

Inductive Databases and
Constraint-Based Data Mining

1 C

Sašo Džeroski • Bart Goethals • Pan e Panov
Editors

Inductive Databases and
Constraint-Based
Data Mining

ISBN 978-1-4419-7737-3 e-ISBN 978-1-4419-7738-0
DOI 10.1007/978-1-4419-7738-0
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010938297

© Springer Science+Business Media, LLC 201
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editors
Sašo Džeroski
Jožef Stefan Institute
Dept. of Knowledge Technologies
Jamova cesta 39
SI-1000 Ljubljana
Slovenia
Saso.Dzeroski@ijs.si

Bart Goethals
University of Antwerp
Mathematics and Computer Science Dept.
Middelheimlaan 1
B-2020 Antwerpen
Belgium
Bart.Goethals@ua.ac.be

Panče Panov
Jožef Stefan Institute
Dept. of Knowledge Technologies
Jamova cesta 39
SI-1000 Ljubljana
Slovenia
Pance.Panov@ijs.si

0

Preface

This book is about inductive databases and constraint-based data mining, emerging
research topics lying at the intersection of data mining and database research. The
aim of the book as to provide an overview of the state-of- the art in this novel and ex-
citing research area. Of special interest are the recent methods for constraint-based
mining of global models for prediction and clustering, the unification of pattern
mining approaches through constraint programming, the clarification of the rela-
tionship between mining local patterns and global models, and the proposed inte-
grative frameworks and approaches for inducive databases. On the application side,
applications to practically relevant problems from bioinformatics are presented.

Inductive databases (IDBs) represent a database view on data mining and knowl-
edge discovery. IDBs contain not only data, but also generalizations (patterns and
models) valid in the data. In an IDB, ordinary queries can be used to access and ma-
nipulate data, while inductive queries can be used to generate (mine), manipulate,
and apply patterns and models. In the IDB framework, patterns and models become
”first-class citizens” and KDD becomes an extended querying process in which both
the data and the patterns/models that hold in the data are queried.

The IDB framework is appealing as a general framework for data mining, be-
cause it employs declarative queries instead of ad-hoc procedural constructs. As
declarative queries are often formulated using constraints, inductive querying is
closely related to constraint-based data mining. The IDB framework is also ap-
pealing for data mining applications, as it supports the entire KDD process, i.e.,
nontrivial multi-step KDD scenarios, rather than just individual data mining opera-
tions.

The interconnected ideas of inductive databases and constraint-based mining
have the potential to radically change the theory and practice of data mining and
knowledge discovery. The book provides a broad and unifying perspective on the
field of data mining in general and inductive databases in particular. The 18 chap-
ters in this state-of-the-art survey volume were selected to present a broad overview
of the latest results in the field.

Unique content presented in the book includes constraint-based mining of global
models for prediction and clustering, including predictive models for structured out-

v

vi Preface

puts and methods for bi-clustering; integration of mining local (frequent) patterns
and global models (for prediction and clustering); constraint-based mining through
constraint programming; integrative IDB approaches at the system and framework
level; and applications to relevant problems that attract strong interest in the bioin-
formatics area. We hope that the volume will increase in relevance with time, as we
witness the increasing trends to store patterns and models (produced by humans or
learned from data) in addition to data, as well as retrieve, manipulate, and combine
them with data.

This book contains sixteen chapters presenting recent research on the topics of
inductive databases and queries, as well as constraint-based data, conducted within
the project IQ (Inductive Queries for mining patterns and models), funded by the EU
under contract number IST-2004-516169. It also contains two chapters on related
topics by researchers coming from outside the project (Siebes and Puspitaningrum;
Wicker et al.)

This book is divided into four parts. The first part describes the foundations
of and frameworks for inductive databases and constraint-based data mining. The
second part presents a variety of techniques for constraint-based data mining or
inductive querying. The third part presents integration approaches to inductive
databases. Finally, the fourth part is devoted to applications of inductive querying
and constraint-based mining techniques in the area of bioinformatics.

The first, introductory, part of the book contains four chapters. Džeroski first
introduces the topics of inductive databases and constraint-based data mining and
gives a brief overview of the area, with a focus on the recent developments within
the IQ project. Panov et al. then present a deep ontology of data mining. Blockeel
et al. next present a practical comparative study of existing data-mining/inductive
query languages. Finally, De Raedt et al. are concerned with mining under compos-
ite constraints, i.e., answering inductive queries that are Boolean combinations of
primitive constraints.

The second part contains six chapters presenting constraint-based mining tech-
niques. Besson et al. present a unified view on itemset mining under constraints
within the context of constraint programming. Bringmann et al. then present a num-
ber of techniques for integrating the mining of (frequent) patterns and classification
models. Struyf and Džeroski next discuss constrained induction of predictive clus-
tering trees. Bingham then gives an overview of techniques for finding segmenta-
tions of sequences, some of these being able to handle constraints. Cerf et al. discuss
constrained mining of cross-graph cliques in dynamic networks. Finally, De Raedt
et al. introduce ProbLog, a probabilistic relational formalism, and discuss inductive
querying in this formalism.

The third part contains four chapters discussing integration approaches to induc-
tive databases. In the Mining Views approach (Blockeel et al.), the user can query
the collection of all possible patterns as if they were stored in traditional relational
tables. Wicker et al. present SINDBAD, a prototype of an inductive database sys-
tem that aims to support the complete knowledge discovery process. Siebes and
Puspitaningrum discuss the integration of inductive and ordinary queries (relational
algebra). Finally, Vanschoren and Blockeel present experiment databases.

Preface vii

The fourth part of the book, contains four chapters dealing with applications in
the area of bioinformatics (and chemoinformatics). Vens et al. describe the use of
predictive clustering trees for predicting gene function. Slavkov and Džeroski de-
scribe several applications of predictive clustering trees for the analysis of gene
expression data. Rigotti et al. describe how to use mining of frequent patterns on
strings to discover putative transcription factor binding sites in gene promoter se-
quences. Finally, King et al. discuss a very ambitious application scenario for in-
ductive querying in the context of a robot scientist for drug design.

The content of the book is described in more detail in the last two sections of the
introductory chapter by Džeroski.

We would like to conclude with a word of thanks to those that helped bring this
volume to life: This includes (but is not limited to) the contributing authors, the
referees who reviewed the contributions, the members of the IQ project and the
various funding agencies. A more complete listing of acknowledgements is given in
the Acknowledgements section of the book.

September 2010 Sašo Džeroski
Bart Goethals
Panče Panov

Acknowledgements

Heartfelt thanks to all the people and institutions that made this volume possible and
helped bring it to life.

First and foremost, we would like to thank the contributing authors. They did a
great job, some of them at short notice. Also, most of them showed extraordinary
patience with the editors.

We would then like to thank the reviewers of the contributed chapters, whose
names are listed in a separate section. Each chapter was reviewed by at least two (on
average three) referees. The comments they provided greatly helped in improving
the quality of the contributions.

Most of the research presented in this volume was conducted within the project
IQ (Inductive Queries for mining patterns and models). We would like to thank ev-
erybody that contributed to the success of the project: This includes the members of
the project, both the contributing authors and the broader research teams at each of
the six participating institutions, the project reviewers and the EU officials handling
the project. The IQ project was funded by the European Comission of the EU within
FP6-IST, FET branch, under contract number FP6-IST-2004-516169.

In addition, we want to acknowledge the following funding agencies:

• Sašo Džeroski is currently supported by the Slovenian Research Agency (through
the research program Knowledge Technologies under grant P2-0103 and the re-
search projects Advanced machine learning methods for automated modelling
of dynamic systems under grant J2-0734 and Data Mining for Integrative Data
Analysis in Systems Biology under grant J2-2285) and the European Commission
(through the FP7 project PHAGOSYS Systems biology of phagosome forma-
tion and maturation - modulation by intracellular pathogens under grant num-
ber HEALTH-F4-2008-223451). He is also supported by the Centre of Excel-
lence for Integrated Approaches in Chemistry and Biology of Proteins (opera-
tion no. OP13.1.1.2.02.0005 financed by the European Regional Development
Fund (85%) and the Slovenian Ministry of Higher Education, Science and Tech-
nology (15%)), as well as the Jozef Stefan International Postgraduate School in
Ljubljana.

ix

x Acknowledgements

• Bart Goethals wishes to acknowledge the support of FWO-Flanders through the
project ”Foundations for inductive databases”.

• Panče Panov is supported by the Slovenian Research Agency through the re-
search projects Advanced machine learning methods for automated modelling of
dynamic systems (under grant J2-0734) and Data Mining for Integrative Data
Analysis in Systems Biology (under grant J2-2285).

Finally, many thanks to our Springer editors, Jennifer Maurer and Melissa
Fearon, for all the support and encouragement.

September 2010 Sašo Džeroski
Bart Goethals
Panče Panov

List of Reviewers

Hendrik Blockeel Katholieke Universiteit Leuven, Belgium
Marko Bohanec Jožef Stefan Institute, Slovenia
Jean-Francois Boulicaut University of Lyon, INSA Lyon, France
Mario Boley University of Bonn and Fraunhofer IAIS, Germany
Toon Calders Eindhoven Technical University, Netherlands
Vineet Chaoji Yahoo! Labs, Bangalore, India
Amanda Clare Aberystwyth University, United Kingdom
James Cussens University of York, United Kingdom
Tomaž Curk University of Ljubljana, Ljubljana, Slovenia
Ian Davidson University of California - Davis, USA
Luc Dehaspe Katholieke Universiteit Leuven, Belgium
Luc De Raedt Katholieke Universiteit Leuven, Belgium
Jeroen De Knijf University of Antwerp, Belgium
Tijl De Bie University of Bristol, United Kingdom
Sašo Džeroski Jožef Stefan Institute, Slovenia
Elisa Fromont University of Jean Monnet, France
Gemma C. Garriga University of Paris VI, France
Christophe Giraud-Carrier Brigham Young University, USA
Jiawei Han University of Illinois at Urbana-Champaign, USA
Hannes Heikinheimo Aalto Universit, Finland
Cristoph Hema In Silico Toxicology, Switzerland
Andreas Karwath Albert-Ludwigs-Universitat, Germany
Jörg-Uwe Kietz University of Zurich, Switzerland
Arno Knobbe University of Leiden, Netherlands
Petra Kralj Novak Jožef Stefan Institute, Slovenia
Stefan Kramer Technische Universität München, Germany
Rosa Meo University of Torino, Italy
Pauli Miettinen Max-Planck-Institut für Informatik, Germany
Siegfried Nijssen Katholieke Universiteit Leuven, Belgium
Markus Ojala Aalto University, Finland
Themis Palpanas University of Trento, Italy

xi

xii List of Reviewers

Panče Panov Jožef Stefan Institute, Ljubljana, Slovenia
Juho Rousu University of Helsinki, Finland
Nikolaj Tatti University of Antwerp, Belgium
Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece
Giorgio Valentini University of Milano, Italy
Jan Van den Bussche Universiteit Hasselt, Belgium
Jilles Vreeken University of Utrecht, Netherlands
Kiri Wagstaff California Institute of Technology, USA
Joerg Wicker Technische Universität München, Germany
Gerson Zaverucha Federal University of Rio de Janeiro, Brazil
Albrecht Zimmermann Katholieke Universiteit Leuven, Belgium
Bernard Ženko Jožef Stefan Institute, Slovenia

Contents

Part I Introduction

1 Inductive Databases and Constraint-based

Data Mining: Introduction and Overview . 3
Sašo Džeroski
1.1 Inductive Databases . 3
1.2 Constraint-based Data Mining . 7
1.3 Types of Constraints . 9
1.4 Functions Used in Constraints . 12
1.5 KDD Scenarios . 14
1.6 A Brief Review of Literature Resources . 15
1.7 The IQ (Inductive Queries for Mining Patterns and Models) Project 17
1.8 What’s in this Book . 22

2 Representing Entities in the OntoDM Data Mining Ontology 27
Panče Panov, Larisa N. Soldatova, and Sašo Džeroski
2.1 Introduction . 27
2.2 Design Principles for the OntoDM ontology 29
2.3 OntoDM Structure and Implementation . 33
2.4 Identification of Data Mining Entities . 38
2.5 Representing Data Mining Enitities in OntoDM 46
2.6 Related Work . 52
2.7 Conclusion . 54

3 A Practical Comparative Study Of Data Mining Query Languages . . 59
Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana
Prado, and Céline Robardet
3.1 Introduction . 60
3.2 Data Mining Tasks . 61
3.3 Comparison of Data Mining Query Languages 62
3.4 Summary of the Results . 74
3.5 Conclusions . 76

xiii

xiv Contents

4 A Theory of Inductive Query Answering . 79
Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila
4.1 Introduction . 80
4.2 Boolean Inductive Queries . 81
4.3 Generalized Version Spaces . 88
4.4 Query Decomposition . 90
4.5 Normal Forms . 98
4.6 Conclusions . 100

Part II Constraint-based Mining: Selected Techniques

5 Generalizing Itemset Mining in a Constraint Programming Setting . 107
Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried
Nijssen
5.1 Introduction . 107
5.2 General Concepts . 109
5.3 Specialized Approaches . 111
5.4 A Generalized Algorithm . 114
5.5 A Dedicated Solver . 116
5.6 Using Constraint Programming Systems . 120
5.7 Conclusions . 124

6 From Local Patterns to Classification Models . 127
Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann
6.1 Introduction . 127
6.2 Preliminaries . 131
6.3 Correlated Patterns . 132
6.4 Finding Pattern Sets . 137
6.5 Direct Predictions from Patterns . 142
6.6 Integrated Pattern Mining . 146
6.7 Conclusions . 152

7 Constrained Predictive Clustering . 155
Jan Struyf and Sašo Džeroski
7.1 Introduction . 155
7.2 Predictive Clustering Trees . 156
7.3 Constrained Predictive Clustering Trees and Constraint Types 161
7.4 A Search Space of (Predictive) Clustering Trees 165
7.5 Algorithms for Enforcing Constraints . 167
7.6 Conclusion . 173

8 Finding Segmentations of Sequences . 177
Ella Bingham
8.1 Introduction . 177
8.2 Efficient Algorithms for Segmentation . 182
8.3 Dimensionality Reduction . 183

Contents xv

8.4 Recurrent Models . 185
8.5 Unimodal Segmentation . 188
8.6 Rearranging the Input Data Points . 189
8.7 Aggregate Segmentation . 190
8.8 Evaluating the Quality of a Segmentation: Randomization 191
8.9 Model Selection by BIC and Cross-validation 193
8.10 Bursty Sequences . 193
8.11 Conclusion . 194

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks . . . 199
Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut
9.1 Introduction . 199
9.2 Problem Setting . 201
9.3 DATA-PEELER . 205
9.4 Extracting δ -Contiguous Closed 3-Sets . 208
9.5 Constraining the Enumeration to Extract 3-Cliques 212
9.6 Experimental Results . 217
9.7 Related Work . 224
9.8 Conclusion . 226

10 Probabilistic Inductive Querying Using ProbLog 229
Luc De Raedt, Angelika Kimmig, Bernd Gutmann, Kristian Kersting,
Vı́tor Santos Costa, and Hannu Toivonen
10.1 Introduction . 229
10.2 ProbLog: Probabilistic Prolog . 233
10.3 Probabilistic Inference . 234
10.4 Implementation . 238
10.5 Probabilistic Explanation Based Learning . 243
10.6 Local Pattern Mining . 245
10.7 Theory Compression . 249
10.8 Parameter Estimation . 252
10.9 Application . 255
10.10 Related Work in Statistical Relational Learning 258
10.11 Conclusions . 259

Part III Inductive Databases: Integration Approaches

11 Inductive Querying with

Virtual Mining Views . 265
Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana
Prado, and Céline Robardet
11.1 Introduction . 266
11.2 The Mining Views Framework . 267
11.3 An Illustrative Scenario . 277
11.4 Conclusions and Future Work . 285

xvi Contents

12 SINDBAD and SiQL: Overview, Applications and Future

Developments . 289
Jörg Wicker, Lothar Richter, and Stefan Kramer
12.1 Introduction . 289
12.2 SiQL . 291
12.3 Example Applications . 296
12.4 A Web Service Interface for SINDBAD . 303
12.5 Future Developments . 305
12.6 Conclusion . 307

13 Patterns on Queries . 311
Arno Siebes and Diyah Puspitaningrum
13.1 Introduction . 311
13.2 Preliminaries . 313
13.3 Frequent Item Set Mining . 319
13.4 Transforming KRIMP . 323
13.5 Comparing the two Approaches . 331
13.6 Conclusions and Prospects for Further Research 333

14 Experiment Databases . 335
Joaquin Vanschoren and Hendrik Blockeel
14.1 Introduction . 336
14.2 Motivation . 337
14.3 Related Work . 341
14.4 A Pilot Experiment Database . 343
14.5 Learning from the Past . 350
14.6 Conclusions . 358

Part IV Applications

15 Predicting Gene Function using Predictive Clustering Trees 365
Celine Vens, Leander Schietgat, Jan Struyf, Hendrik Blockeel, Dragi
Kocev, and Sašo Džeroski
15.1 Introduction . 366
15.2 Related Work . 367
15.3 Predictive Clustering Tree Approaches for HMC 369
15.4 Evaluation Measure . 374
15.5 Datasets . 375
15.6 Comparison of Clus-HMC/SC/HSC . 378
15.7 Comparison of (Ensembles of) CLUS-HMC to State-of-the-art

Methods . 380
15.8 Conclusions . 384

Contents xvii

16 Analyzing Gene Expression Data with Predictive Clustering Trees . . 389
Ivica Slavkov and Sašo Džeroski
16.1 Introduction . 389
16.2 Datasets . 391
16.3 Predicting Multiple Clinical Parameters . 392
16.4 Evaluating Gene Importance with Ensembles of PCTs 394
16.5 Constrained Clustering of Gene Expression Data 397
16.6 Clustering gene expression time series data . 400
16.7 Conclusions . 403

17 Using a Solver Over the String Pattern Domain to Analyze Gene

Promoter Sequences . 407
Christophe Rigotti, Ieva Mitašiūnaitė, Jérémy Besson, Laurène Meyniel,
Jean-François Boulicaut, and Olivier Gandrillon
17.1 Introduction . 407
17.2 A Promoter Sequence Analysis Scenario . 409
17.3 The Marguerite Solver . 412
17.4 Tuning the Extraction Parameters . 413
17.5 An Objective Interestingness Measure . 415
17.6 Execution of the Scenario . 418
17.7 Conclusion . 422

18 Inductive Queries for a Drug Designing Robot Scientist 425
Ross D. King, Amanda Schierz, Amanda Clare, Jem Rowland, Andrew
Sparkes, Siegfried Nijssen, and Jan Ramon
18.1 Introduction . 425
18.2 The Robot Scientist Eve . 427
18.3 Representations of Molecular Data . 430
18.4 Selecting Compounds for a Drug Screening Library 444
18.5 Active learning . 446
18.6 Conclusions . 448
Appendix . 452

Author index . 455

Chapter 13

Patterns on Queries

Arno Siebes and Diyah Puspitaningrum

Abstract One of the most important features of any database system is that it sup-
ports queries. For example, in relational databases one can construct new tables
from the stored tables using relational algebra. For an inductive database, it is rea-
sonable to assume that the stored tables have been modelled. The problem we study
in this chapter is: do the models available on the stored tables help to model the
table constructed by a query? To focus the discussion, we concentrate on one type
of modelling, i.e., computing frequent item sets. This chapter is based on results
reported in two earlier papers [12, 13]. Unifying the approaches advocated by those
papers as well as comparing them is the main contribution of this chapter.

13.1 Introduction

By far the most successful type of DBMS is relational. In a relational database, the
data is stored in tables and a query constructs a new table from these stored tables
using, e.g., relational algebra [5]. While querying an inductive relational database,
the user will, in general, not only be interested in the table that the query yields,
but also -if not more- in particular models induced from that result-table. Since
inductive databases have models as first-class citizens -meaning they can be stored
and queried- it is reasonable to assume that the original, stored, tables are already
modelled. Hence, a natural question is: does knowing a model on the original tables
help in inducing a model on the result of a query?

Slightly more formally, let MDB be the model we induced from database DB and
let Q be a query on DB. Does knowing MDB help in inducing a model MQ on Q(DB),
i.e., on the result of Q when applied to DB. For example, if MDB is a classifier and

Arno Siebes · Diyah Puspitaningrum
Department Of Information and Computing Sciences, Universiteit Utrecht, The Netherlands
e-mail: {arno,diyah}@cs.uu.nl

311
S. Džeroski, Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_13, © Springer Science+Business Media, LLC 2010

312 Arno Siebes and Diyah Puspitaningrum

Q selects a subset of DB, does knowing MDB help the induction of a new classifier
MQ on the subset Q(DB)?

This formulation is only slightly more formal as the term “help” is a non-
technical and, thus, ill-defined concept. In this chapter, we will formalise “help”
in two different ways. Firstly, in the sense that we can compute MQ directly from
MDB without consulting either DB or Q(DB). While this is clearly the most elegant
way to formalise “help”, it puts such stringent requirements on the class of mod-
els we consider that the answer to our question becomes no for many interesting
model-classes; we’ll exhibit one in this chapter.

Hence, secondly, we interpret “help”, far less ambitiously, as meaning “speeding-
up” the computation of MQ. That is, let A lg be the algorithm used to induce MDB
from DB, i.e., A lg(DB) =MDB. We want to transform A lg into an algorithm A lg∗,
which takes MDB as extra input such that

A lg∗(Q(DB),MDB)≈A lg(Q(DB))

Note that we do not ask for exactly the same model, approximately the same answer
is acceptable if the speed-up is considerable. In fact, for many application areas,
such as marketing, a good enough model rather than the best model is all that is
required.

The problem as stated is not only relevant in the context of inductive databases,
but also in existing data mining practice. In the data mining literature, the usual
assumption is that we are given some database that has to be mined. In practice,
however, this assumption is usually not met. Rather, the construction of the mining
database is often one of the hardest parts of the KDD process [9]. The data often
resides in a data warehouse or in multiple databases, and the mining database is
constructed from these underlying databases.

From most perspectives, it is not very interesting to know whether one mines a
specially constructed database or an original database. For example, if the goal is to
build the best possible classifier on that data set, the origins of the database are of
no importance whatsoever.

It makes a difference, however, if the underlying databases have already been
modelled. Then, like with inductive databases, one would hope that knowing such
models would help in modelling the specially constructed mining database. For ex-
ample, if we have constructed a classifier on a database of customers, one would
hope that this would help in developing a classifier for the female customers only.

In other words, the problem occurs both in the context of inductive databases and
in the everyday practice of data miners. Hence, it is a relevant problem, but isn’t it
trivial? After all, if MDB is a good model on DB, it is almost always also a good
model on a random subset of DB; almost always, because a random subset may be
highly untypical. The problem is, however, not trivial because queries in general do
not compute a random subset. Rather, queries construct a very specific result.

For the usual “project-select-join” queries, there is not even a natural way in
which the query-result can be seen as subset of the original database. Even if Q is
just a “select”-query, the result is usually not random and MDB can even be highly

13 Patterns on Queries 313

misleading on Q(DB). This is nicely illustrated by the well-known example of Simp-
son’s Paradox on Berkeley’s admission data [3]. Overall, 44% of the male applicants
were admitted, while only 35% of the females were admitted. Four of the six depart-
ments, however, have a bias that is in favour of female applicants. While the overall
model may be adequate for certain purposes, it is woefully inadequate for a query
that selects a single department.

In other words, we do address a relevant and non-trivial problem. Addressing
the problem, in either sense of “help”, for all possible model classes and/or algo-
rithms is, unfortunately, too daunting a task for this chapter. In the sense of “direct
construction” it would require a discussion of all possible model classes, which is
too large a set to consider (and would result in a rather boring discussion). In the
“speed-up and approximation” sense it would require either a transformation of all
possible induction algorithms or a generic transformation that would transform any
such algorithm to one with the required properties. The former would, again, be far
too long, while a generic transformation is unlikely to exist.

Therefore we restrict ourselves to one type of model, i.e., frequent item sets [1]
and one induction algorithm, i.e., our own KRIMP algorithm [14]. The structure of
this chapter is as follows. In the next section, Section 13.2, we introduce our data,
models -that is code-tables-, and the KRIMP algorithm. Next, in Section 13.3 we
investigate the “direct computation” interpretation of “help” in the context of fre-
quent item set mining. This is followed in Section 13.4 by the introduction of a
transformed variant of KRIMP for the “speed-up” interpretation of “help”. In Sec-
tion 13.5, we discuss and compare these two approaches. The chapter ends with
conclusions and prospects for further research.

13.2 Preliminaries

In this section we give a brief introduction to the data, models, and algorithms as
used in this chapter.

13.2.1 Data

In this chapter we restrict ourselves to databases with categorical data only, the
biggest impact being that we do not consider real-valued attributes. Moreover, rather
than using the standard representation for relational databases, we represent them as
transaction databases familiar from item set mining. After briefly introducing such
databases, we will briefly discuss how a (categorical) relational database can be
transformed into such a transaction database. Moreover, for each relational algebra
operator, we will briefly discuss how they should be interpreted in the transaction
setting.

314 Arno Siebes and Diyah Puspitaningrum

13.2.1.1 Transaction Databases

The problem of frequent item set mining [1] can be described as follows. The basis
is a set of items I , e.g., the items for sale in a store; |I |= n. A transaction t is a set
of items, i.e., t ∈P(I) in which P(X) denotes the power set of X . For example,
t represents the set of items a client bought at the store. A table (normally called a
database) over I is simply a bag of transactions, e.g., the different sale transactions
in the store on a given day.

A transaction database is a set of transaction tables that is related through the
familiar key-foreign key mechanism known from the relational model [5]. With-
out loss of generality we assume that there is at most one key-foreign key relation
between any two tables. That is, we assume that the join between two tables is un-
ambiguous without explicit key-foreign key identification.

An item set I ⊂ I occurs in a transaction t ∈ T iff I ⊆ t. The support of I in
T , denoted by supT (I) is the number of transactions in the table in which t occurs.
The problem of frequent item set mining is: given a threshold min-sup, determine
all item sets I such that supT (I)≥min-sup. These frequent item sets represent, e.g.,
sets of items customers buy together often enough.

Based on the A Priori property,

I ⊆ J ⇒ supT (I)≥ supT (J),

reasonably efficient frequent item set miners exist.

13.2.1.2 Relational Databases as Transaction Databases

Transforming a relational database into a transaction database is straight-forward.
Let T be a table in the relational database DB, having (non-key) attributes A1, . . . ,Ak.
Let the (finite!) domain of Ai be Di = {di,1, . . .di,mi}. Then we define the set of
items IT,i = {Ai = di,1, . . . ,Ai = di,mi}. Moreover, define IT =

⋃
i∈{1,...,k}IT,i and,

obviously, I =
⋃

T∈DB IT .
The “transactified” table T ′ is then defined over the items in IT . The “transacti-

fied” version t ′ ∈ T ′ of a t ∈ T is given by:

“Ai = d′′i, j ∈ t ′ ⇔ t.Ai = di, j

The keys and foreign keys of T are simply copied in T ′.
Note that this is not the most efficient way to encode a relational database as a

transaction database. However, the efficiency of this encoding is irrelevant in this
chapter. Moreover, while being inefficient, it is the most intuitive encoding; which
is far more important for the purposes of this chapter.

From now on, we assume that all our databases are transaction databases.

13 Patterns on Queries 315

13.2.1.3 Relational Algebra on Transaction Databases

To investigate models on the results of queries, we have to make our query language
precise. Since we focus on relational databases -albeit in their “transactified” form- a
relational query language is the obvious choice. Of these query languages, relational
algebra is the most suited. More precisely, we focus on the usual “select-project-
join” queries. That is, on the selection operator σ , the projection operator π , and the
(equi-)join operator ��; see [5].

We interpret these operators on transactions in the intuitive way. That is, σ selects
those transactions that satisfy the selection predicate. The projection π returns that
part of each transaction that is specified by the projection predicate. That is, we do
not take the original relational representation into account. More in particular, this
means that we, e.g., project on Ai = di, j rather than on Ai. The former is more natural
in the transaction context and the latter can easily be simulated by the former.

Finally the join is computed using key-foreign key relations only. That is, �� itself
does not have items -attribute-value pairs- in its predicate. The reason is that such
further selections can easily be accomplished using σ

Two final remarks on the queries in this chapter are the following, Firstly, as usual
in the database literature, we use bag semantics. That is, we do allow duplicates
tuples in tables and query results.

Secondly, as mentioned in the introduction, the mining database is constructed
from DB using queries. Given the compositionality of the relational algebra, we may
assume, again without loss of generality, that the analysis database is constructed
using one query Q. That is, the analysis database is Q(DB), for some relational
algebra expression Q. Since DB is fixed, we will often simply write Q for Q(DB);
that is, we will use Q to denote both the query and its result.

13.2.2 Models

In this paper we consider two different types of models. The first is simply the set
of all frequent item sets. The second are the models as computed by our KRIMP
algorithm [14]. Since this later kind of model is less well-known, we provide a brief
review of thses models.

The models computed by KRIMP consist of two components. First a constant -the
same for all possible models- component, the COVER algorithm. Second a variable
-database dependent- component, a code table.

Given a prefix code C a code table CT over I and C is a two-column table
containing item sets and codes such that:

• each I ∈P(I) and each C ∈ C occurs at most once in CT
• all the singleton item sets occur in CT
• The item sets in the code table are ordered descending on 1) item set length and

2) support size and 3) lexicographically.

316 Arno Siebes and Diyah Puspitaningrum

Slightly abusing notation we say I ∈CT and C ∈CT .
To encode a database with a code table, each transaction is partitioned into item

sets in the code table:

COVER(CT, t)
If there exists I ∈CT such that I ⊆ t

Then Res := {I} where I is the first such element
If t \ I �= /0

Then Res := Res∪COVER(CT, t \ I)
Else Fail

Return Res

D can be encoded by CT using COVER in the obvious way:

• compute the cover of each transaction t ∈ D
• replace each I ∈ COVER(CT, t) by its code and concatenate these codes

Decoding is similarly easy because C is a prefix code:

• determine the codes in the code string
• take the union of the item sets that belong to these codes

Defined in this way, not all code tables are equally satisfying as a model of a given
database DB. For, CT may assign very long codes to things that occur very often in
DB, while it may assign very short codes to rare things. This is clearly unsatisfactory.
We want the encoding to be optimal given the item sets in the code table.

The usage of an I ∈CT while coding DB is defined by:

usage(I) = |{t ∈ DB|I ∈ COVER(CT, t)}|

Usage yields a probability distribution on the I ∈CT :

P(I) =
usage(I)

∑J∈CT usage(J)

A Shannon code, which always exists [7], for CT is a prefix code with:

length(code(I)) =− log(P(I))

Such a code is optimal in the sense that the more often a code is used, the shorter
its length is. From now on we assume that the code tables we consider have such
Shannon-codes for database DB.

13.2.3 Algorithms

To induce the frequent item sets used in Section 13.3 we simply use one of the well-
known frequent item set miners. For the code tables used in Section 13.4 we use our

13 Patterns on Queries 317

KRIMP algorithm, since this is not as well-known, we provide a brief introduction
here. For a more detailed description please refer to [14].

13.2.3.1 MDL for Code Tables

Even if all code tables we consider have Shannon optimal codes, not all such code
tables are equally good models for DB. For example, there is one that contains the
singleton item sets only. This is a model that specifies nothing about the correlation
between the various items. To determine the best code table, we use the Minimum
Description Length principle (MDL).

MDL [10] embraces the slogan Induction by Compression. It can be roughly
described as follows.

Given a set of models1 H , the best model H ∈H is the one that minimises

L(H)+L(D|H)

in which

• L(H) is the length, in bits, of the description of H, and
• L(D|H) is the length, in bits, of the description of the data when encoded with

H.

One can paraphrase this by: the smaller L(H)+L(D|H), the better H models D. In
our terminology we want the code table that compresses DB best.

We already know how to compute the size of the compressed database. Simply
encode DB and add the lengths of all the codes, which are Shannon optimal. That
is,

L(DB|CT) =− ∑
I∈CT : f req(I)�=0

usage(I) log(P(I))

Note that the stipulation f req(I) �= 0 is only there because we require that all sin-
gleton item sets are present in CT . All other item sets are only present in CT if they
are actually used.

Similarly, we already know the size in bits of the second column of CT , it is
simply the sum of the sizes of all codes in DB. So, we only have to determine the
size in bits of the first column, i.e,. of all the item sets in CT .

To determine that size we encode those item sets with the code table for DB that
consists of the singleton item sets only.

• this means we can reconstruct D up to the actual label of the i ∈I .

This is actually a good feature. It means, among other things, that the model we find
does not depend on the actual language used to describe the data.

The size of the left-hand column is the sum of these encoded sizes, The size of
CT , denoted by L(CT) is simply the sum of the sizes of the two columns. Hence,
for a given database DB we have:

1 MDL-theorists tend to talk about hypothesis in this context, hence the H ; see [10] for the details.

318 Arno Siebes and Diyah Puspitaningrum

L (CT,DB) = L(CT)+L(DB|CT)

Note that we omit the size of COVER as it is the same for all databases and code
tables. That is, it is just an additive constant, which does not influence the search for
the optimal model.

13.2.3.2 KRIMP

Unfortunately, finding the best code table is too expensive. Therefore we use a
heuristic algorithm called KRIMP. KRIMP starts with a valid code table (only the
collection of singletons) and a sorted list of candidates (frequent item sets). These
candidates are assumed to be sorted descending on 1) support size, 2) item set length
and 3) lexicographically. Each candidate item set is considered by inserting it at the
right position in CT and calculating the new total compressed size. A candidate
is only kept in the code table iff the resulting total size is smaller than it was be-
fore adding the candidate. If it is kept, all other elements of CT are reconsidered
to see if they still positively contribute to compression. The whole process is illus-
trated in Figure 13.1; see [14]. If we assume a fixed minimum support threshold
for a database, KRIMP has only one essential parameter: the database. For, given
the database and the (fixed) minimum support threshold, the candidate list is also
specified. Hence, we will simply write CTDB and KRIMP(DB), to denote the code
table induced by KRIMP from DB. Similarly CTQ and KRIMP(Q) denote the code
table induced by KRIMP from the result of applying query Q to DB.

Fig. 13.1 KRIMP in action

13 Patterns on Queries 319

13.3 Frequent Item Set Mining

The goal of this section is to investigate whether we can determine the set of frequent
item sets on Q(DB) without consulting Q(DB). Rather, we are given the frequent
item sets on DB and the query Q and from that only we should determine the fre-
quent item sets on Q(DB). That is, we want to lift the relational operators to sets of
frequent item sets.

13.3.1 Selection

The relational algebra operator σ (select) is a mapping:

σ : B(D)→B(D)

in which B(D) denotes all possible bags over domain D.
Lifting means that we are looking for an operator σ(D,A lg) that makes the diagram

in Figure 13.2 commute: Such diagrams are well-known in , e.g., category theory
[2] and the standard interpretation is:

A lg◦σ = σ(D,A lg) ◦A lg

In other words, first inducing the model using algorithm A lg followed by the appli-
cation of the lifted selection operator σ(D,A lg) yields the same result as first applying
the standard selection operator σ followed by induction with algorithm A lg.

In fact, we are willing to settle for commutation of the diagram in a loose sense:
That is, if we are able to give reasonable support bounds for those item sets whose
support we can not determine exactly, we are satisfied.

For frequent item sets the three basic selections are σI=0, σI=1, and σI1=I2 . More
complicated selections can be made by conjunctions of these basic comparisons. We
look at the different basic selections in turn.

First consider σI=0. If it is applied to a table, all transactions in which I occurs
are removed from that table. Hence, all item sets that contain I get a support of
zero in the resulting table. For those item sets in which I doesn’t occur, we have to
compute which part of their support consists of transactions in which I does occur
and subtract that number. Hence, for support for item sets J, we have:

Fig. 13.2 Lifting the selection
operator

M
σ(D,A lg)� M

B(D)

A

�
lg

σ� B(D)

A

�
lg

320 Arno Siebes and Diyah Puspitaningrum

supσI=0(T)(J) =

{
0 if I ∈ J,
supT (J)− supT (J∪{I}) otherwise.

If we apply σI=1 to the table, all transactions in which I doesn’t occur are re-
moved from the table. In other words, the support of item sets that contain I doesn’t
change. For those item sets that do not contain I, the support is given by those trans-
actions that also contained I. Hence, we have:

supσI=1(T)(J) =

{
supT (J) if I ∈ J,
supT (J∪{I}) otherwise.

If we apply σI1=I2 to the table, the only transactions that remain are those that
either contain both I1 and I2 or neither. In other words, for frequent item sets that
contain both, the support remains the same. For all others, the support changes.
For those item sets J that contain just one of the Ii the support will be the support of
J∪{I1, I2}. For those that contain neither of the Ii, we have to correct for those trans-
actions that contain one of the Ii in their support. If we denote this by supT (J¬I1¬I2)
(a support that can be easily computed) We have:

supσI1=I2 (T)
(J) =

{
supT (J∪{I1, I2}) if {I1, I2}∩ J �= /0,
supT (J¬I1¬I2) otherwise.

Clearly, we can also “lift” conjunctions of the basic selections, simply processing
one at the time. So, in principle, we can lift all selections for frequent item sets. But
only in principle, because we need the support of item sets that are not necessarily
frequent. Frequent item sets are a lossy model (not all aspects of the data distribution
are modelled) and that can have its repercussions: in general the lifting will not be
commutative. In our loose sense of “commutativity”, the situation is slightly better.
For, we can give reasonable bounds for the resulting supports; for those supports we
do not know are bounded (from above) by min-sup.

We haven’t mentioned constraints [11] so far. Constraints in frequent item set
mining are the pre-dominant way to select a subset of the frequent item sets. In
general the constraints studied do not correspond to selections on the database. The
exception is the class of succinct anti-monotone constraints introduced in [11]. For
these constraints there is such a selection (that is what succinct means) and the
constraint can be pushed into the algorithm. This means we get the commutative
diagram in Figure 13.3. Note that in this case we know that the diagonal arrow

Fig. 13.3 Lifting selections
for succinct constraints

M
σ(D,A lg)� M

B(D)

A

�
lg

σ�

A
lgσ

�

B(D)

A

�
lg

13 Patterns on Queries 321

Fig. 13.4 Lifting projections

M
πA lg

D1 � M

B(D)

A lg

�

πD1� B(D1)

A lg

�

makes the bottom right triangle commute in the strict sense of the word. For the
upper left triangle, as well as the square, our previous analysis remains true.

13.3.2 Project

For the projection operator π , we have a new domain D1 such that D = D1×D2.
Projection on D1 has thus as signature:

πD1 : B(D)→B(D1)

Hence, we try to find an operator πA lg
D1

that makes the diagram in Figure 13.4 com-
mute. Note that D1 is spanned by the set of variables (or items) we project on.

We project on a set of items J ⊆I , let J ⊆I be a frequent item set. There are
three cases to consider:

1. if J ⊆J , then all transactions in the support of J will simply remain in the table,
hence J will remain frequent.

2. if J∩J �= /0, then J∩J is also frequent and will remain in the set of frequent
item sets.

3. if J∩J = /0, then its support will vanish.

In other words, if F denotes the set of all frequent item sets, then:

πJ (F) = {J ∈F |J ⊆J }

Clearly, this method of lifting will make the diagram commute in the strict sense if
we use absolute minimal frequency. In other words, for projections, frequent item
sets do capture enough of the underlying data distribution to allow lifting.

13.3.3 EquiJoin

The equijoin has as signature:

��: B(D1)×B(D2)→B(D1 �� D2)

322 Arno Siebes and Diyah Puspitaningrum

Fig. 13.5 Lifting the equijoin

M ×M
��

A lg � M

B(D1)×B(D2)

A lg×A lg

�

��� B(D1 �� D2)

A lg

�

Hence, the diagram we want to make commute is given in Figure 13.5. The join can
be computed, though not very efficiently, starting with the Cartesian product of the
two tables. Since in extreme cases, the equi-join equals the Cartesian product, we
discuss that operator.

Let J1 be a frequent item set for the first table and J2 for the second. The fre-
quency of the pair on the Cartesian product of the two tables is simply given by:

supT1×T2(J1,J2) = supT1(J1)× supT2(J2)

While this is easy to compute, it means again that in general we will not be able
to compute all frequent item sets on the Cartesian product without consulting the
database. Even if we set the minimal frequency to the product of the two minimal
frequencies, the combination of an infrequent item set on one database with a fre-
quent one on the other may turn out to be frequent.

In other words, we cannot even make the diagram commute in the approximate
sense of the word. For, the bound is given by max{|T1| × (min-sup − 1), |T2| ×
(min-sup −1)}, which is hardly a reasonable bound.

Given that the number of joins possible in a database is limited and known be-
forehand, we may make our lives slightly easier. That is, we may allow ourselves to
do some pre-computations.

Assume that we compute the tables T 2
1 = πT1(T1 �� T2) and T 1

2 = πT2(T1 �� T2)
and their frequent item sets, say F 2

1 and F 1
2 , off-line. Are those sets enough to lift

the join? For the extreme case, the Cartesian product, the answer is clearly: yes. By
“blowing” up the original tables we add enough information to compute the support
of any item set in the join iff that item set exceeds the minimal support.

Unfortunately, the same is not true for the join in general. Since we cannot see
from either F 2

1 or F 1
2 which combinations of frequent item sets will actually occur

in (T1 �� T2). That is, we can only compute a superset of the frequent item sets on
the join.

Hence, the only way to lift the join is to compute and store the frequent item sets
on all possible joins. While this is doable given the limited number of possible joins,
this can hardly count as lifting.

13 Patterns on Queries 323

13.3.4 Discussion

The fact that lifting the relational algebra operators to sets of frequent item sets
is only partially possible should hardly come as a surprise: the min-sup constraint
makes this into an inherently lossy model. For models that do try to capture the
complete distribution, such as Baysian networks, one would expect far better results;
see [12] for a discussion of lifting for such networks.

13.4 Transforming KRIMP

Recall from the Introduction that the problem we investigate in this Section is that
we want to transform an induction algorithm A lg into an algorithm A lg∗ that takes
at least two inputs, i.e, both Q and MDB, such that:

1. A lg∗ gives a reasonable approximation of A lg when applied to Q, i.e.,

A lg∗(Q,MDB)≈MQ

2. A lg∗(Q,MDB) is simpler to compute than MQ.

The second criterion is easy to formalise: the runtime of A lg∗ should be shorter
than that of A lg. The first one is harder. What do we mean that one model is an
approximation of another? Moreover, what does it mean that it is a reasonable ap-
proximation?

Before we discuss how KRIMP can be transformed and provide experimental
evidence that our approach works, we first formalise this notion of approximation.

13.4.1 Model Approximation

The answer to the question of how to formalise that one model approximates another
depends very much on the goal. If A lg induces classifiers, approximation should
probably be defined in terms of prediction accuracy, e.g., on the Area Under the
ROC-curve (AUC).

KRIMP computes code tables. Hence, the quick approximating algorithm we are
looking for, KRIMP∗ in the notation used above, also has to compute code tables.
So, one way to define the notion of approximation is by comparing the resulting
code tables. Let CTKRIMP be the code table computed by KRIMP and similarly, let
CTKRIMP∗ denote the code table computed by KRIMP∗ on the same data set. The
more similar CTKRIMP∗ is to CTKRIMP, the better KRIMP∗ approximates KRIMP.

While this is intuitively a good way to proceed, it is far from obvious how to
compare two code tables. Fortunately, we do not need to compare code tables di-
rectly. KRIMP is based on MDL and MDL offers another way to compare models,

324 Arno Siebes and Diyah Puspitaningrum

i.e., by their compression-rate. Note that using MDL to define “approximation” has
the advantage that we can formalise our problem for a larger class of algorithms
than just KRIMP. It is formalised for all algorithms that are based on MDL. MDL is
quickly becoming a popular formalism in data mining research, see, e.g., [8] for an
overview of other applications of MDL in data mining.

What we are interested in is comparing two algorithms on the same data set, i.e.,
on Q(DB). Slightly abusing notation, we will write L (A lg(Q)) for L(A lg(Q))+
L(Q(DB)|A lg(Q)), similarly, we will write L (A lg∗(Q,MDB)). Then, we are in-
terested in comparing L (A lg∗(Q,MDB)) to L (A lg(Q)). The closer the former is
to the latter, the better the approximation is.

Just taking the difference of the two, however, can be quite misleading. Take, e.g.,
two databases db1 and db2 sampled from the same underlying distribution, such that
db1 is far bigger than db2. Moreover, fix a model H. Then necessarily L(db1|H) is
bigger than L(db2|H). In other words, big absolute numbers do not necessarily mean
very much. We have to normalise the difference to get a feeling for how good the
approximation is. Therefore we define the asymmetric dissimilarity measure (ADM)
as follows [15].

Definition 13.1. Let H1 and H2 be two models for a dataset D. The asymmetric
dissimilarity measure ADM(H1,H2) is defined by:

ADM(H1,H2) =
|L (H1)−L (H2)|

L (H2)

Note that this dissimilarity measure is related to the Normalised Compression Dis-
tance [4]. The reason why we use this asymmetric version is that we have a “gold
standard”. We want to know how far our approximate result A lg∗(Q,MDB) devi-
ates from the optimal result A lg(Q).

The remaining question is, of course, what ADM scores indicate a good approx-
imation? In a previous paper [15], we took two random samples from data sets, say
D1 and D2. Code tables CT1 and CT2 were induced from D1 and D2 respectively.
Next we tested how well CTi compressed D j. For the four data sets also used in this
paper, Iris, Led7, Pima and, PageBlocks, the “other” code table compressed 16%
to 18% worse than the “own” code table; the figures for other data sets are in the
same ball-park. In other words, an ADM score of 0.2 is in-line with the “natural
variation” in a data set. If it gets much higher, it shows that the two code tables are
rather different.

Clearly, ADM(A lg∗(Q,MDB),A lg(Q)) does not only depend on A lg∗ and on
A lg, but also very much on Q. We do not seek a low ADM on one particular Q,
rather we want to have a reasonable approximation on all possible queries. Re-
quiring that the ADM is equally small on all possible queries seems too strong a
requirement. Some queries might result in a very untypical subset of DB, the ADM
is probably higher on the result of such queries than it is on queries that result in
more typical subsets. Hence, it is more reasonable to require that the ADM is small
most of the time. This is formalised through the notion of an (ε,δ)-approximation

13 Patterns on Queries 325

Definition 13.2. Let DB be a database and let Q be a random query on DB. More-
over, let A lg1 and A lg2 be two data mining algorithms on DB. Let ε ∈ R be the
threshold for the maximal acceptable ADM score and δ ∈ R be the error tolerance
for this maximum. A lg1 is an (ε,δ)-approximation of A lg2 iff

P(ADM(A lg1(Q),A lg2(Q))> ε)< δ

13.4.2 Transforming KRIMP

Given that KRIMP results in a code table, there is only one sensible way in which
KRIMP(DB) can be re-used to compute KRIMP(Q): provide KRIMP only with the
item sets in CTDB as candidates. While we change nothing to the algorithm, we’ll
use the notation KRIMP∗ to indicate that KRIMP got only code table elements as
candidates. So, e.g., KRIMP∗(Q) is the code table that KRIMP induces from Q(DB)
using the item sets in CTDB only.

Given our general problem statement, we now have to show that KRIMP∗ satisfies
our two requirements for a transformed algorithm. That is, we have to show for a
random database DB:

• For reasonable values for ε and δ , KRIMP∗ is an (ε,δ)-approximation of KRIMP,
i.e, for a random query Q on DB:

P(ADM(KRIMP∗(Q),KRIMP(Q))> ε)< δ

Or in MDL-terminology:

P

(|L (KRIMP∗(Q))−L (KRIMP(Q))|
L (KRIMP(Q))

> ε
)
< δ

• Moreover, we have to show that it is faster to compute KRIMP∗(Q) than it is to
compute KRIMP(Q).

Neither of these two properties can be formally proven, if only because KRIMP and
thus KRIMP∗ are both heuristic algorithms. Rather, we report on extensive tests of
these two requirements.

13.4.3 The Experiments

In this subsection, we describe our experimental set-up. First we briefly describe the
data sets we used. Next we discuss the queries used for testing. Finally we describe
how the tests were performed.

326 Arno Siebes and Diyah Puspitaningrum

13.4.3.1 The Data Sets

To test our hypothesis that KRIMP∗ is a good and fast approximation of KRIMP, we
have performed extensive tests mostly on 6 well-known UCI [6] data sets and one
data set from the KDDcup 2004.

In particular, we have used the data sets connect, adult, chessBig, letRecog,
PenDigits and mushroom from UCI. These data sets were chosen because they are
well suited for KRIMP. Some of the other data sets in the UCI repository are simply
too small for KRIMP to perform well. MDL needs a reasonable amount of data to
be able to function. Some other data sets are very dense. While KRIMP performs
well on these very dense data sets, choosing them would have turned our extensive
testing prohibitively time-consuming.

Since all these data sets are single table data sets, they do not allow testing with
queries involving joins. To test such queries, we used tables from the “Hepatitis
Medical Analysis”2 of the KDDcup 2004. From this relational database we selected
the tables bio and hemat. The former contains biopsy results, while the latter con-
tains results on hematological analysis. The original tables have been converted to
item set data and rows with missing data have been removed.

13.4.3.2 The Queries

To test our hypothesis, we need to consider randomly generated queries. On first
sight this appears a daunting task. Firstly, because the set of all possible queries is
very large. How do we determine a representative set of queries? Secondly, many of
the generated queries will have no or very few results. If the query has no results,
the hypothesis is vacuously true. If the result is very small, MDL (and thus KRIMP)
doesn’t perform very well.

To overcome these problems, we restrict ourselves to queries that are built by
using selections (σ), projections (π), and joins (��) only. The rationale for this choice
is twofold. Firstly, simple queries will have, in general, larger results than more
complex queries. Secondly, we have seen in Section 13.3 that lifting these operators
is already a problem.

13.4.3.3 The Experiments

The experiments preformed for each of the queries on each of the data sets were
generated as follows.

Projection: The projection queries were generated by randomly choosing a set
X of n items, for n ∈ {1,3,5,7,9}. The generated query is then πX . That is,
the elements of X are projected out of each of the transactions. For example,
π{I1,I3}({I1, I2, I3}) = {I2}. For this case, the code table elements generated on

2 http://lisp.vse.cz/challenge/

13 Patterns on Queries 327

the complete data set were projected in the same way. For each value of n, 10
random sets X were generated on each data set.
As an aside, note that the rationale for limiting X to maximally 9 elements is that
for larger values too many result sets became too small for meaningful results.

Selection: The random selection queries were again generated by randomly choos-
ing a set X of n items, with n∈ {1,2,3,4}. Next for each random item Ii a random
value vi (0 or 1) in its domain Di was chosen. Finally, for each Ii in X a random
θi ∈ {=, �=} was chosen. The generated query is thus σ(

∧
Ii∈X Iiθivi). As in the

previous case, we performed 10 random experiments on each of the data sets for
each of the values of n.

Project-Select: The random project-select queries generated are essentially com-
binations of the simple projection and selection queries as explained above. The
only difference is that we used n ∈ {1,3} for the projection and n ∈ {1,2} for
the selections. That is we select on 1 or 2 items and we project away either 1 or
3 items. The size of the results is, of course, again the rationale for this choice.
For each of the four combinations, we performed 100 random experiments on
each of the data sets: first we chose randomly the selection (10 times for each
selection), for each such selection we performed 10 random projections.

Project-Select-Join: Since we only use one “multi-relational” data set and there
is only one possible way to join the bio and hemat tables, we could not do ran-
dom tests for the join operator. However, in combination with projections and
selections, we can perform random tests. These tests consist of randomly gener-
ated project-select queries on the join of bio and hemat. In this two-table case,
KRIMP∗ got as input all pairs (I1,I2) in which I1 is an item set in the code
table of the “blown-up” version of bio, and I2 is an item set in the code table
of the “blown-up” version of hemat. Again we select on 1 or 2 items and we
project away either 1 or 3 items. And, again, we performed again 100 random
experiments on the database for each of the four combinations; as above.

13.4.4 The Results

In this subsection we give an overview of the results of the experiments described in
the previous section. Each test query is briefly discussed in its own subsubsection.

13.4.4.1 Projection Queries

In Figure 13.6 the results of the random projection queries on the letRecog data set
are visualised. The marks in the picture denote the averages over the 10 experiments,
while the error bars denote the standard deviation. Note that, while not statistically
significant, the average ADM grows with the number of attributes projected away.
This makes sense, since the more attributes are projected away, the smaller the result

328 Arno Siebes and Diyah Puspitaningrum

Fig. 13.6 Projection results
on letRecog

set becomes. On the other data sets, KRIMP∗ performs similarly. Since this is also
clear from the project-select query results, we do not provide all details here.

13.4.4.2 Selection Queries

The results of the random selection queries on the penDigits data set are visualised
in Figure 13.7. For the same reason as above, it makes sense that the average ADM
grows with the number of attributes selected on. Note, however, that the ADM aver-
ages for selection queries seem much larger than those for projection queries. These
numbers are, however, not representative for the results on the other data sets. It
turned out that penDigits is actually too small and sparse to test KRIMP∗ seriously.
In the remainder of our results section, we do not report further results on penDig-
its. The reason why we report on it here is to illustrate that even on rather small
and sparse data sets KRIMP∗ still performs reasonably well. On all other data sets
KRIMP∗ performs far better, as will become clear next.

Fig. 13.7 Selection results on
penDigits

13 Patterns on Queries 329

Table 13.1 The results of Project-Select Queries

ADM ± STD connect adult chessBig letRecog mushroom

Select 1 Project out 1 0.1 ± 0.01 0.1 ± 0.01 0.04 ± 0.01 0.1 ± 0.01 0.3 ± 0.02
Project out 3 0.1 ± 0.02 0.1 ± 0.01 0.04 ± 0.03 0.1 ± 0.01 0.3 ± 0.16

Select 2 Project out 1 0.2 ± 0.01 0.1 ± 0.01 0.1 ± 0.03 0.04 ± 0.01 0.2 ± 0.04
Project out 3 0.2 ± 0.02 0.1 ± 0.01 0.1 ± 0.03 0.04 ± 0.01 0.2 ± 0.05

13.4.4.3 Project-Select Queries

The results of the projection-select queries are given in Table 13.1. All numbers are
the average ADM score ± the standard deviation for the 100 random experiments.
All the ADM numbers are rather small, only for mushroom do they get above 0.2.

Two important observations can be made from this table. Firstly, as for the pro-
jection and selection queries reported on above, the ADM scores get only slightly
worse when the query results get smaller: “Select 2, Project out 3” has slightly worse
ADM scores than “Select 1, Project out 1”. Secondly, even more importantly, com-
bining algebra operators only degrades the ADM scores slightly. This can be seen
if we compare the results for “Project out 3” on letRecog in Figure 13.6 with the
“Select 1, Project out 3” and “Select 2, Project out 3” queries in Table 13.1 on the
same data set. These results are very comparable, the combination effect is small and
mostly due to the smaller result sets. While not shown here, the same observation
holds for the other data sets.

To give insight in the distribution of the ADM scores of the “Select 2, Project
out 3” queries on the connect data set are given in Figure 13.8. From this figure we
see that if we choose ε = 0.2, δ = 0.08. In other words, KRIMP∗ is a pretty good
approximation of KRIMP. Almost always the approximation is less than 20% worse
than the optimal result. The remaining question is, of course, how much faster is
KRIMP∗? This is illustrated in Table 13.2.

Fig. 13.8 Histogram of 100
Project-Select Queries on
connect

330 Arno Siebes and Diyah Puspitaningrum

Table 13.2 Relative number of candidates for KRIMP∗

Relative #candidates connect adult chessBig letRecog mushroom

Select 1 Project out 1 0.01 ± 0.001 0.01 ± 0.002 0.21 ± 0.012 0.01 ± 0.001 0.01 ± 0.001
Project out 3 0.01 ± 0.001 0.01 ± 0.004 0.26 ± 0.031 0.02 ± 0.004 0.01 ± 0.001

Select 2 Project out 1 0.01 ± 0.001 0.03 ± 0.003 0.76 ± 0.056 0.02 ± 0.002 0.03 ± 0.002
Project out 3 0.01 ± 0.002 0.03 ± 0.008 0.96 ± 0.125 0.02 ± 0.004 0.03 ± 0.003

Table 13.2 gives the average number of candidates KRIMP∗ has to consider rel-
ative to those that the full KRIMP run has to consider. Since, both KRIMP∗ and
KRIMP are linear in the number of candidates, this table shows that the speed-up is
considerable; a factor of 100 is often attained; except for chessBig were the query
results get small and, thus, have few frequent item sets. The experiments are those
that are reported on in Table 13.1.

13.4.4.4 Select-Project-Join Queries

The results for the select-project-join queries are very much in line with the results
reported on above. In fact, they are even better. Since the join leads to rather large
results, the ADM score is almost always zero: in only 15 of the 400 experiments the
score is non-zero (average of non-zero values is 1%). The speed-up is also in line
with the numbers reported above, a factor of 100 is again often attained.

13.4.5 Discussion

As noted in the previous section, the speed-up of KRIMP∗ is easily seen. The number
of candidates that KRIMP∗ has to consider is often a factor 100 smaller than those
that the full KRIMP run has to consider. Given that the algorithm is linear in the
number of candidates, this means a speed-up by a factor 100. In fact, one should
also note that for KRIMP∗, we do not have to run a frequent item set miner. In other
words, in practice, using KRIMP∗ is even faster than suggested by the Speed-up
scores.

But, how about the other goal: how good is the approximation? That is, how
should one interpret ADM scores? Except for some outliers, ADM scores are be-
low 0.2. That is, a full-fledged KRIMP run compresses the data set 20% better than
KRIMP∗. As noted when we introduced the ADM score, this about as good as one
can expect, such a percentage shows the natural variation in the data. Hence, given
that the average ADM scores are often much lower we conclude that the approxi-
mation by KRIMP∗ is good.

In other words, the experiments verify our hypothesis: KRIMP∗ gives a fast and
good approximation of KRIMP. The experiments show this for simple “project-
select-join” queries, but as noticed with the results of the “project-select” queries,

13 Patterns on Queries 331

the effect of combining algebra operators is small. If the result set is large enough,
the approximation is good.

13.5 Comparing the two Approaches

In this chapter, we introduced two ways in which the models present in an inductive
database DB help in computing the models on the results of a query Q on the data in
that database. The first, if applicable, gives results without consulting Q(DB). The
result is computed directly from the models MT induced on the tables used by Q. For
the relational algebra we formalised this by lifting the relational algebra operators
to the set of all models.

The second approach does allow access to Q(DB). The induction algorithm A lg
is transformed into an algorithm A lg∗ that takes at least two inputs, i.e, both Q and
MDB, such that:

1. A lg∗ gives a reasonable approximation of A lg when applied to Q, i.e.,

A lg∗(Q,MDB)≈MQ

2. A lg∗(Q,MDB) is simpler to compute than MQ.

The first requirement was formalised using MDL into the requirement:

P

(|L (A lg∗(Q))−L (A lg(Q))|
L (A lg(Q))

> ε
)
< δ

for reasonably small ε and δ . The second requirement was simply interpreted as a
significant speed-up in computation.

Clearly, when applicable, the first approach is to be preferred above the second
approach. Firstly because it doesn’t even require the computation of Q(DB), and is,
hence, likely to be much faster. Secondly, because an algebraic structure on the set
of all models opens up many more possible applications.

In this chapter, we investigated both approaches on item sets. More precisely,
we investigated lifting the relational algebra operators to sets of frequent item sets.
Moreover, we transformed our KRIMP algorithm to investigate the second approach.

As noted already in Section 13.3, lifting the relational algebra operators to sets
of frequent item sets has its problems. Only for the projection it works well. For the
selection operator we get a reasonable approximation. Reasonable in the sense that
we can put a bound on the error of the approximated support; an upper bound that
is determined by the minimal support threshold. Since this bound is an upperbound,
this means that we may declare too many item sets to be frequent. If we declare an
item set to be infrequent, it is infrequent on the result of the selection.

The join operator, unfortunately, can not be lifted at all. Not even if we provide
extra information by giving access to the frequent item sets on the “blown-up” ver-
sion of the underlying tables. In that case, we again only have an upperbound on

332 Arno Siebes and Diyah Puspitaningrum

the support. That is, again, we declare too many item sets to be frequent. In the case
of the join, however, there is no bound on the error. For, if I1 has a high support
on T 2

1 = πT1(T1 �� T2), say n1, while I2 has a high support on T 1
2 = πT2(T1 �� T2),

say n2, then the computed upperbound on the support of (I1, I2) on T1 �� T2 will be
n1× n2, while there may be no transaction in T1 �� T2 which actually supports this
pair! Again, if we declare an item set to be infrequent on the join, it is infrequent.

Again as noted before, the reason for this failure is that sets of frequent item sets
are an inherently lossy model. As our analysis above shows, this loss of information
makes us overestimate the support of item sets on Q(DB), in the case of the join
with an unbounded error.

The transformation of KRIMP proved to be far more successful. The algorithm
KRIMP∗, which is simply KRIMP with a restricted set of candidates proved in the ex-
periments to be much faster and provide models which approximate the true model
very well. Given the lack of success for frequent item sets, this is a surprising result.

For, from earlier research [15] we know that the code tables produced by KRIMP
determine the support of all item sets rather accurately. More precisely, in that paper
we showed that these code tables can be used to generate a new code table. The
support of an arbitrary frequent item set in this generated database, say DBgen, is
almost always almost equal to the support of that item set in the original database,
say DBorig. As usual, this sentence is probably more clear in its mathematical for-
mulation:

P
(|supDBorig(I)− supDBgen(I)|> ε

)
< δ

This surprise raises two immediate questions:

1. Why does transforming KRIMP work and
2. Can we transform frequent item set mining?

The reason that transforming KRIMP work is firstly exactly the fact that it deter-
mines the support of all item sets so well. Given a code table, which KRIMP∗ pro-
duces, we know the support of these item sets. Clearly, as for the set of frequent
item sets, this means that we will overestimate the support of item sets on the re-
sult of a query. However, different from the lifting approach, we do allow access to
the query result and, hence, the overestimation can be corrected. This is the second
reason why transforming KRIMP works.

This reasoning makes the question “Can we transform item set mining?” all the
more relevant. Unfortunately, the answer to this question is probably not. This can
be easily seen from the join. The input for the transformed item set miner would be
the joined tables as well as the Cartesian product of the sets of frequent item sets
on the “blown-up” individual tables. This set of candidate frequent item sets will be
prohibitively large, far larger than the final set of item sets that is frequent on the
join. Hence, checking all these candidates will be more expensive than computing
only the frequent ones efficiently.

Pruning the set of candidates while searching for the frequent ones requires a data
structure that stores all candidates. Whenever, we can prune, a set of candidates
has to be physically deleted from this data structure. The normal item set miners
do not even generate most of these pruned candidates. In this approach we would

13 Patterns on Queries 333

first generate and then delete them. In other words, it is highly unlikely that this
approach will have a performance similar to the best item set miners. Let alone that
it will be significantly more efficient than these algorithms, as is required by the
transformation approach.

In turn, this reasoning points to the third reason why transforming KRIMP works.
The code tables KRIMP produces are small, far smaller than the set of frequent
item sets. Hence, checking the support of all candidates suggested by KRIMP is not
detrimental for the efficiency of KRIMP∗.

From this discussion we can derive the following succinct all-encompassing rea-
son why transforming KRIMP works. KRIMP produces, relatively, small code tables
that capture the support of all item sets rather well, such that checking the set of all
suggested candidates is rather cheap.

Note that the comparison of the two approaches for a single case, i.e., that of
item sets does not imply at all that the second approach is inherently superior to the
first one. In fact, we already argued at the start of this section that the first approach,
if applicable, is to be preferred above the second one. Moreover, in [12] we argued
that the first approach is applicable for the discovery of Bayesian networks from
data. In other words, the first approach is a viable approach.

A conclusion we can, tentatively, draw from the discussion in this section is that
for either approach to work, the models should capture the data distribution well.

13.6 Conclusions and Prospects for Further Research

In this chapter we introduced a problem that has received little attention in the lit-
erature on inductive databases or in the literature on data mining in general. This
question is: does knowing models on the database help in inducing models on the
result of a query on that database?

We gave two approaches to solve this problem, induced by two interpretations of
“help”. The first, more elegant, one produces results without access to the result of
the query. The second one does allow access to this result.

We investigated both approaches for item set mining. It turned out that the first
approach is not applicable to frequent item set mining, while the second one pro-
duced good experimental results for our KRIMP algorithm. In Section 13.5 we dis-
cussed this failure and success. The final tentative conclusion of this discussion is:
for either approach to work, the models should capture the data distribution well.

This conclusion points directly to other classes of models that may be good can-
didates for either approach, i.e., those models that capture a detailed picture of the
data distribution. One example are Bayesian networks already discussed in [12].
Just as interesting, if not even more, are models based on bagging or boosting or
similar approaches. Such models do not concentrate all effort on the overall data
distribution, but also take small selections with their own distribution into account.
Hence, for such models one would expect that, e.g., lifting the selection operator
should be relatively straight forward.

334 Arno Siebes and Diyah Puspitaningrum

This is an example for a much broader research agenda: For which classes of
models and algorithms do the approaches work? Clearly, we have only scratched
the surface of this topic. Another, similarly broad, area for further research is: Are
there other, better, ways to formalise “help”?

References

1. Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri
Verkamo. Fast discovery of association rules. In Advances in Knowledge Discovery and
Data Mining, pages 307–328. AAAI, 1996.

2. Andrea Asperti and Giuseppe Longo. Categories, Types, and Structures. MIT Press, 1991.
3. P.J. Bickel, E.A. Hammel, and J.W. O’Connell. Sex bias in graduate admissions: Data from

berkeley. Science, 187(4175):398–404, 1975.
4. Rudi Cilibrasi and Paul Vitanyi. Automatic meaning discovery using google. In IEEE Trans-

actions on Knowledge and Data Engineering, volume 19, pages 370–383. 2007.
5. E.F. Codd. A relational model of data for large shared data banks. Communications of the

ACM, 13(6):377–387, 1970.
6. Frans Coenen. The LUCS-KDD discretised/normalised ARM and CARM data library:

http://www.csc.liv.ac.uk/˜frans/ KDD/Software/LUCS KDD DN/. 2003.
7. T.M. Cover and J.A. Thomas. Elements of Information Theory, 2nd ed. John Wiley and Sons,

2006.
8. C. Faloutsos and V. Megalooikonomou. On data mining, compression and kolmogorov com-

plexity. In Data Mining and Knowledge Discovery, volume 15, pages 3–20. Springer Verlag,
2007.

9. Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data mining to
knowledge discovery: An overview. 1996.

10. Peter D. Grünwald. Minimum description length tutorial. In P.D. Grünwald and I.J. Myung,
editors, Advances in Minimum Description Length. MIT Press, 2005.

11. Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proc. ACM SIGMOD conference,
1998.

12. Arno Siebes. Data mining in inductive databases. In Francesco Bonchi and Jean-François
Boulicaut, editors, Knowledge Discovery in Inductive Databases, 4th International Workshop,
KDID 2005, Revised Selected and Invited Papers, volume 3933 of Lecture Notes in Computer
Science, pages 1–23. Springer, 2005.

13. Arno Siebes and Diyah Puspitaningrum. Mining databases to mine queries faster. In Wray L.
Buntine, Marko Grobelnik, Dunja Mladenic, and John Shawe-Taylor, editors, Proceedings
ECML PKDD 2009, Part II, volume 5782 of Lecture Notes in Computer Science, pages 382–
397. Springer, 2009.

14. Arno Siebes, Jilles Vreeken, and Matthijs van Leeuwen. Item sets that compress. In Proceed-
ings of the SIAM Conference on Data Mining, pages 393–404, 2006.

15. Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. Preserving privacy through data
generation. In Proceedings of the IEEE International Conference on Data Mining, pages
685–690, 2007.

