kabupaten 50 Kota. Jurnal Ilmiah Tambua Vol. II (2): 17-21. Univ. Mahaputra Mhd. Yamin.
- Sembiring, H., dan A. Abdulrachman. 2008.

 Potensi penerapan dan pengembangan
 PTT dalam Upaya peningkatan produksi
 padi. IPTEK Tanaman Pangan.
 Puslitbangtan, Bogor. 3(2): 145-155.
- Syamsiah, I., Syahrial. A., Amril.B., Nasrul.H., dan Azwir. 2004. Pengelolaan usahatani padi sawah secara terpadu di Pakandangan, Sumatera Barat. Buku Tiga. Kebijakan Perberasan dan Inovasi Teknologi Padi. Pusat Penelitian dan Pengembangan Tanaman Pangan, Badan Penelitian dan Pengembangan Pertanian