

Proceeding

The 4th International Seminar on Science Education

Bandung, 30 October 2010

"Curriculum Development of Science Education in 21st Century"

Science Education Program
School of Postgraduate Studies
Indonesia University of Education

ISBN 20170-1099392388

Proceeding The 4th International Seminar on Science Education

Bandung, 30 October 2010

"Curriculum Development of Science Education in 21st Century"

Editor

Prof. Dr. Liliasari, M.Pd Dr. Agus Setiawan, M.Si

Dr. Agus Setiabudi, M.Si.

Dr. Ari Widodo, M.Ed

Dr. Ijang Rohman, M.Si.

Sukisman Purtadi, M.Pd.

Drs. Sutopo, M.Si Wulan Tias GA, M.Pd.

school of Posgraduate Studies undonesia University of Education Bandung, 2010

"Curriculum Development of Science Education in 21st Century"

PROCEEDING ISBN: 978-979-99232-3-3

Bandung, 30 October 2010

Foreword of Chair of Science Education Program

The fourth International Seminar of Science Education is conducted to fulfill annual agenda of the School of Graduate Studies, Indonesia University of Education.

The seminar theme "Curriculum Development of Science Education in the 21st Century" is chosen emerge from many problems of science education in Indonesia. One of them is the overstuffed condition of science curriculum that affected from rapid development of information in this era. Besides, there are challenges of Indonesian people in facing against global competition. To win the competition they have to think critically. Therefore many massages have to cover by science curriculum caused it overloaded and difficult to be implemented.

We are not able to overcome the problem ourselves. We need input of information and experience from many researchers all over the world. Therefore this seminar hoped to be an exchange experience to solve the problem and lead to the discovery of science curriculum to enhance Indonesian science education quality.

I would like to express my special gratitude to Prof Dr Bruce Waldrip from Monash University, Australia; Prof Dr Russell Tytler from Deakin University, Australia; and Dr. Benny H.W.Yung from The University of Hongkong; who are specially come here to be key note speakers. Thank you for sharing the result of your latest result with us.

Finally I would like to thank to the committee who have been working hard to prepare the seminar and publish the proceedings. Last but not least thank you for all speakers and participants of your contribution today.

> School of Postgraduate Studies Nonesion University of

Prof.Dr.Liliasari, M.Pd

iii

Meilinda and Rahmi Susanti

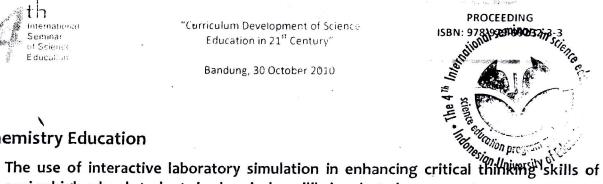
"Curriculum Development of Science Education in 21" Century"

PROCEEDING ISBN: 978-979-99232-3-3

Bandung, 30 October 2010

Table of Content

Front Page	e	i
Editor		ii
Foreword	of Head of Science Education Program	iii
Table of C	_	٧
Keynote S	peaker	
1. Effec	ctive Science Teaching and Learning through reasoning	
Bruce	e Waldrip, Monash University - Australia	A1
2. Explo	oring the Australian Science Curriculum: A way forward?	
Russe	ell Tytler, Deakin University- Australia	A2
3. Prepa	aring Teachers for Teaching Ideas about Science: A Video-based Approach	
Benny	y H.W.Yung, The University of Hongkong	А3
4. Rede	signing indonesian science curriculum based on generic science skills	
Prof.	Dr. Liliasari	A4
Biology Ed	lucation	
Authenti	ic assessment competence of high school biology teachers in Central Java	
	. Hidayati 1, Nuryani Y. Rustaman, Sri Redjeki, Ahmad Munandar	B1
	of interactive e-book to promote constructivist learning environment i	'n
Ari W	idodo, Imron Nugraha, Rinrin Tresnawati, Annisa Nurbaety, and Bian Biana	B ₂
	learning process of prospective biology teacher in microbiology	
	atmawati, Nuryani Y. Rustaman	В3
Developn	nent of pedagogical content knowledge (PCK) training program of genetion for biology teacher in highschool	_
Dida H	lamidah, Nuryani Rustaman, I Made Alit Mariana	В4
	dom of the community around the Ulu Masen forest	
	riana, Achmad Munan dar, Nuryani Y Rustaman, Hertien Koosbandiah Surtikanti	B5
Profile of	f biology teachers task in development of an integrated science-learning environment (Case studies in secondary school of "X" in Bandung City)	


Bandung, 30 October 2010

In service training study program "MIVI" for science teacher to improve result s at special needs	tudy
Mia Nurkanti, Nuryani Y Rustaman, Zaenal A, Suroso A Y	В7
Prospective teachers preconceptions on vascular tissue of seed plants	,
Purwati K. Suprapto, Nuryani Y. Rustaman, Sri Redjeki , Adi Rahmad	B8
Profile material difficulty level of plant physiology according to prospective bio teachers	logy
Rahmi Susanti, Nuryani Y.Rustaman, and Sri Redjeki	В9
Argumentation skill of prospective biology teachers on the concept of neural syste	
Roshayanti Fenny , Rustaman Nuryani Y. Barlian Anggraini, Lukmana Iwa	B10
Problem based interactive e-module to improve student's generic science abilit nervous system concept	y in
Sihombing, Rosita	B11
Effort of debriefing biotechnology pedagogical content knowledge (PCK) thromastery basic concepts for biology teacher candidate	ugh
Widi Purwianingsih, Nuryani Y. Rustaman, Sri Redjeki	B12
Using quest on weblog: How in service teacher perceive instructional framework?	
Yanti Herlanti	B13
Implementation deductive inquiry model to increase student critical thinking skill a concept attainment in genetics	_
Zulfiani	B14
Preliminary Profile of Tutor's Ability in Managing Practical Work on Plant Physiolo Through Peer Assisted Learning (PAL) Program	
Sariwulan Diana and Nuryani Rustaman	B15
Effectiveness of Cooperative Learning Model Type STAD and TPS Against the Resu of Student Learners : Case Studies in senior high school in Madura City	
Yenny Anwar	B16
Analysis on Practicum Based Learning to Improve Students' Critical Thinking A Scientific Attitude in University	
Fransisca Sudargo T., Berti Yolida, Eka Ariyati, Sri Sukaesih	B17

"Curriculum Development of Science Education in 21st Century"

Bandung, 30 October 2010

Chemistry Education

senior high school students in chemical equilibrium learning concept

Budhi Sagita Wiratama, Liliasari

C1

Representational competence's profile of pre-service chemistry teachers in chemical problem solving

Ida Farida, Liliasari, Dwi H. Widyantoro and Wahyu Sopandi

 C_2

Profile of generic science skills in the assessment of practical inorganic chemistry

Ramlawati, Liliasari, Muhamad Aba'ulkadir M., and Ana Ratna Wulan

(3

Identification of problem difficulty in learning chemistry at Class XI of high schools in Lampung Province as input for LPTK (Especially Chemical Education Study Program of Lampung University)

Sunyono

C4

Local Culture Based Guided Inquiry Laboratory Activity In Enhancing Students' Critical Thinking Skills

I Nyoman Suardana1, Liliasari2, Omay Sumarna2

C5

Tematic Learning the Influence of Aditive Food Toward Human Healthy with STL(Scientific and Technological Literacy) Approach to Increase Science Literacy

Mulyitno, Ahmad Mudzakir dan Anna Permanasari

C6

Physics Education

Multiple representations skills and its influenced toward students' critical thinking disposition using a virtual laboratory activity

Abdurrahman, Liliasari

P1 --

The relationship of between spatial ability, mathematics performance and kinematics graph interpretation skills of pre-service physics teacher students

Suhandi, Hikmat, Samsudin

P₂

The development of problem solving skills through instruction in optic for physics education student

Eko Swistoro, Nuryani Y. Rustaman, and Agus Setiawan

P3

Using virtual laboratory to increase students' understanding on modern physics

Gunawan, Agus Setiawan

P4

Characteristic of mechanics teaching materials for increasing students of physics teacher candidates representation ability on verbal, mathematical, picture, and graphic

"Curriculum Development of Science Education in 21st Century"

PROCEEDING ISBN: 978-979-99232-3-3

P5

Bandung 30 October 2010

I Ketut Mahardika, Agus Setiawan, Dadi Rusdiana, A. Rusli

The phenomenon based learning in heat concept to improve problem solving skills junior high school students
Lasma Br Hotang, Dadi Rusdiana and Ida Hamidah P6
The amazing physics interactive multimedia support for eyes learning as a part of optical instrument in Junior High School
Sardianto Markos Siahaan P7
Development of assessment isomorphic problem model at subject matter wave
Sudarto and Liliasari P8
The use of spreadsheet software in waves learning
Muh. Tawil, Liliasari, Benny Suprapto Brotosiswojo, and Dadi Rusdiana P9
Developing students' metacognitive skills inscience teaching and learning: From theories into practice
Tomo Djudin P10
Development of learning creativity sheet, as performance assessment in learning dynamic fluid concept of high school students
Viyanti , Undang Rosidin P11
The usage of generative learning model within the learning of light refraction to increase student's physics learning achievement
Wiendartun, Heni Rusnayati, M. Nana Agustian P12
The implementation of problem based instruction model to improve students learning achievement and find out students learning motivation in learning physic
Wiendartun, Parlindungan Sinaga, M. Taufiqurrohim Syah
The use of blog as subject matter in the lecture of basic physics to improve teacher candidates on biology students in the mastery of motion concept
Toto P14
Integrated science competence using inquiry approach of science education undergraduate student
Insih Wilujeng, Agus Setiawan , Liliasari P15
The ways the physics teachers solve a multifaceted real-world problem relates to the behavior of gas
Sutopo P16
Minimizing misconception of physics teacher with through simulation on the topic of electricity and magnetism

"Curriculum Development of Science Education in 21st Century"

PROCEEDING !SBN: 978-979-99232-3-3

Bandung, 30 October 2010

•			
Mursalin	and	Agus	Setiawan

P17

The Development of "Educative Game Kit" Based Puzzle and Card Game for Learning of Science-Physics in Elementary School

Joni Rokhmat

P18

Needs analysis of chemistry teachers to curriculum material with "atk" model and "adir" educative framework

Momo Rosbiono

P19

The Content of Physics Lecture Courses to Support the Competence of Energy Conversion Techniques Graduates at Bandung State Polytechnic

I Gede Rasagamaı, Agus Setiawan, Liliasari, and Hermagasantos Zein

P20

Science Education

The application of classical test theory to determine item characteristic of scientific literacy in context of balinese culture

A.A. Istri Agung Rai Sudiatmika

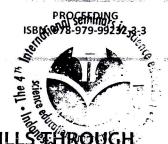
G1

The development of competency based training program for improving primary school science teacher's professional competencies using/with "science by inquiry" learning modules

Didin Wahidin, Nuryani Y. Rustaman

G2

The Predict-Observe-Explain-Write (POEW) model of learning is to enhance critical thinking skill of SMA Student


Heppy Samosir, Agus Setiawan, and Ida Kaniawati

G3

"Curriculum Development of Science Education in 21st Century"

Bandung, 30 October 2010

THE DEVELOPMENT OF PROBLEM SOLVING SKILLS

INSTRUCTION IN OPTIC FOR PHYSICS EDUCATION STUDENT

Eko Swistoro*, Nuryani Y. Rustaman**, and Agus Setiawan** (*Bengkulu University, **Indonesia University of Education)

Abstract

A study using quasi-experiment with one group pretest-posttest design was carried out to improve students' physics concept understanding and students' problem solving skills. The freshmen (First year students) who enrolled in Basic Physics course at physics education department in one of Teachers College in Bengkulu province were involved as research subjects. The treatment was given to one group of students who was following course in instruction program with problem solving strategy. Research data was collected by using a concept understanding test and problem solving skills test. Data was then analyzed based on normalized gain score. Result of the research shows that N-gain of students' concept understanding and students' problem solving skills significantly improved. Average N-gain of students' concept understanding was 0,811 for higher level, 0,67 for middle level, and 0,41 for lower level. For students' problem solving skills, average N-gain was 0,734 for higher level, 0,46 for middle level, and 0,368 for lower level.

Keywords: problem solving strategy, concept understanding, problem solving skills. One paragraph (font: Candara 9pt reguler)

Background

Learning physics in college generally place more emphasis on mastery of concepts and do not thinking skills (problem solving skills.) Learning in the classroom needs to be associated with a real situation where students are in, encouraging students make connections between physics concepts owned by its application in everyday life in society, so that more meaningful learning. As such, students need to be conditioned in learning situations that allow students to understand and understand the meaning of learning, the benefits and the role and status in the learning process. If a student can comprehend and understand it, the student will strive to achieve and require faculty as mentors and facilitators.

The process of learning the daily / regular lecturer proved yet done optimally to develop problem solving skils of students. It can be seen from the inability of students in solving problems encountered in life. Learning more usual to provide theories that are not rooted in the real world of students. This is the background presence of an innovative learning program to help students understand / master the concepts and thinking skills by associating the material with real life students. Regular learning which only produce mastery of concepts, needs to be improved by implementing learning programs that not only can enhance the mastery of concepts but also to

improve the ability to think. The importance of developing thinking skills is supported by the results of a survey conducted by the American Institute of Physics (AIP) in U.S.. The survey results indicate that the skills most often used by workers S2 and S3 physics graduates is proficiency in solving problems, working groups, and communicate. Knowledge of subject matter the frequency of usage in the workplace on average only about a quarter compared to the use of problem solving skills (van Heuvelen, 2001).

Some physicists claim that problem solving is seen as a fundamental part of learning physics (Heler, Keith, & Anderson, 1992). Problem solving is one method of learning that can be used in teaching physics as physics of matter in accordance with the content (Gok & Silay, 2008). From the opinions of experts in the above can be said that problem solving skills be the focus of purpose in learning physics.

Topics optics, especially in optics geometry is one of the subject matter of basic physics. This material covers the study of reflection, refraction, color descriptions, and optical instruments. Characteristics of the material is quite abstract and involves a lot of reasoning affect students understand the difficulty to understand the concept.

The development of problem solving skill through....

Learning program with problem solving strategies used in this study is expected to help prospective teachers improve understanding / mastery of physics concepts and develop problem solving skills. In learning with problem solving strategies, prospective teacher will be involved mentally and physics to solve a given problem. Learning program with a strategy for physics problem solving is to follow five steps are: 1) Focus the Problem, 2) Describe the Physics, 3) Plan a Solution, 4) Execute the Plan, and 5) Evaluate the Answer (Heller & Heller, 2000; Kyurshunov, 2005; Yousuf & Chaveznava, 2006).

The study of thinking ability of students revealed that problem solving skills are not developed without an explicit and deliberate effort invested in its development. A student will not be able to develop problem solving skills with good if not trained to think solving problems in the field of study he had learned. The purpose of this research is to improve the mastery of concepts and problem solving skills of prospective teachers.

Method

This research used quasi-experimental research design with a "one group pretest-posttest design" (McMillan and Schumacher, 2001). This design provides a treatment of research subjects without compared with the control class, then compare whether there are significant differences between pretest and posttest. The subject of this research is a student of physics teacher candidates, in a LPTK in Bengkulu by the number of 32 individuals from one class who took the course Physics 2. Research subjects are classified into three groups of achievement, namely the achievement of top, medium, and bottom.. To collect the necessary data in this study used research instruments in the form of a test of understanding the concept in the form of multiple choice test which is expanded (the amount of about 30 items to the topic of color, reflection, and refraction, as well as 20 items about the topic optical instruments) and physics problem solving ability test in the form of an essay test amounted to 17 items.

To find out the problem soving skill enhancement of students is done by calculating the normalized gain (N-gain / g). Normalized gain score is also used as a basis for determining the effectiveness of learning programs.

The equation used to calculate the management of Education.

$$g = \frac{S_{post} - S_{pre}}{S_{maks} - S_{pre}}$$

Here is explained that g is the normalized gain (Ngain), S max is the maximum score (ideal) from the initial test and final test, 5 post is the final test score, while the S pre is the test score

international sem

early. High or low normalized gain (N-gain) can be classified as follows: (1) if g ≥ 0.7, the N-gain resulting in higher categories, (2) if $0.7 > g \ge 0.3$, then N-gain generated in the medium category, and (3) if g <0.3, then the resulting N-gain in the category low.

Discussion

Dragnet mastery of physics concepts using the concept mastery test an expanded form of multiple choice. Data from increasing student mastery of concepts obtained on each subject matter in optics can be seen in Table 1.

Table 1 Data Concept Mastery Test Results

No.	Topic	Group	Average	•	N-Gain	Information
	Content		Pretest	Posttest	(%)	i.
1	Color	Тор	0.9286	4:07	77,16	High
	ў 	Medium	0.6176	3.76	71,71	High
		Low	0.688	3.000	53,62	Medium
2	Reflection	Тор	1:26	4.27	80,48	High
		Medium	1.1	3.84	70,26	High
		Low	0.95	3:06	52,10	Medium
3	Refraction	Тор	1:24	4:19	78,46	High
	T	Medium	1:09	3.73	67,52	Medium
		Low	1:07	3:03	49,87	Medium
	Optical Tools	Тор	26.571	86.571	81,71	High
		Medium	22.529	73.294	65,53	Medium
		Low	20	51	38,73	Medium

In Table 1 shows that the acquisition of the normalized gain for each topic to the top is in the high category. While the acquisition of the normalized gain scores for each topic for the group under the middle category. For medium-only group on the topic of color who are at high category.

Recapitulation average score based on your level of mastery of concepts can be seen in Figure 1.

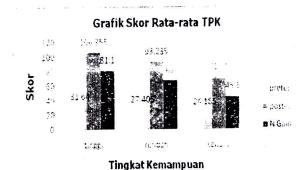


Figure 1. Comparison of Average Score pretest, posttest, and N-gain mastery of concepts

Data Results Physical Ability Test Problem solving

The ability of problem solving expressed by using the instrument in the form of an essay test. The average score for each aspect class problem solving skills of each group are shown in Table 2.

Table 2 Problem solving skills Prospective Teacher

Group	No.	Sub Proble	Average	N-Gain	
		m Solving Skills	Pretest	Posttest	(%)
Тор	1	PU	2.47	4.24	70,44
	2	PF	2.7	4.14	71,18
	3	PM	2.14	4.28	73,80
Sel 200	4	·SP	2,00	4,35	78,56
Top Group Average		verage	2,32	4,32	73,49
Second ary	5	PU	2,03	3,58	60,55
	6	PF	2,11	3:42	47,30
	7	PM	2,00	3,00	33,30
Acres 5 comme	8	SP	1,47	3:00	43,14
Average Secondary Group		ondary	1,9	3,75	46,07
Under	9	PU	1,95	3.50	59,20
E	10	PF	1,88	3.15	46,25
g er e me	11	PM	2,00	2,50	22,91
. Acres in the man for	12	SP	1,50	1,87	18,93
Average Down Group		vn Group	1,52	3,5	36,82

Total Average

Standard deviation (s)

Description PU = General Approach, PF = Physical Approach, PM = Procedure Mathematics, and SP =

All Solutions

In Table 2 shows that the increase in ability occurs in all aspects with the increase in the average score of the normalized gain (N-Gain) is about 63.90% with a standard deviation of about 0.096. Improved ability to gain a normalized score for that included in the medium category.

To provide a clearer picture of the data, the average score of problem solving skils based on ability level is presented in Figure 2.

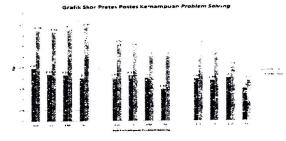


Figure 2 graphs average score of problem solving skils between the pretest and posttest

Based on the analysis of data obtained by the mastery of the concept of pretest and posttest, increase after students experienced an learning. Overall, teacher candidates obtain the normalized gain scores included in the high category (N-Gain for the high group average is 0.81) and moderate (N-Gain for the middle class and below each average is 0.67 and 0.451). Though not tall, but can be argued that the program is applied students' mastery enhance effectively concepts to the topic of optics. The effectiveness of this learning was analyzed by performing the acquisition value of the pretest and posttest scores are expressed with the normalized gain. This is consistent with research conducted by Galili and Hazan (2000) who studied the effectiveness of teaching optics to show the difficulties of students in their understanding of optics. Results showed that students had difficulty about the light that shines is accepted as an object observed by the eye. This research is also consistent with research conducted by Yap & Wong (2007) who studied the aspects of the process of problem solving and understanding of the concept after learning the concept of a flat mirror. The results showed that The development of problem solving skill through....

the majority of students who can explain the way light and shadows formed by the flat mirror is complete (using a sketch) and still there is something wrong in painting the course of rays, and still there are students who portray that angle # reflection angle.

Based on the results of data analysis, problem solving skils of students can be concluded that the average gain-normalized average of .639 was the students' ability in solving the problem is still low, because the middle category. However, the learning program with problem solving strategies in this study is quite effective to improve the ability of prospective teachers' problem solving. The result is in line with research conducted by Selçuk, Çalışkan and Erol (2008) who studied the effect of teaching with problem solving in learning achievement, the of problem solving and performance of problem solving strategies used in teaching physics at the beginning of college. The results showed that teaching is an effective strategy for of learning and problem achievement solving performance as well as having a positive effect on students' physics

If the review is based on group performance was only a student at the high group that has categorized problem solving skills of high (<g> = 0.734), while the middle class and below only has the ability to problem solving are categorized (each successive are <g> = 0.460 and <g> = 0,368). Cause who can put forward here is the top group students who started to get used to practicing with the problems of physics, both from his teacher at school or through the guidance of learned that they follow. At low and medium groups while in high school found that they rarely faced with the problem of physics, they just practice the application of the formula or homework tasks whose solution is already in their textbooks.

Students who do not usually face problems in physics problem will be stuck to always determine what the equation will be used first. They do not follow the steps as presented by Heller & Heler (2000), which focus the problem, describe the physics, plan a solution, execute the plan, and evaluate the answer. Most students eventually get used to the order of what is known, what is asked and directly on what the equation. Such a move is only suitable for understanding the exercise of an equation. At about the physics of the problem, the equation is not available ready-made and the quantities involved can not be used directly in this

equation. So it must first be focused on what the problem, then elaborated as extrapolation of these equations? will be seen what can be used to solve the problem. Then put-magnitude scale, after that need to be evaluated again to see if the steps are correct and consistent use. In addition, it appears that most of the students is very inefficient in solving step as a result of their focus is not the problem in advance, but instead tend to write the steps to try (trivial).

Judging from the students' ability to conclude that the higher the higher the ability of student problem solving skills. In this case, students with higher ability have a greater ability to determine the steps and equations used to solve the problem. This can be explained as the result of mastery of their more numerous and varied than the student group underneath.

Low ability solving problems caused by students because students are not familiarized with the patterns of problem solving them. During this time they were in high school teachers think that with the usual form of training they provide, students in problem solving, and are trained training (dril!) does not form a problem. There are teachers who have named their teaching methods with a method of problem solving, but are given to students is the question that the answer is instant. If the method is trained properly and the problem is really a problem for students as suggested by Heller, it is expected that the ability problem solving to increase student. To implement learning with problem strategies, first understanding of the problems of physics teachers should be improved. Teachers should be able to distinguish the exercise or assignment with the problem. Only problem in the form problems that can enhance solving skills. Without students' problem accustomed, then in his daily life students could not use his knowledge to solve his problems.

Furthermore, if the student answers to each question test capability Physics problem solving are analyzed further appears that most students do not know what to do. It can be inferred from the empty sheet of students' answers to each question and the many mistakes made.

Conclusion

The conclusion of this study are as follows: 1) learning with problem solving strategies on the

topic of optics to improve the mastery of concepts, and 2) learning with problem solving strategy on the topic of optics to improve problem solving skills of students of physics teacher candidates. Increasing mastery of the concept occurred in each group, in top group with increased capacity for an average of 81.1% (high), medium

group with an average in coase of 45, 1% (medium). While the increase in problem solving skills of students of physics teacher candidates to top the group by 73.49% (high), for the medium group 46.07% (medium) and the lower group of 36.82% (medium).

References

- Galili, I & Hazan, A. (2000). "The Influence of an historically oriented course on students' content knowledge in optics evaluated by means of Facets-schemes analysis". PHY.Educ. Res., Am. J. Phys. Suppl. 67 (7), S3-S14.
- Gok, T. & Silay, I. (2008). Effect of Problem Solving Strategies, Teaching on the Problem Solving Attitudes of Cooperative Learning Groups in Physics Education. Journal of Theory and Practice in Education [Online], Vol 4 (2), 14 pages.

 Available: http://eku.comu.edu.tr/index/4/2/tgok_isilay.pdf [June 2, 2008].
- Hake, RR (1999). Analyzing Change / Gain Scores. [Online]. Available: http://lists.asu.edu/cgibin/wa?A2=ind9903&L=aera-d&P=R6855 [22 April 2008]
- Heller, K., & Heller, P. (2000). The competent problem solver for Introductory physics. Boston: McGraw-Hill. Heller, P., Keith, R., & Anderson, S. (1992). "Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving". American Journal of Physics, 60 (7), 627-636.
- Kyurshunov, A. (2005). Problem solving in Science Education. Discussed from the Russian perspective, with special focus on physics. Karelian State Pedagogical University, Russia.
- McMilan, JH & Schumacher, S. (2001). "Research and education: A conceptual introduction (4 th Ed.). New York: Longman
- van Heuvelen, A. (2001). "Millikan Lecture 1999: The workplace, student minds, and physics learning systems". Am. Jour. Phys. (69) 11, November 2001, pp. 1139-1146.
- Selçuk, GS, Çalışkan, S., & Erol, M. (2008). The Effects of Problem Solving Instruction on Physics
 Achievement, Problem Solving Performance and Strategy Use. Lat. Am. J. Phys. Educ. [Online], Vol
 2 (3). Available: www.journal.lapen.org.mx/sep08/LAJPE_191_Selcuk_F.pdf. [2 January 2009].
- Yap, KC & Wong, CL (2007). Assessing conceptual learning from quantitative problem solving of a plane mirror problem. Physics Education. 42 (1), 50-55.
- Yousuf, MA & Chaveznava, RM (2006). Physics Problem Solving Using Variable Flow Diagram. [On Line]

 Available at: http://icee2008hungary/download/fullp/full_papers/full_paper476.pdf. [January 2, 2009].

This is to certify that

Drs. Eko Swistoro, M.Pd

has participated as a

PRESENTER

in The 4th International Seminar in Science Education

"Curriculum Development of Science Education in 21th Century" organized by Science Education Program

School of Postgraduate Studies, Indonesia University of Education October 30th, 2010, at Auditorium of FPMIPA

81

Prof. H. Fuad Abdul Hamied, M.A., Ph.D NIP. 19500821 197412 1 001

WAYS PENDIDIN

Director of School of Postgraduate Studies

Prof. Dr. Liliasari, M.Pd. NIP. 19490927 197803 2 001

Chair of The Science Education