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Abstract

Ever since the seminal paper by Imielinski and Mannila [8], inductive databases have been a constant theme in
mining literature. Operationally, an inductive database is a database in which models and patterns are S5

citizens.

Having models and patterns in the database raises many interesting problems. One, which has received little aite

far, is the following: do the models and patterns that are store

d help in computing new models and patterns ? Fo

if we have induced a classi_er C from the database and we compute a query Q. Does knowing C speed up the &
of a new classi_er on the result of O? In this paper we answer this problem positively for one speci_c class of m

the code tables induced by our Krimp algorithm. The Krimp algorithm was built using minimum descripias
(MDL) principle. In Krimp algorithm, if we have the code tables for all tables in the database, then we can areis
the code table induced by Krimp on the result of a query, using only these global code tables as candidates;

not have to mine for frequent item sets one the query result. Since Krimp is linear in the number of candidates
reduces the set of frequent item sets by many orders of magnitude, this means that we can speed up the inductw ¥

tables on query results by many orders of magnitude.

Keywords: Inductive Database, Frequent Item Sets, MDL

1. Introduction

Ever since the start of research in data mining, it has been
clear that data mining, and more general the KDD process,
should be merged into DBMSs. Since the seminal paper
by Imielinski and Mannila [8], the so-called inductive da-
tabases have been a constant theme in data mining re-
search.

Perhaps surprisingly, there is no formal de_nition of what
an inductive database actually is. In fact, de Raedt in [12]
states that it might be too early for such a de_nition. There
is, however, concensus on some aspects of inductive da-
tabases. An important one is that models and patterns
should be _rst class citizens in such a database. That is,
e.g., one should be able to query for patterns.

Having models and patterns in the database T
esting new problems. One, which has recerve=
tion so far, is the following: do the models =
that are stored help in computing new moc=s
terns? For example, if we have induced a class
the database and we compute a query Q. Dos
speed up the induction of a new classi_er oni8
Q?

In fact, this general question is not only ims=sss
context of inductive databases, it is of prse
everyday data mining practice.

In the data mining literature, the usual assum
we are given some database that has to =z v




Sies. however, this assumption is usually not met.
IS omstruction of the mining database is often
S Saedest parts of the KDD process. The data
S 2 data warehouse or in multiple databases,
Zat=hase is constructed from these under-

Bmectives, it is not very interesting to know
B importance whatsoever.

however, if the underlying databases
wpe that knowing such models would
A= S5s specially constructed ‘mining data-
W& Fwe have constructed a classi_erona
. one would hope that this would
lassi_er for the female customers

Sy this problem for one speci_c class
£ snie ables induced by our Krimp algo-

i S=quent item sets on a table, Krimp
lSs=s of these frequent item sets. The

s oo Krimp is that together the se-
the underlying data distribution

Rese wery well, see, e.g., [14, 16].

LW show that if we know the code tables
<. then we can approximate the
% Emmp on the result of a query, us-
W Sese global code tables as candi-

tem sets by many orders of
&2t we can now speed up the in-
B uery results by many orders of

W & sizhily less optimal code table,
S spiimal solution within a few per-
ISSSesssmation” in terms of MDL [7].
B 2 choice: either a quick, good
2! result taking longer time to

i as follows. In the next Sec-
#=meral problem. Next, in Section
w0 10 our Krimp algorithm. In
fsmeral problem in terms of Krimp.
SSeemmental set-up is discussed.
22l results, while in Section 7

W of related research. The con-
W Sarther research are given in

B prcliminaries and assump-
& problem informally. To

formalise it we use MDL, which is briey discussed.

2.1 Preliminaries and Assumptions We assume that our
data resides in relational databases. In fact, note that
the union of two relational databases is, again, a
relational database. Hence, we assume, without loss of
generality, that our data resides in one relational
database DB. So, the mining database is constructed
from DB using queries. Given the compositionality of
relational query languages, we may assume, again with
out loss of generality, that the analysis database is
constructed using one query Q. That is, the analysis
database is Q(DB), for some relational algebra
expression Q. Since DB is _xed, we will often simply
write Q for Q(DB); that is we will use Q to denote both
the query and its result.

22 The Problem Informally In the introduction we stated
that knowing a model on DB should help in inducing a
model on Q. To make this more precise, let A be our
data mining algorithm. A can be any algorithm, it may,
€.g., compute a decision tree, all frequent item sets or a
neural network. LetMDB denote the model induced by
Afrom DB, i.e, MDB=A(DB). Similarly, let MQ=A(Q).
We want to transform A into an algorithm A _ that takes
at least two inputs, i.e, both Q and MDB, such that:

l. A_ gives a reasonable approximation of A when ap
pliedto Q,i.e., A (Q;MDB)tMQ

2. A_(Q;MDB) is simpler to compute than MQ.
The second criterion is easy to formalise: the runtime
of A_ should be shorter than that of A. The _rst one is
harder. What do we mean that one model is an
approximation of another? Moreover, what does it mean
that it is a reasonable approximation? There are many
ways to formalise this. For example, for predictive
models, one could use the di erence between
predictions as a way to measure how well one model
approximates. While for clustering, one could use the
number of pairs of points that end up in the same
cluster.

We use the minimum description length (MDL)
principle [7] to formalise the notion of approximation.
MDL is quickly becoming a popular formalism in data
mining research, see, e.g., [5] for an overview of other
applications of MDL.

2.3 Minimum Description Length MDL like its close cousin
MML (minimum message length) [17], is a practical
version of Kolmogorov Complexity [11]. All three
embrace the slogan Induction by Compression.
For MDL, this principle can be roughly described as
follows.




Given a set of models1 H, the best model H2 H is the
one that minimizes L(H) -+ L(DjH) in which L(H)is the
length, in bits, of the description of H, and
_ L(DjH) is the length, in bits, of the description of the

data when encoded with H.
One can paraphrase this by: the smaller L(H) + L(DjH),
the better H models D.

What we are interested in is comparing two al-gorithms
on the same data set, viz., on Q(DB).
Slightly abusing notation, we will write L(A(Q)) for
L(A(Q)) + L(Q(DB)A(Q)), similarly, we will write
L(A_(Q;MDB)). Then, we arc interested in comparing
IMDL-theorists tend to talk about hypothesis in this
context, hence the H; see [7] for the details.
L(A_(Q:MDB)) to L(A(Q)). The closer the former isto
the latter, the better the approximation is.
Just taking the di_erence of the two, however, can be
quite misleading. Take, ¢.g., two databases dbl and
db2 sampled from the same underlying distribution,
such that dbl is far bigger than db2. Moreover, X a
model H. Then necessarily L(dbljH) is bigger than
L(db2jH).

In other words, big absolute numbers do not
necessar-ily mean very much. We have to normalise
the di_er-ence to get a feeling for how good the ap
proximation is. Therefore we de ne the asymmetric
dissimilarity mea-sure (ADM) as follows.
Definition 2.1. Let H1 and H2 be two models for a
dataset D. The asymmetric dissimilarity measure
ADM(H1;H2) is de_ned by:

ADM(H1;H2)=jL(H1) _L(H2)j L(H2) Note that this
dissimilarity measure is related to the Normalised Com
pression Distance. The reason why we use this
asymmetric version is that we have a \gold standard”.
We want to know how far our approximate result
A _(Q;MDB) deviates from the optimal result A(Q).

2.4 The Problem Before we can formalise our prob-lem

using the notation introduced above, we have one more
question to answer: what is a reasonable
approx-imation? For a large part the answer to this
questionis, of course, dependent on the application in
mind. An ADM in the order of 10% might be perfectly
alright in one application, while it is unacceptable in
another.

Hence, rather than giving an absolute number, we make
it into a parameter _. Problem:

For a given data mining algorithm A, devise an
algo-rithm A_, such that for all relational algebra
expressions Q on a database DB:

1. ADM(A_(Q:MDB);AQ)) __

2.

25

Computing A_(Q;MDB) s faster than computing A(Q

A Concrete Instance: Krimp The ultimate solution &
the problem as stated in above would be an algorith=
that transforms any data mining algorithm A in 2=
algorithm A_ with the requested properties. This is 2
rather ambitious, ill-de ned (what is the class of 2
data mining algo-rithms?), and, probably, not attz=
able goal. Hence, in this paper we take a more modest
approach: we trans-form one algorithm only, our Krims
algorithm.

The reason for using Krimp as our problem instance &
threefold. Firstly, from earlier research we know that
Krimp characterises the underlying data distributio=
rather well; see, e.g., [14, 16]. Secondly, from earlier
research on Krimp in a multi-relational setting, we @
ready know that Krimp is easily transformed for joi=s
[10]. Finally, Krimp is MDL based. So, notions such =
L(A(Q)) are already de_ned for Krimp.

Introducing Krimp For the convenience of the reader
we provide a brief introduction to Krimp in =
section, it was originally introduced in [13] (althomss
not by that name) and the reader is referred to =@
paper for more details.

Since Krimp is selects a small set of representative =
sets from the set of all frequent item sets, we _rst =8
the basic notions of frequent item set mining [1]

valued) attributes. That is, the domain Di of item
{0; 1g. A transaction (or tuple) over 1 is an elem
Qi2fl1;:::;ng Di. A database DB overlisabagof®
over 1. This bag is indexed in the %
that we can talk about the i-th transactus
An item set J is, as usual, a subset of [, i.e., 7 _ LT
item set J occurs in a transaction t 2 DB if 81212 2
= 1. The support of item set J in database DB =
number of transactions in DB in which J ocoe
That is, suppDB(J) = jft 2 DBj J occurs in tgj. A
set is called frequent if its support is larger tha= 58
user-de_ned threshold called the minimal sups
min-sup. Given the A Priori property, 8L J2P(I =
suppDB(J) _suppDB(I) frequent item sets can be T
e ciently level wise, see [1] for more =i
Note that while we restrict ourself to binary d==m
in the description of our problem and algo-rithms W
is a trivial generalisation to categorical datzbess
the experiments, we use such categorical dztm

Krimp The key idea of the Krimp algorithm is 24
table. A code table is a two-column table that S
sets on the left-hand side and a code for each &=
on its right-hand side. The item sets in the il




“rcered descending on 1) item set length and 2)
poerct size and 3) lexicographically. The actual
= on the right-hand side are of no importance:
ar =ngths are. To explain how these lengths are
wed the coding algorithm needs to be intro
memsaction tis encoded by Krimp by searching for
B == item set ¢ in the code table for which ¢ 2
: sncs for ¢ becomes part of the encoding of t. Ift
I = _ the algorithm continues to encode t n c.
: & is insisted that each code table contains at
% singlefon item sets, this algorithm gives a
sncoding to each (possible) transaction
il
L% of item sets used to encode a transaction is
s cover. Note that the coding algorithm
= 2t a cover consists of non-overlapping item

mush of the code of an item in a code table CT
oo the database we want to compress;

& ofien a code is used, the shorter it should
wumpute this code length, we encode each
Wi in the database DB. The frequency of an
« _ CT. denoted by freq(c) is the number of
s £ 2 DB which have ¢ in their cover That
= 15 2 DBje 2 cover(t)gj The relative fre
© 2 CT is the probability that ¢ is used to
asbitrary t2 DB, i.c.

ey PA2CT freq(d)

« compression of DB, the higher P(c), the
wade should be. Given that we also need
2= for unambiguous decoding, we use the
= eptimal Shannon code [4]:

L #0e(P(ciDB)) = log freq(c) Pd2CT
iensth of the encoding of a transaction
o the sum of the code lengths of the item
wawer. Therefore the encoded size of a
~ DB compressed using a speci_ed code
salculated as follows:

X cocover(t;CT) ICT (c)
5= encoded database is the sum of the
emcoded transactions, but can also be

e the frequencies of each of the ele
e cod wable:

BB ICT (1)

B Seaic) log_ freq(c) PA2CT freq(d)
E code table using MDL, we need
poount both the compressed database
r ump in action as described above, as

B size of the code table.
e code table, we only count those
ﬁ! Save a non-zero frequency.

The size of the right-hand side column is obvious; it is
simply the sum of all the di_erent code lengths. For the
size of the left-hand side column, note that the simplest
valid code table consists only of the singleton item sets.
This is the standard encoding (st), of which we use the
codes to compute the size of the item sets in the left-hand
side column. Hence, the size of code table CT is given by:
L(CT)=X c2CT:freq(c)6=01st(c) +1CT (c) In [13] we de_ned
the optimal set of (frequent) item sets as that one whose
associated code table minimises the total compressed size:
L(CT)+LCT(DB)

Krimp starts with a valid code table (only the collection of
singletons) and a sorted list of candidates (frequent item
sets). These candidates are assumed to be sorted descend-
ing on 1) support size, 2) item set length and 3) lexico-
graphically. Each candidate item set is considered by in-
serting it at the right position in CT and calculating the
new total compressed size. A candidate is only kept in the
code table i_ the resulting total size is smaller than it was
before adding the candidate. Ifit is kept, all other elements
of CT are reconsidered to see if they still positively con-
tribute to compression. The whole process is illustrated in
Figure 1. For more details see [13].

4 The Hypothesis for Krimp If we assume a_xed minimum
support threshold for a database, Krimp has only one es-
sential parameter:

the database. For, given the database and the (_xed) mini-
mum support threshold, the candidate list is also speci_ed.
Hence, we will simply write CTDB and Krimp(DB), to de-
note the code table induced by Krimp from DB. Similarly
CTQ and Krimp(Q) denote

the code table induced by Krimp from the result of apply-
ing query Q to DB.

Given that Krimp results in a code table, there is only one
sensible way in which Krimp(DB) can be re-used to com-
pute Krimp(Q): provide Krimp only with the item sets in
CTDB as candidates. While we change nothing to the code,
we’ll use the notation Krimp to indicate that Krimp got
only code table elements as candidates. So, e.g., Krimp (Q)
is the code table that Krimp induces from Q(DB) using the
item sets in CTDB only.

Given our general problem statement, we have now have
to prove that Krimp_ satis_es our two require-ments for a
transformed algorithm. That is, rstly, we have to show
that Krimp_(Q) is a good approximation of Krimp(Q). That
is, we have to show that ADM(Krimp_(Q); Krimp(Q)) =
JL(Krimp (Q))_L(Krimp(Q))j L(Krimp(Q))j __for some
(small) epsilon. Secondly, we have to show that it is faster
to compute Krimp_(Q) than it is to compute Krimp(Q). Given
that Krimp is a heuristic algorithm, a formal proof of these
two requirements is not possible. Rather, we’ll report on
extensive tests of these two requirements.

5 The Experiments In this section we describe our experi-




mental set-up.
First we briey describe the data sets we used. Next we
discuss the queries used for testing. Finally we describe
how the tests were performed.
5 1 The Data Sets . To test our hypothesis that Krimp_isa
good and fast approximation of Krimp, we have performed
extensive test on 8 well-known UCI [3]
data sets, listed in table 1, together with their respective
numbers of tuples and attributes. These data sets were
chosen because they are well suited for Krimp. Some of
the other data sets in the UCI repository are simply too
small for Krimp to perform well. MDL needs areasonable
amount of data to be able to function.
Some other data sets are very dense. While Krimp per-
forms well on these data sets, choosing them would have
turned our extensive testing prohibitively time-consum-
ing.
Note that all the chosen data sets are single table Dataset
#rows #attributes Heart 303 52
Iris 150 19 Led7 3200 24 Pageblocks 5473 46 Pima 78638
Tictactoe 958 29 Wine 178 68

Table 1: UCI data sets used in the experiments.
data sets. This means, of course, that queries involving
joins can not be tested in the experiments. The reason for
this is simple: we have already tested the quality of Krimp
in earlier work [10]. The algorithm introduced in that paper,
called R-Krimp, is essentially Krimp_;
we’ll return to this topic in the discussion section.
5.2 The Queries To test our hypothesis, we need to con-
sider randomly generated queries. On _rst sight this ap-
pears a daunting task. Firstly, because the set of all pos-
sible queries is very large. How do we determine a repre-
sentative set of queries? Secondly, many of the generated
queries will have no or very few results. If the query has
1o results, the hypothesis is vacuously true.
If the result is very small, MDL (and Krimp) doesn’t pet-
form very well.
Generating a representative set of queries witha non-trivial
result set seems an almost impossible task.
Fortunately, relational query languages have a useful prop-
erty: they are compositional. That is, one can combine
queries to form more complex queries. In fact, all queries
use small, simple, queries as building blocks.
For the relational algebra, the way to de_ne and combine
queries is through well-known operators: pro-jection (),
selection ( ), join (on), union ([), intersec-tion (), and
setminus (n). As an aside, note that in principle the Carte-
sian product (_) should be in the list of operators rather
than the join. Cartesian prod-ucts are, however, rare in
practical queries since their results are often humonguous
and their interpretation is at best di_cult. The join, in con-
trast, su_ers less from the _rst disadvantage and not from
the second. Hence, our ommission of the Cartesian prod-
ucts and addition of the join.

So, rather than attempting to generate queries of arbitrary
complexity, we generate simple queries only.

That is, queries involving only one of the operators _, [
\, and n. How the insight o_ered by these exper-iments
coupled with the compositionality of relational algebra
queries o_ers insight in our hypothesis for more general
queries is discussed in the discussion section.

5.3 The Experiments The experiments preformed for each
of the operators on each of the data sets were generateg
as follows.
Projection: The projection queries were generated by ran-
domly choosing a set X of n attributes, forn 2 f3; 5g. The
generated query is then _X. For this case, the code tabls
elements generated on the complete data set were alse
projected on X.

The rationale for using a small sets of attributes rathes
than larger ones is that these projections are the moss
disruptive. That is, the larger the set of attributes pre=
jected on, the more the structure of the table remains &=
tact. Given that Krimp induces this structure, projectioss

on small sets of attributes are the best test of our hypot=
esis.
Selections: The random selection queries were again gess
erated by randomly choosing a set X of n attributes, Wik
n2f1:2:3; 4g. Next for each random attribute Ai a ran
value vi in its domain Di was chosen. Finally, for each A2 &
X arandom i 2 f=; 6=g was chosen The generated queT
isthus (VA2X Ai_ivi).
The rationale for choosing small sets of attributes in “
case is that the bigger the number of attribute sets
lected on, the smaller the result of the query becomes. 18
small result sets will make Krimp perform badly.
Union: For the union queries, we randomly split the dat=e
D in two parts D1 and D2, such that D =D1 [D2; note il
in all experiments D1 and D2 have roughly the same =
The random query generated is, of course, D1 [ D2.
Krimp yields a code table on each of them, say CT1
CT2. To test the hypothesis, we give Krimp_the unias
the item sets in CT1 and CT2.

In practice, tables that are combined using a union ma
may not be disjoint. To test what happens with ¥
level of overlap between D1 and D2, we tested at owsd
levels from f0%; 33:3%; 50%g.

intersection: For the intersection queries, we agas
domly split the data set D into two overlapping pz
and D2. Again, such that D = D1 [ D2 and agaim
experiments D1 and D2 have roughly the same size 3
random query gener-ated is, of course, D1\ D2.
Again Krimp yields a code table on each of them. 520 %
and CT2. To test the hypothesis, we give Krimp_ the
of the item sets in CT1 and CT2.
The union of the two is given as either of one mis
good codes for the intersection. The small raiss
number of candidates is o_set by this potential 228
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The fact that Krimp _performs so well for selections means
that while Krimp models the global underlying data distri-
bution, it still manages capture the \local” structure very
well. That is, if there is a pattern that is important for a part
of the database, it will be present in the code table.

The fact that the results improve with the number of at-
tributes in the selection, though mostly not sig-ni_cantly,
is slightly puzzling. If one looks at all the experiments in
detail, the general picture is that big-ger query results give
better results. In this table, this global picture seems re-
versed. We do not have a good explanation for this obser-
vation.

6.3 Union The projection results are given in Ta-ble 4. The
general picture is very much as with the previous experi-
ments. The ADM score is a few percent, while the reduc-
tion in the number of candidates is often impressive.

The notable exception is the Iris database. The explana-
tion is that this data set has some very local structure that
(because of minsup settings) doesn’t get picked up in the
two components; it only becomes apparent in the union.
Note that this problem is exaggerated by the fact that we
split the data sets at random. The same explanation very
much holds for the rst Led7 experiment.

We already alluded a few times to the general trend that
the bigger the query results, the better the results.

This trend seems very apparent in this table. For, the higher
the overlap between the two data sets, the bigger the two
sets are, since their union is the full data set.

However, one should note that this is a bit misleading, for
the bigger the overlap the more the two code tables\know”
about the \other” data distribution.

6.4 Intersection The projection results are given in Table 5.
Like with for the union, the reduction of the number of
candidates is again huge in general. The ADM scores are
less good than for the union, however, still mostly below
0.1. This time the Heart and the Led7 databases that are
the outliers. Heart shows the biggest reduction in the num-
ber of candidates, but at the detriment of the ADM score.
The explanation for these relative bad scores lies again in
local structures, that have enough support in one or both
of the components, but not in the intersec-tion. That is;
Krimp doesn’t see the good candidates for the tuples that
adhere to such local structures. This is witnessed by the
fact that some tuples are compressed better by the original
code tables than by the Krimp generated code table for the
intersection. Again, this problem is, in part, caused by the
fact that we split our data sets at random.

The ADM scores for the other data sets are more in line
with the numbers we have seen before. For these, the ADm
score is below 0.2 or (much) lower.

6.5 Setminus The projection results are given in Table 6.




Both the ADM scores and the Size scores are very good
for all of these experiments. This does make sense, each of
these experiments is computed on a random subset of the
data. If Krimp is any good, the code tables generated from
the complete data set should compress a random subset
well.

It may seem counter intuitive that the ADM score grows
when the size of the random subset grows. In fact, it is not.
The bigger the random subset, the closer its underlying
distribution gets to the \true” underlying distribution. That
is, to the distribution that underlies the complete data set.
Since Krimp has seen the whole data set, it will pick up this
distribution better than Krimp .

7 Discussion

First we discuss briey the results of the experiments.
Next we discuss the join. Finally we discuss what these
experiments mean for more general queries.

7.1 Interpreting the Results The Size scores re-ported in
the previous section are easy to interpret.

They simply indicate how much smaller the candidateset
becomes. As explained before, the runtime complex-ity of
Krimp is linear in the number of candidates. So, since the
Size score is never below 0.4 and, often, con-siderably
lower, we have established our rst goal for Krimp . Itis
faster, and often far faster, than Krimp.

In fact, one should also note that for Krimp , we do not
have to run a frequent item set miner. In other words, in
practice, using Krimp is even faster than suggested by
the Size scores.

But, how about the other goal: how good is the approxima-
tion? That is, how should one interpret ADM scores? Ex-
cept for some outliers, ADM scores are below 0.2. That is,
a full-edged Krimp run compresses the data set 20% better
than Krimp . Is that good?

In a previous paper [15], we took two random sam-ples
from data sets, say D1 and D2. Code tables CTland CT2
were induced from D1 and D2 respectively.

Next we tested how well CTi compressed Dj . For the four
data sets also used in this paper, Iris, Led7, Pima and,
PageBlocks, the \other” code table compressed 16% to
18% worse than the \own” code table; the g-ures for
other data sets are in the same ball-park. In other words, an
ADM score on these data sets below 0.2 is on the level of
\natural variations” of the data distri-bution. Hence, given
that the average ADM scores are often much lower we
conclude that the approximation by Krimp _ is good.

In other words, the experiments verify our hypoth-esis:
Krimp gives a fast and good approximation of Krimp. At
least for simple queries.

7.2 The Join In the experiments, we did not test the join
operator. We did, however, already test the join in a previ-
ous paper [10]. The R-Krimp algorithm introduced in that

paper is Krimp_ for joins only.

Given two tables, T1 and T2, the code table is induced on
both, resulting in CT1 and CT2. To compute the code table
on T1 on T2, R-Krimp only uses the item sets in CT1 and
CT2. Rather than using, the union of these two sets, for
the join one uses pairs (pl; p2), with p1 2 CT1 and p2 2
CT2.

While the ADM scores are not reported in that paper, they
can be estimated from the numbers reported there. For
various joins on, e.g., the well known nancial data set.
the ADM can be estimated as to be between 0.01 and 0.05.
The Size ranges from 0.3 to 0.001; see

[10] for details.

In other words, Krimp _also achieves its goals for the join
operator.

7.3 Complex Queries For simple queries we know that
Krimp delivers a fast and good approximation.
How about more complex queries?
As noted before, these complex queries are built from sim-
pler ones using the relational algebra operators.
Hence, we can use error propagation to estimate the erres
of such complex queries.
The basic problem is, thus, how do the approxima-ties
errors propagate through the operators? While we do havs
no de nite theory, at worse, the errors will have to =
summed. That is, the error of the join of two se-lectioms
will be the sum of the errors of the join plus the errors &
the selections.
Given that complex queries will only be posed on lazge
database, on which krimp performs well. The initial errom
/ill be small. Hence, we expect that the error on comp =s
queries will still be reasonable; this is, however, subject
further research.
8 Related Work While there are, as far as the authors know
no other papers that study the same problem, the topi
this paper falls in the broad class of data mining with !
ground knowledge. For, the model on the database, &
is used as background knowledge in computing MQ. Wi
a survey of this area is beyond the scope of this paper.
point out some papers that are related to one of the
aspects we are interested in, viz., speed-up and apps
mation.
A popular area of research in using background k=
edge is that of constraints. Rather than trying to speet @
the mining, the goal is often to produce mod-els tha
here to the background knowledge. Examples are &
of constraints in frequent pattern mining, e.g. [2], and
tonicity constraints [6]. Note, how-ever, that for e
patter mining the computation can be speeded up comi
erable if the the constraints can be pushed into the =
algorithm [2]. So, speed-up is certainly a concern =
area. However, as far
as we know approximation plays no role. The goal &= &
_nd all patterns that satisfy the constraints.
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Dataset 3 attr 5 attr ADM Size ADM Size

Heart0.06 0.090.2 0.130.03 0.030.2_0.13

Iris0.24 0.280.17 0.12021 0.180.14 0.12

Led70.05 0.10.31 0.230.38 034025 0.19

PageBlocks 0.04 0.06023 0210.08 0.060.2 0.17

Pima0.04 0.050.14 0.130.08 0.070.23 0.17

TicTacToe 0.12 0.090.11 _0.170.09 0.10.17_0.11

Wine 0.16 0.20.10 0.090.1 0.110.1 0.09

Table 2: The results of the projection experiments. The
ADM and Size scores are averages _ standard de-
viation

Dataset | attr 2 attr 3 attr 4 attr

ADM Size ADM Size ADM Size ADM Size

Heart0.04 0.030.04 0.110.04 0.030.02 0.0020.04
0.030.003 0.0030.02_0.020.001 _0.0004

Iris0.04 0.040.09 0.010.05 0.050.1 0.020.04 0.01
0.1 0.010.01 _0.030.1_001

Led70.04 0.060.02_ 0.0010.04_ 0.010.02_0.0010.03
0.020.02 0.0010.03 0.030.02_0.01

PageBlocks 0.09 0.070.007 0.0080.05 0.040.002
0.00020.03 0.020.002 0.00020.02 0.020.002
0.0002

Pima0.1 0.140.01 0.0030.03 0.020.01 0.0030.03
0.020.01 _0.0020.03 0.020.01 0.001

TicTacToe 0.16 0.090.01 0.0020.1 0.0280.01 _0.002
0.12_0.040.02_0.020.08_0.030.01 0.005

Wine 0.03 0.030.02 0.020.02 0.020.02 0.020.02 _
0.010.01 0.0060.02 0.010.01 0.005

Table 3: The resuits of the selection experiments. The ADM

and Size scores are averages _ standard deviation

Dataset 0% 33.3% 50%

ADM Size ADM Size ADM Size

Heart0.07 _0.020.0001 _0.00010.04_0.020.001 0.00004

0.03 0.050.001 0.0002

Irs0.36 0.110.07_0.010.37 0.10.07_0.0070.34 0.12

0.07 _0.006

Led70.38 0310.02 0.0050.05 0.020.03 0.0020.03

0.020.03 _0.002

PageBlocks 0.06 0.010.002 0.00010.04 0.010.003 _

0.00010.02_0.010.003 _0.0001

Pima0.04 0.030.01 0.00060.03 0.020.02_0.0020.03

0.020.02 0.002

TicTacToe 0.07 _0.01 0.009 0.00050.03 0.02 0.01 _

0.00030.01 0.0020.01 0.0002

Wine 0.03 _0.010.006 _0.00030.03 _0.010.008 0.0006

0.02 0.010.008 0.0003

4

Table 4: The results of the union experiments. The
centages denote the amount of overlap between the =
data sets. The ADM and Size scores are averages =
dard deviation

Dataset 33.3% 50% 66.6%

ADM Size ADM Size ADM Size

Heart0.39 0.140.0002 0.00010.36 0.050.0002 €%
0.42 0.170.0001 0.0001

Iris0.09 _0.080.1 0.020.08 0.070.09_0.020.05 W&
0.09 0.0t

Led70.5 0.140.005 0.0020.42 0.10.007 _0.007 &2
0.120.01 _0.001

PageBlocks 0.13  0.070.001 _0.0002 0.09 _0.06 7 &
0.0001 0.07 _0.050.002 0.0001

Pima0.09 0.060.01 0.0020.09 _0.090.01 000"
0.060.01 _0.002

TicTacToe 0.2 0.050.007 _0.0020.22 0.040.005 W
0.24 0.040.004 0.0007

Wine 0.1 0.020.01 0.0050.12 0.030.005 _© Wl
0.040.002_0.0006

Table 5: The results of the intersection exper ==
percentages denote the amount of overlap bei
two data sets. The ADM and Size scores ars &
standard deviation

Dataset 33.3% 50% 66.6%

ADM Size ADM Size ADM Size

heart0.01 0.010.001 0.000070.01 0.01 0% |
0.03_0.020.002 _0.0004

iris0.003 _0.0060.11 _0.0070.005_0.0080.1Z 1
0.020.14 0.01

led70.02_0.020.02 0.00020.02 0.020.02 = W
0.030.02_0.001

pageBlocks 0.01 0.0040.002 0.00004 0.0Z
0.000030.03 0.010.003 0.00007

pima0.02 0.010.02 0.0010.01 0.010.0Z =M
0.020.02 0.001

ticTacToe 0.06 0.020.01 0.00030.07 002 1

0.08 0.020.02 0.002

wine 0.01 0.0070.01 0.0020.02 0.01002 W
0.020.04 0.01

Table 6: The results of the setminus experimi
centages denote the size of the remaining Zaa
The ADM and Size scores are averages =l
tion

ve




