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Preface

The year 2008 was the first year that the previously separate European Con-
ferences on Machine Learning (ECML) and the Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD) were merged into a uni-
fied event. This is a natural evolution after eight consecutive years of their being
collocated after the first joint conference in Freiburg in 2001. The European
Conference on Machine Learning (ECML) traces its origins to 1986, when the
first European Working Session on Learning was held in Orsay, France followed
by the second European Working Session on Learning held in Bled, the locati-
on of this year’s ECML PKDD 2009 conference. The European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD) was first
held in 1997 in Trondheim, Norway. Over the years, the ECML/PKDD series
has evolved into one of the largest and most selective international conferences in
machine learning and data mining, the only one that provides a common forum
for the two closely related fields. In 2009, ECML PKDD conference was held
during September 7–11 in Bled, Slovenia.

The conference used a hierarchical reviewing process. We nominated 26 Area
Chairs, each of them responsible for one sub-field or several closely related rese-
arch topics. Suitable areas were selected on the basis of the submission statistics
for ECML PKDD 2008 and from last year’s International Conference on Machi-
ne Learning (ICML 2008) and International Conference on Knowledge Discovery
and Data Mining (KDD 2008) to ensure a proper load balance among the Area
Chairs. A joint Program Committee (PC) was nominated consisting of some 300
renowned researchers, mostly proposed by the Area Chairs. In order to make best
use of the reviewing capabilities we initially only requested that two reviews be
sought. However, in the event of an inconsistency between the two assessments
a third review was requested. Papers receiving two very positive reviews were
considered for inclusion in the two special issues of Machine Learning and Data
Mining and Knowledge Discovery appearing in time for the conference. A fur-
ther review was also sought for these papers in order to assess their suitability to
appear in journal form. Aleksander Kolcz was the Best Papers Chair responsible
for overseeing the selection of papers for these special issues.

ECML PKDD 2009 received 679 abstract submissions resulting in a final total
of 422 papers that were submitted and not withdrawn during the reviewing
process. Based on the reviews, and on discussions among the reviewers, the
Area Chairs provided a recommendation for each paper with a ranking of the
borderline papers. The three Program Chairs made the final program decisions
after merging the opinions of the 26 Area Chairs.

All accepted papers were of equal status with an oral presentation, poster pre-
sentation and 16 pages in the proceedings, with the exception of those accepted
for the special issues of journals that were only allocated a single page abstract
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in the proceedings. We have selected a total of 106 papers of which 14 were be
equally divided between the two special issues. The acceptance rate for all pa-
pers is therefore 25%, in line with the high-quality standards of the conference
series. It is inevitable with such a low acceptance rate that some good papers
were rejected and we hope that authors of these papers were not discouraged by
their disappointment. We are, however, confident that the accepted papers are
of a high quality, making a very exciting and stimulating conference. In addition
to research papers, 15 demo papers were accepted, each having 4 pages in the
proceedings and demo of the system during the poster session. In addition to the
paper and poster/demo sessions, ECML PKDD 2009 also featured five invited
talks, ten workshops, six tutorials, and the ECML PKDD discovery challenge
and industrial track. The selection of Invited Speakers covered a broad range
from theoretical to leading application-orientated research. Together they made
a very strong addition to the conference program. We are grateful to Shai Ben-
David (University of Waterloo, Canada), Nello Cristianini (University of Bristol,
UK), Mark Greaves (Vulcan Inc.), Rosie Jones (Yahoo! Research), Ralf Stein-
berger (European Commission - Joint Research Centre) for their participation
in ECML PKDD 2009. The abstracts of their presentations are included in this
volume.

This year we continued to promote an Industrial Track chaired by Marko
Grobelnik (Jožef Stefan Institute, Slovenia) and Nataša Milić-Frayling (Micro-
soft Research, Cambridge, UK) consisting of selected talks with a strong indu-
strial component presenting research from the area covered by the ECML PKDD
conference. We have also included a Demonstration Track chaired by Alejandro
Jaimes Larrarte, providing a venue for exciting exemplars of applications of novel
technologies.

As in recent years, the conference proceedings were available on-line to con-
ference participants during the conference. We are grateful to Springer for ac-
commodating this access channel for the proceedings.

As in previous years we will continue with the recently established tradition
of videorecording the event, ensuring an enduring record of the event made ac-
cessible at http://videolectures.net/. Mitja Jermol is the Video Chair overseeing
this aspect of the organization.

This year’s Discovery Challenge was coordinated by Andreas Hotho together
with Folke Eisterlehner and Robert Jäschke. It involved three tasks in the area
of tag recommendation.

We are all indebted to the Area Chairs, Program Committee members and
external reviewers for their commitment and hard work that resulted in a rich
but selective scientific program for ECML PKDD 2009. We are particularly gra-
teful to those reviewers who helped with additional reviews at a very short notice
to assist us in a small number of difficult decisions. We further thank the Work-
shop and Tutorial Chairs Ravid Ghani and Cédric Archambeau for selecting
and coordinating the ten workshops and six tutorials that accompany the con-
ference; the workshop organizers, tutorial presenters, and the organizers of the
discovery challenge, the Industrial and Demonstration Tracks; the Video Chair;
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the Publicity Chair David Hardoon; and Richard van de Stadt and CyberChair-
PRO for highly competent and flexible support when confronted by novel featu-
res in our handling of the papers. Special thanks are due to the Local Chair, Tina
Anžič, for the many hours spent ensuring the success of the conference. Finally,
we are grateful to the Steering Committee and the ECML PKDD community
that entrusted us with the organization of the ECML PKDD 2009.

Most of all, however, we would like to thank all the authors who trusted
us with their submissions, thereby contributing to the main yearly European-
focussed international event in the life of our expanding research community.

June 2009 Dunja Mladenić
Wray Buntine

Marko Grobelnik
John Shawe-Taylor
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Yvan Saeys
Lorenza Saitta
Scott Sanner
Vitor Santos Costa
Craig Saunders
Yucel Saygin
Lars Schmidt-Thieme
Jouni Seppanen
Shashi Shekhar
Jin Shieh
Stefan Siersdorfer
Tomi Silander
Ricardo Silva
Ozgur Simsek
Ajit Singh
Sergej Sizov
Carlos Soares
Maarten van Someren
Yang Song
Elaine Sousa
Myra Spiliopoulou
Karsten Steinhaeuser
David Stern
Jan Struyf
Jiang Su
Masashi Sugiyama
Johan Suykens
Vojtech Svatek



XIV Organization

Sandor Szedmak
Nikolaj Tatti
Evimaria Terzi
Gerald Tesauro
Hanghang Tong
Volker Tresp
Koji Tsuda
Ville Tuulos
Rasmus Ulslev Pedersen
Dries Van Dyck
Stijn Vanderlooy
Sergei Vassilvitskii
Cor Veenman
Paola Velardi
Shankar Vembu
Celine Vens
Jean-Philippe Vert
Ricardo Vilalta
Michalis Vlachos
Christel Vrain
Jilles Vreeken

Christian Walder
Xiaoyue Wang
Markus Weimer
David Wingate
Michael Wurst
Dragomir Yankov
Lexiang Ye
Jie Yin
François Yvon
Menno van Zaanen
Bianca Zadrozny
Osmar Zaiane
Mikhail Zaslavskiy
Gerson Zaverucha
Filip Zelezny
Justin Zhan
Bin Zhang
Zhi-Hua Zhou
Qiang Zhu
Xiaojin Zhu
Albrecht Zimmermann

Additional Reviewers

Dima Alberg
Anelia Angelova
Mohammad Aziz
Michele Berlingerio
Marenglen Biba
Alexander Binder
Zoran Bosnić
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Abstract. Inductive databases are databases in which models and pat-
terns are first class citizens. Having models and patterns in the database
raises the question: do the models and patterns that are stored help in
computing new models and patterns? For example, let C be a classifier
on database DB and let Q be a query. Does knowing C speed up the
induction of a new classifier on the result of Q?

In this paper we answer this problem positively for the code tables
induced by our Krimp algorithm. More in particular, assume we have
the code tables for all tables in the database. Then we can approximate
the code table induced by Krimp on the result of a query, using only
these global code tables as candidates. That is, we do not have to mine
for frequent item sets on the query result.

1 Introduction

The problem investigated in this paper can informally be phrased as follows. Let
MDB be the model we induced from database DB and let Q be a query on DB.
Does knowing MDB help in inducing a model MQ on Q(DB), i.e., on the result
of Q when applied to DB. For example, if MDB is a classifier and Q selects a
subset of DB, does knowing MDB speed-up the induction of a new classifier MQ

on the subset Q(DB)?
There are at least two contexts in which this question is relevant. Firstly in

the context of inductive databases. Ever since their introduction in the seminal
paper by Imielinski and Mannila [11], they have been a constant theme in data
mining research. There is no formal definition of an inductive database, in fact,
it may be too early for such a definition [14]. However, consensus is that models
and patterns should be first class citizens in such a database. That is, e.g., one
should be able to query for patterns. Having models and patterns in the database
naturally raises the question: do the models and patterns that are stored help
in computing new models and patterns?

The second context in which the problem is relevant is in every day data
mining practice. In the data mining literature, the usual assumption is that
we are given some database that has to be mined. In practice, however, this
assumption is usually not met. Rather, the construction of the mining database
is often one of the hardest parts of the KDD process. The data often resides in a
data warehouse or in multiple databases, and the mining database is constructed
from these underlying databases.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 382–397, 2009.
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From most perspectives, it is not very interesting to know whether one mines
a specially constructed database or an original database. For example, if the
goal is to build the best possible classifier on that data set, the origins of the
database are of no importance whatsoever.

It makes a difference, however, if the underlying databases have already been
modelled. Then, like with inductive databases, one would hope that knowing such
models would help in modelling the specially constructed ‘mining database. For
example, if we have constructed a classifier on a database of customers, one would
hope that this would help in developing a classifier for the female customers only.

So, the problem is relevant, but isn’t it trivial? After all, if MDB is a good
model on DB, it is almost always also a good model on a random subset of DB;
almost always, because a random subset may be highly untypical. The problem
is, however, not trivial because queries in general do not compute a random
subset. Rather, queries construct a very specific result.

For the usual “project-select-join” queries, there is not even a natural way in
which the query-result can be seen as subset of the original database. Even if Q
is just a “select”-query, the result is usually not random and MDB can even be
highly misleading on Q(DB). This is nicely illustrated by the well-known exam-
ple of Simpson’s Paradox, viz., Berkeley’s admission data [2]. Overall, 44% of the
male applicants were admitted, while only 35% of the females were admitted.
Four of the six departments, however, have a bias that is in favour of female
applicants. While the overall model may be adequate for certain purposes, it is
woefully inadequate for a query that selects a single department.

Solving the problem for all model classes and algorithms is a rather daunting
task. Rather, in this paper we study the problem for one specific class of models,
viz., the code tables induced by our Krimp algorithm [15]. Given all frequent
item sets on a table, Krimp selects a small subset of these frequent item sets. The
reason why we focus on Krimp is threefold. Firstly, because together the selected
item sets describe the underlying data distribution of the complete database
very well, see, e.g., [16,17]. Secondly, because the code table consists of local
patterns. Such a local pattern can be seen as a selection query on the database
(for the transactions in its support), hence, one would expect Krimp to do well
on selection queries. Thirdly, from earlier research on Krimp in a multi-relational
setting, we noticed as a side-result that Krimp is probably easily transformed
for joins [13]; this is investigated further in this paper.

More in particular, we show that if we know the code tables for all tables
in the database, then we can approximate the code table induced by Krimp
on the result of a query, using only the item sets in these global code tables
as candidates. Since Krimp is linear in the number of candidates and Krimp
reduces the set of frequent item sets by many orders of magnitude, this means
that we can now speed up the induction of code tables on query results by many
orders of magnitude.

This speed-up results in a slightly less good code table, but it approximates
the optimal solution within a few percent. We will formalise “approximation”
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in terms of MDL [10]. Hence, the data miner has a choice: either a quick, good
approximation, or the optimal result taking longer time to compute.

2 Problem Statement

This section starts with some preliminaries and assumptions. Then we introduce
the problem informally. To formalise it we use MDL, which is briefly discussed.

2.1 Preliminaries and Assumptions

We assume that our data resides in relational databases. In fact, note that the
union of two relational databases is, again, a relational database. Hence, we as-
sume, without loss of generality, that our data resides in one relational database
DB. As query language we will use the standard relational algebra. More pre-
cisely, we focus on the usual “select-project-join” queries. That is, on the selection
operator σ, the projection operator π, and the (equi-)join operator ��; see [5].
Note that, as usual in the database literature, we use bag semantics. That is, we
do allow duplicates tuples in tables and query results.

As mentioned in the introduction, the mining database is constructed from
DB using queries. Given the compositionality of the relational algebra, we may
assume, again without loss of generality, that the analysis database is constructed
using one query Q. That is, the analysis database is Q(DB), for some relational
algebra expression Q. Since DB is fixed, we will often simply write Q for Q(DB);
that is, we will use Q to denote both the query and its result.

2.2 The Problem Informally

In the introduction we stated that knowing a model on DB should help in
inducing a model on Q. To make this more precise, let A be our data mining
algorithm. At this point, A can be any algorithm, it may, e.g., compute a decision
tree, all frequent item sets or a neural network.

Let MDB denote the model induced by A from DB, i.e, MDB = A(DB).
Similarly, let MQ = A(Q). We want to transform A into an algorithm A∗ that
takes at least two inputs, i.e, both Q and MDB, such that:

1. A∗ gives a reasonable approximation of A when applied to Q, i.e.,

A∗(Q,MDB) ≈ MQ

2. A∗(Q,MDB) is simpler to compute than MQ.

The second criterion is easy to formalise: the runtime of A∗ should be shorter
than that of A. The first one is harder. What do we mean that one model is an
approximation of another? Moreover, what does it mean that it is a reasonable
approximation?
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2.3 Model Approximation

The answer to the question how to formalise that one model approximates an-
other depends very much on the goal. If A induces classifiers, approximation
should probably be defined in terms of prediction accuracy, e.g., on the Area
Under the ROC-curve (AUC).

Krimp computes code tables. Hence, the quick approximating algorithm we
are looking for, Krimp∗ in the notation used above, also has to compute code
tables. So, one way to define the notion of approximation is by comparing the
resulting code tables. Let CTKrimp be the code table computed by Krimp and
similarly, let CTKrimp∗ denote the code table computed by Krimp∗ on the same
data set. The more similar CTKrimp∗ is to CTKrimp, the better Krimp∗ approxi-
mates Krimp.

While this is intuitively a good way to proceed, it is far from obvious how to
compare two code tables. Fortunately, we do not need to compare code tables
directly. Krimp is based on the Minimum Description Length principle (MDL)
[10], and MDL offers another way to compare models, viz., by their compression-
rate. Note that using MDL to define “approximation” has the advantage that we
can formalise our problem for a larger class of algorithms than just Krimp. It is
formalised for all algorithms that are based on MDL. MDL is quickly becoming
a popular formalism in data mining research, see, e.g., [8] for an overview of
other applications of MDL in data mining.

2.4 Minimum Description Length

MDL embraces the slogan Induction by Compression. It can be roughly described
as follows.

Given a set of models1 H, the best model H ∈ H is the one that minimises

L(H) + L(D|H)

in which

– L(H) is the length, in bits, of the description of H , and
– L(D|H) is the length, in bits, of the description of the data when encoded

with H .

One can paraphrase this by: the smaller L(H) + L(D|H), the better H
models D.

What we are interested in is comparing two algorithms on the same data set,
viz., on Q(DB). Slightly abusing notation, we will write L(A(Q)) for L(A(Q))+
L(Q(DB)|A(Q)), similarly, we will write L(A∗(Q,MDB)). Then, we are inter-
ested in comparing L(A∗(Q,MDB)) to L(A(Q)). The closer the former is to the
latter, the better the approximation is.

1 MDL-theorists tend to talk about hypothesis in this context, hence the H; see [10]
for the details.
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Just taking the difference of the two, however, can be quite misleading. Take,
e.g., two databases db1 and db2 sampled from the same underlying distribution,
such that db1 is far bigger than db2. Moreover, fix a model H . Then necessarily
L(db1|H) is bigger than L(db2|H). In other words, big absolute numbers do
not necessarily mean very much. We have to normalise the difference to get a
feeling for how good the approximation is. Therefore we define the asymmetric
dissimilarity measure (ADM) as follows.

Definition 1. Let H1 and H2 be two models for a dataset D. The asymmetric
dissimilarity measure ADM(H1, H2) is defined by:

ADM(H1, H2) =
|L(H1) − L(H2)|

L(H2)

Note that this dissimilarity measure is related to the Normalised Compression
Distance [4]. The reason why we use this asymmetric version is that we have a
“gold standard”. We want to know how far our approximate result A∗(Q,MDB)
deviates from the optimal result A(Q).

Clearly, ADM(A∗(Q,MDB),A(Q)) does not only depend on A∗ and on A,
but also very much on Q. We do not seek a low ADM on one particular Q,
rather we want to have a reasonable approximation on all possible queries. Re-
quiring that the ADM is equally small on all possible queries seems to strong
a requirement. Some queries might result in a very untypical subset of DB, the
ADM is probably higher on the result of such queries than it is on queries that
result in more typical subsets. Hence, it is more reasonable to require that the
ADM is small most of the time. This is formalised through the notion of an
(ε, δ)-approximation.

Definition 2. Let DB be a database and let Q be a random query on DB.
Moreover, let A1 and A2 be two data mining algorithms on DB. A1 is an (ε, δ)-
approximation of A2 iff

P (ADM(A1(Q),A2(Q)) > ε) < δ

2.5 The Problem

Using the notation introduced above, we formalise the problem as follows.

Problem Statement
For a given data mining algorithm A, devise an algorithm A∗, such that for a
random database DB:

1. A∗ is an (ε, δ)-approximation of A for reasonable values for ε and δ.
2. Computing A∗(Q,MDB) is faster than computing A(Q) for a random query

Q on DB.

What reasonable values for ε and δ are depends very much on the application.
While ε = 0.5 for δ = 0.9 might be acceptable for one application, these values
may be unacceptable for others.
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The ultimate solution to the problem as stated here would be an algorithm
that transforms any data mining algorithm A in an algorithm A∗ with the
requested properties. This is a rather ambitious, ill-defined (what is the class of
all data mining algorithms?), and, probably, not attainable goal. Hence, in this
paper we take a more modest approach: we transform one algorithm only, our
Krimp algorithm.

3 Introducing Krimp

For the convenience of the reader we provide a brief introduction to Krimp in
this section, it was originally introduced in [15] (although not by that name) and
the reader is referred to that paper for more details.

Since Krimp selects a small set of representative item sets from the set of all
frequent item sets, we first recall the basic notions of frequent item set mining [1].

3.1 Preliminaries

Let I = {I1, . . . , In} be a set of binary (0/1 valued) attributes. That is, the
domain Di of item Ii is {0, 1}. A transaction (or tuple) over I is an element
of

∏
i∈{1,...,n} Di. A database DB over I is a bag of tuples over I. This bag is

indexed in the sense that we can talk about the i-th transaction.
An item set J is, as usual, a subset of I, i.e., J ⊆ I. The item set J occurs

in a transaction t ∈ DB if ∀I ∈ J : πI(t) = 1. The support of item set J in
database DB is the number of transactions in DB in which J occurs. That is,
suppDB(J) = |{t ∈ DB| J occurs in t}|. An item set is called frequent if its
support is larger than some user-defined threshold called the minimal support
or min-sup. Given the A Priori property,

∀I, J ∈ P(I) : I ⊂ J → suppDB(J) ≤ suppDB(I)

frequent item sets can be mined efficiently level wise, see [1] for more details.
Note that while we restrict ourself to binary databases in the description

of our problem and algorithms, there is a trivial generalisation to categorical
databases. In the experiments, we use such categorical databases.

3.2 Krimp

The key idea of the Krimp algorithm is the code table. A code table is a two-
column table that has item sets on the left-hand side and a code for each item set
on its right-hand side. The item sets in the code table are ordered descending on
1) item set length and 2) support size and 3) lexicographically. The actual codes
on the right-hand side are of no importance but their lengths are. To explain
how these lengths are computed, the coding algorithm needs to be introduced.

A transaction t is encoded by Krimp by searching for the first item set I in
the code table for which I ⊆ t. The code for I becomes part of the encoding of
t. If t \ I �= ∅, the algorithm continues to encode t \ I. Since it is insisted that
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each code table contains at least all singleton item sets, this algorithm gives a
unique encoding to each (possible) transaction over I.

The set of item sets used to encode a transaction is called its cover. Note that
the coding algorithm implies that a cover consists of non-overlapping item sets.

The length of the code of an item in a code table CT depends on the database
we want to compress; the more often a code is used, the shorter it should be.
To compute this code length, we encode each transaction in the database DB.
The frequency of an item set I ∈ CT , denoted by freq(I) is the number of
transactions t ∈ DB which have I in their cover. That is,

freq(I) = |{t ∈ DB|I ∈ cover(t)}|
The relative frequency of I ∈ CT is the probability that I is used to encode an
arbitrary t ∈ DB, i.e.

P (I|DB) =
freq(I)

∑
J∈CT freq(J)

For optimal compression of DB, the higher P(c), the shorter its code should be.
Given that we also need a prefix code for unambiguous decoding, we use the
well-known optimal Shannon code [7]:

l(I|CT ) = − log(P (I|DB)) = − log
(

freq(I)
∑

J∈CT freq(J)

)

The length of the encoding of a transaction is now simply the sum of the code
lengths of the item sets in its cover. Therefore the encoded size of a transaction
t ∈ DB compressed using a specified code table CT is calculated as follows:

L(t|CT ) =
∑

I∈cover(t,CT )

l(I|CT )

The size of the encoded database is the sum of the sizes of the encoded transac-
tions, but can also be computed from the frequencies of each of the elements in
the code table:

L(DB|CT ) =
∑

t∈DB

L(t|CT )

= −
∑

I∈CT

freq(I) log
(

freq(I)
∑

J∈CT freq(J)

)

To find the optimal code table using MDL, we need to take into account both
the compressed database size, as described above, as well as the size of the code
table. For the size of the code table, we only count those item sets that have
a non-zero frequency. The size of the right-hand side column is obvious; it is
simply the sum of all the different code lengths. For the size of the left-hand side
column, note that the simplest valid code table consists only of the singleton
item sets. This is the standard encoding (ST), of which we use the codes to
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compute the size of the item sets in the left-hand side column. Hence, the size
of code table CT is given by:

L(CT |DB) =
∑

I∈CT :freq(I) �=0

l(I|ST ) + l(I|CT )

In [15] we defined the optimal set of (frequent) item sets as that one whose
associated code table minimises the total compressed size:

L(CT, DB) = L(CT |DB) + L(DB|CT )

As before, this minimal compressed size of DB is denoted by L(DB). Krimp
starts with a valid code table (only the collection of singletons) and a sorted list
of candidates (frequent item sets). These candidates are assumed to be sorted
descending on 1) support size, 2) item set length and 3) lexicographically. Each
candidate item set is considered by inserting it at the right position in CT and
calculating the new total compressed size. A candidate is only kept in the code
table iff the resulting total size is smaller than it was before adding the candidate.
If it is kept, all other elements of CT are reconsidered to see if they still positively
contribute to compression. The whole process is illustrated in Figure 1; see [15].

Fig. 1. Krimp in action

4 The Problem for Krimp

If we assume a fixed minimum support threshold for a database, Krimp has
only one essential parameter: the database. For, given the database and the
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(fixed) minimum support threshold, the candidate list is also specified. Hence,
we will simply write CTDB and Krimp(DB), to denote the code table induced by
Krimp from DB. Similarly CTQ and Krimp(Q) denote the code table induced
by Krimp from the result of applying query Q to DB.

Given that Krimp results in a code table, there is only one sensible way in
which Krimp(DB) can be re-used to compute Krimp(Q): provide Krimp only
with the item sets in CTDB as candidates. While we change nothing to the
algorithm, we’ll use the notation Krimp∗ to indicate that Krimp got only code
table elements as candidates. So, e.g., Krimp∗(Q) is the code table that Krimp
induces from Q(DB) using the item sets in CTDB only.

Given our general problem statement, we now have to show that Krimp∗

satisfies our two requirements for a transformed algorithm. That is, we have to
show for a random database DB:

– For reasonable values for ε and δ, Krimp∗ is an (ε, δ)-approximation of
Krimp, i.e, for a random query Q on DB:

P (ADM(Krimp∗(Q),Krimp(Q)) > ε) < δ

Or in MDL-terminology:

P

( |L(Krimp∗(Q)) − L(Krimp(Q))|
L(Krimp(Q))

> ε

)

< δ

– Moreover, we have to show that it is faster to compute Krimp∗(Q) than it
is to compute Krimp(Q).

Neither of these two properties can be formally proven, if only because Krimp
and thus Krimp∗ are both heuristic algorithms. Rather, we report on extensive
tests of these two requirements.

5 The Experiments

In this section we describe our experimental set-up. First we briefly describe
the data sets we used. Next we discuss the queries used for testing. Finally we
describe how the tests were performed.

5.1 The Data Sets

To test our hypothesis that Krimp∗ is a good and fast approximation of Krimp,
we have performed extensive tests mostly on 6 well-known UCI [6] data sets and
one data set from the KDDcup 2004.

More in particular, we have used the data sets connect, adult, chessBig, le-
tRecog, PenDigits and mushroom from UCI. These data sets were chosen because
they are well suited for Krimp. Some of the other data sets in the UCI reposi-
tory are simply too small for Krimp to perform well. MDL needs a reasonable
amount of data to be able to function. Some other data sets are very dense. While
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Krimp performs well on these data sets, choosing them would have turned our
extensive testing prohibitively time-consuming.

Since all these data sets are single table data sets, they do not allow testing
with queries involving joins. To test such queries, we used tables from the “Hep-
atitis Medical Analysis”2 of the KDDcup 2004. From this relational database we
selected the tables bio and hemat. The former contains biopsy results, while the
latter contains results on hematological analysis. The original tables have been
converted to item set data and rows with missing data have been removed.

5.2 The Queries

To test our hypothesis, we need to consider randomly generated queries. On first
sight this appears a daunting task. Firstly, because the set of all possible queries
is very large. How do we determine a representative set of queries? Secondly,
many of the generated queries will have no or very few results. If the query has
no results, the hypothesis is vacuously true. If the result is very small, MDL
(and Krimp) doesn’t perform very well.

To overcome these problems, we restrict ourselves to queries that are build
using selections (σ), projections (π), and joins (��) only. The rationale for this
choice is twofold. Firstly, the well-known “project-select-join” queries are among
the most used queries in practice. This is witnessed by the important role they
play in benchmarks for DBMSs such as the TPC family of benchmarks. Secondly,
simple queries will have, in general, larger results than more complex queries.

5.3 The Experiments

The experiments preformed for each of the queries on each of the data sets were
generated as follows.

Projection: The projection queries were generated by randomly choosing a set
X of n attributes, for n ∈ {1, 3, 5, 7, 9}. The generated query is then πX .
That is, the elements of X are projected out of each of the transactions. For
example, π{I1,I3}({I1, I2, I3}) = {I2}. For this case, the code table elements
generated on the complete data set were projected in the same way. For each
value of n, 10 random sets X were generated on each data set.

As an aside, note that the rationale for limiting X to maximally 9 elements
is that for larger values too many result sets became too small for meaningful
results.

Selection: The random selection queries were again generated by randomly
choosing a set X of n attributes, with n ∈ {1, 2, 3, 4}. Next for each random
attribute Ai a random value vi in its domain Di was chosen. Finally, for
each Ai in X a random θi ∈ {=, �=} was chosen The generated query is
thus σ(

∧
Ai∈X Aiθivi). As in the previous case, we performed 10 random

experiments on each of the data sets for each of the values of n.

2 http://lisp.vse.cz/challenge/
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Project-Select: The random project-select queries generated, are essentially
combinations of the simple projection and selection queries as explained
above. The only difference is that we used n ∈ {1, 3} for the projection and
n ∈ {1, 2} for the selections. That is we select on 1 or 2 attributes and we
project away either 1 or 3 attributes. The size of the results is, of course,
again the rationale for this choice. For each of the four combinations, we
performed 100 random experiments on each of the data sets: first we chose
randomly the selection (10 times for each selection), for each such selection
we performed 10 random projections.

Project-Select-Join: Since we only use one “multi-relational” data set and
there is only one possible way to join the bio and hemat tables, we could
not do random tests for the join operator. However, in combination with
projections and selections, we can perform random tests. These tests consist
of randomly generated project-select queries on the join of bio and hemat.
In this two-table case, Krimp∗ got as input all pairs (I1, I2) in which I1 is
an item set in the code table of bio, and I2 is an item set in the code table
of hemat. Again we select on 1 or 2 attributes and we project away either 1
or 3 attributes. And, again, we performed again 100 random experiments on
the database for each of the four combinations; as above.

6 The Results

In this section we give an overview of the results of the experiments described in
the previous section. Each test query is briefly discussed in its own subsection.

6.1 Projection Queries

In Figure 2 the results of the random projection queries on the letRecog data set
are visualised. The marks in the picture denote the averages over the 10 experi-
ments, while the error bars denote the standard deviation. Note that, while not
statistically significant, the average ADM grows with the number of attributes
projected away. This makes sense, since the more attributes are projected away,
the smaller the result set becomes. On the other data sets, Krimp∗ performs
similarly. Since this is also clear from the project-select query results, we do not
provide all details here. This will become clear when we report on the project-
select queries.

6.2 Selection Queries

The results of the random selection queries on the penDigits data set are visu-
alised in figure 3. For the same reason as above, it makes sense that the average
ADM grows with the number of attributes selected on. Note, however, that the
ADM averages for selection queries seem much larger than those for projection
queries. These numbers are, however, not representative for the results on the
other data sets. It turned out that penDigits is actually too small and sparse to
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Fig. 2. Projection results on letRecog

Fig. 3. Selection results on penDigits

test Krimp∗ seriously. In the remainder of our results section, we do not report
further results on penDigits. The reason why we report on it here is to illustrate
that even on rather small and sparse data sets Krimp∗ still performs reasonably
well. On all other data sets Krimp∗ performs far better, as will become clear
when we report on the project-select queries.

6.3 Project-Select Queries

The results of the projection-select queries are given in the table in Figure 4. All
numbers are the average ADM score ± the standard deviation for the 100 random
experiments. All the ADM numbers are rather small, only for mushroom do they
get above 0.2. Two important observations can be made from this table. Firstly,
as for the projection and selection queries reported on above, the ADM scores
get only slightly worse when the query results get smaller: “Select 2, Project
out 3” has slightly worse ADM scores than “Select 1, Project out 1”. Secondly,
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ADM+STD connect adult chessBig letRecog mushroom 
Project out 1 0.1 + 0.01 0.1 + 0.01 0.04 + 0.01 0.1 + 0.01 0.3 + 0.02 Select 1 
Project out 3 0.1 + 0.02 0.1 + 0.01 0.04 + 0.03 0.1 + 0.01 0.3 + 0.16 

Project out 1 0.2 + 0.01 0.1 + 0.01 0.1 + 0.03 0.04 + 0.01 0.2 + 0.04 Select 2 
Project out 3 0.2 + 0.02 0.1 + 0.01 0.1 + 0.03 0.04 + 0.01 0.2 + 0.05 

Fig. 4. Results of Project-Select Queries

Fig. 5. Histogram of 100 Project-Select Queries on connect

Relative #candidates connect adult chessBig letRecog mushroom 
Project out 1 0.01 + 0.001 0.01 + 0.002 0.21 + 0.012 0.01 + 0.001 0.01 + 0.001 Select 1 
Project out 3 0.01 + 0.001 0.01 + 0.004 0.26 + 0.031 0.02 + 0.004 0.01 + 0.001 

Project out 1 0.01 + 0.001 0.03 + 0.003 0.76 + 0.056 0.02 + 0.002 0.03 + 0.002 Select 2 
Project out 3 0.01 + 0.002 0.03 + 0.008 0.96 + 0.125 0.02 + 0.004 0.03 + 0.003 

Fig. 6. Relative number of candidates for Krimp∗

even more importantly, combining algebra operators only degrades the ADM
scores slightly. This can be seen if we compare the results for “Project out 3” on
letRecog in Figure 2 with the “Select 1, Project out 3” and “Select 2, Project out
3” queries in Figure 4 on the same data set. These results are very comparable,
the combination effect is small and mostly due to the smaller result sets. While
not shown here, the same observation holds for the other data sets.

To give insight in the distribution of the ADM scores of the “Select 2, Project
out 3” queries on the connect data set are given in Figure 5. From this figure we
see that if we choose ε = 0.2, δ = 0.08. In other words, Krimp∗ is a pretty good
approximation of Krimp. Almost always the approximation is less than 20%
worse than the optimal result. The remaining question is, of course, how much
faster is Krimp∗? This is illustrated in the table in Figure 6 This table gives
the average number of candidates Krimp∗ has to consider relative to those that
the full Krimp run has to consider. Since, both Krimp∗ and Krimp are linear
in the number of candidates, this table shows that the speed-up is considerable;
a factor of 100 is often attained; except for chessBig were the query results get
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small and, thus, have few frequent item sets. The experiments are those that are
reported on in Figure 4.

6.4 Select-Project-Join Queries

The results for the select-project-join queries are very much in line with the
results reported on above. In fact, they are even better. Since the join leads to
rather large results, the ADM score is almost always zero: in only 15 of the 400
experiments the score is non-zero (average of non-zero values is 1%). The speed-
up is also in line with the numbers reported above, a factor of 100 is again often
attained.

7 Discussion

As noted in the previous section, the speed-up of Krimp∗ is easily seen. The
number of candidates that Krimp∗ has to consider is often a factor 100 smaller
than those that the full Krimp run has to consider. Given that the algorithm
is linear in the number of candidates, this means a speed-up by a factor 100. In
fact, one should also note that for Krimp∗, we do not have to run a frequent
item set miner. In other words, in practice, using Krimp∗ is even faster than
suggested by the Speed-up scores.

But, how about the other goal: how good is the approximation? That is, how
should one interpret ADM scores? Except for some outliers, ADM scores are
below 0.2. That is, a full-fledged Krimp run compresses the data set 20% better
than Krimp∗. Is that good?

In a previous paper [17], we took two random samples from data sets, say D1

and D2. Code tables CT1 and CT2 were induced from D1 and D2 respectively.
Next we tested how well CTi compressed Dj. For the four data sets also used in
this paper, Iris, Led7, Pima and, PageBlocks, the “other” code table compressed
16% to 18% worse than the “own” code table; the figures for other data sets are in
the same ball-park. In other words, an ADM score on these data sets below 0.2 is
on the level of “natural variations” of the data distribution. Hence, given that the
average ADM scores are often much lower we conclude that the approximation
by Krimp∗ is good.

In other words, the experiments verify our hypothesis: Krimp∗ gives a fast and
good approximation of Krimp. The experiments show this for simple “project-
select-join” queries, but as noticed with the results of the “project-select” queries,
the effect of combining algebra operators is small. If the result set is large enough,
the approximation is good.

8 Related Work

While there are, as far as the authors know, no other papers that study the
same problem, the topic of this paper falls in the broad class of data mining
with background knowledge. For, the model on the database, MDB, is used as



396 A. Siebes and D. Puspitaningrum

background knowledge in computing MQ. While a survey of this area is beyond
the scope of this paper, we point out some papers that are related to one of the
two aspects we are interested in, viz., speed-up and approximation.

A popular area of research in using background knowledge is that of con-
straints. Rather than trying to speed up the mining, the goal is often to pro-
duce models that adhere to the background knowledge. Examples are the use of
constraints in frequent pattern mining, e.g. [3], and monotonicity constraints [9].
Note, however, that for frequent pattern mining the computation can be speeded
up considerably if the the constraints can be pushed into the mining algorithm
[3]. So, speed-up is certainly a concern in this area. However, as far as we know
approximation plays no role. The goal is still to find all patterns that satisfy the
constraints.

Another use of background knowledge is to find unexpected patterns. In [12],
e.g., Bayesian Networks of the data are used to estimate how surprising a frequent
pattern is. In other words, the (automatically induced) background knowledge is
used filter the output. In other words, speed-up is of no concern in this approach.
Approximation clearly is, albeit in the opposite direction of ours: the more a
pattern deviates from the global model, the more interesting it becomes. Whereas
we would like that all patterns in the query result are covered by our approximate
answer.

9 Conclusions

In this paper we introduce a new problem: given that we have a model induced
from a database DB, does that help us in inducing a model on the result of a
query Q on DB? We formalise the problem for algorithms based on MDL and
solve it for a particular algorithm, viz., our Krimp algorithm. More in particular
we introduce Krimp∗. This is actually the same as Krimp, but it gets a restricted
input. The code tables computed by Krimp on DB are used as input, and thus
as background knowledge, for Krimp∗ on Q(DB).

Extensive experiments with select-project-join queries show that Krimp∗ ap-
proximates the results of Krimp very well while it computes these results upto
hundreds of times faster. Hence, the data analyst has a real choice: either get
good result fast, or get optimal results slower.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Inkeri Verkamo, A.: Fast
discovery of association rules. In: Advances in Knowledge Discovery and Data
Mining, pp. 307–328. AAAI, Menlo Park (1996)

2. Bickel, P.J., Hammel, E.A., O’Connell, J.W.: Sex bias in graduate admissions: Data
from berkeley. Science 187(4175), 398–404 (1975)

3. Boulicaut, J.-F., Bykowski, A.: Frequent closures as a concise representation for
binary data mining. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS,
vol. 1805, pp. 62–73. Springer, Heidelberg (2000)



Mining Databases to Mine Queries Faster 397

4. Cilibrasi, R., Vitanyi, P.: Automatic meaning discovery using google. IEEE Trans-
actions on Knowledge and Data Engineering 19, 370–383 (2007)

5. Codd, E.F.: A relational model of data for large shared data banks. Communica-
tions of the ACM 13(6), 377–387 (1970)

6. Coenen, F.: The LUCS-KDD discretised/normalised ARM and CARM data library
(2003), http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/

7. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley
and Sons, Chichester (2006)

8. Faloutsos, C., Megalooikonomou, V.: On data mining, compression and kolmogorov
complexity. In: Data Mining and Knowledge Discovery, vol. 15, pp. 3–20. Springer,
Heidelberg (2007)

9. Feelders, A.J., van der Gaag, L.C.: Learning bayesian network parameters under
order constraints. Int. J. Approx. Reasoning 42(1-2), 37–53 (2006)

10. Grünwald, P.D.: Minimum description length tutorial. In: Grünwald, P.D., Myung,
I.J. (eds.) Advances in Minimum Description Length. MIT Press, Cambridge (2005)

11. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58–64 (1996)

12. Jaroszewicz, S., Simovici, D.A.: Interestingness of frequent itemsets using bayesian
networks as background knowledge. In: Proceedings KDD, pp. 178–186 (2004)

13. Koopman, A., Siebes, A.: Discovering relational item sets efficiently. In: Proceed-
ings SDM 2008, pp. 585–592 (2008)

14. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2),
69–77 (2000)

15. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: Proceedings
of the SIAM Conference on Data Mining, pp. 393–404 (2006)

16. van Leeuwen, M., Vreeken, J., Siebes, A.: Compression picks item sets that matter.
In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI),
vol. 4213, pp. 585–592. Springer, Heidelberg (2006)

17. Vreeken, J., van Leeuwen, M., Siebes, A.: Preserving privacy through data gen-
eration. In: Proceedings of the IEEE International Conference on Data Mining,
pp. 685–690 (2007)

http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/

