

UTILIZATION OF BIOADSORBENT TO REMOVE HEAVY METAL Cr AND Cu FROM SURFACE WATER IN BENGKULU CITY

Wiwit Alwi*, Arif Akbar and Mochamad Lutfi F.

Department of Chemical Education, Bengkulu University Jl. WR. Supratman Kandang Limun Bengkulu 38371

ABSTRACT

Removal of chromium (Cr) and cupper (Cu) ions from aqueous solutions by using natural biosorbent chitosan was achieved using batch adsorption experiments. Chitosan was made from shrimp shells with particle size 60 mesh. The majority of commercial polymers and ion exchange resins are derived from petroleum-based raw materials that are not always safe or environmental friendly. Chitosan, a biopolymer prepared through the deacetylation of chitin, found in the exoskeleton of crustaceans (e.g. shrimp) is the most abundant amino polysaccharide in nature. Its chelating properties are attributed to the amino and hydroxyl groups that can act as chelation sites for different targets such as metals. We have synthesized and tested the ability of chitosan as a chelating resin for reduction of heavy metals concentration in aquatic samples. The interest metals were analyzed using spectrophotometry method. Experimental parameters affecting biosorption process such as contact time, biosorbent weight and pH were studied. Optimum adsorption conditions of Cr onto chitosan as adsorbent with a variation of adsorption time, weight of adsorbent and optimum pH were 15 minutes, 0.05 gr and pH 5, whereas those for Cu were 30 minutes, 0.05 gr and pH 6, respectively.

Keywords: Bioadsorbent, Chelating Resin, Chitosan, Cr. Cu.

^{*}Corresponding author. Email: wiwit.alwi@gmail.com

I. Introduction

Waste water from mining operations, metal-plating facilities, power generation facilities, corrosion, electronic device manufacturing units and tanneries often contain considerable amount of toxic heavy metals such as chromium, cadmium, lead, mercury, nickel and copper above local discharge limits. The presence of heavy metals in the environment has been of great interest due to their increased discharge, toxic nature and other adverse effects on receiving waters. The toxicity of heavy metals might be caused by mechanisms that include blocking essential functional groups of biomolecules and disrupting the integrity of biomembranes. Divalent metal ions such as lead, copper, cadmium, mercury and nickel can cause severe health problems in animals and human beings related to their ability in bonding to proteins, nucleic acids and small metabolites in living organisms. This causes either alteration or loss of biological function and may disturb the homeostatic control of essential metals. The removal of toxic heavy metal ions from industrial effluents, water supplies and mine waters has received much attention in recent years. Various methods are available for such processes, including chemical precipitation, filtration, electrochemical treatment, ion exchange, liquid-liquid extraction, resins, sorption, cementation, and electrodialysis. Each method has been found to be limited by cost, complexity, and efficiency as well as by secondary waste. Among these methods sorption is one of the most effective and simplest approaches to separation processes for a wide variety of applications. It is now recognized as an effective and economic method for the removal of pollutants from wastewaters (Khan et al, 2011).

Synthetic polymers such as ion exchange resins and chelating resins have been widely used as effective sorbents to collect radioactive nuclides, toxic metals, precious metals and base metals from aqueous solutions. Various natural and synthetic polymeric materials have been synthesized or chemically modified for the removal of heavy metal ions from aqueous solutions. Naturally occurring biopolymers have also been shown to exhibit excellent sorption abilities for multivalent metal ions. Natural materials such as chitosan, zeolites, clay, coal, and some microbial biomass products are classified as low-cost sorbents due to their low initial cost and local availability. Indonesia is a maritime country with abundant chitin resources. Naturally occurring biopolymers are competing with the conventional technologies and other similar materials of biological origins that have been intensively used as sorbents for heavy metal ion removal from water and industrial effluents. Biopolymers are industrially attractive because they possess a capability of lowering transition metal ion concentrations to

parts per billion. The group of such biopolymers includes cellulose, chitin, alginate, carrageens, lignins, some proteins and pectins (Yang *et al*, 2011).

Chitin is the second most abundant naturally occurring biopolymer. The largest sources are the exoskeletons of arthropods, especially crabs (Malacostraca) and insects (Insecta) as well as the cell walls of fungi. Chitosan, a polyelectrolyte derivative of chitin. This polysaccharide, obtained from renewable resources, is currently being explored intensively for applications in the pharmaceutical, cosmetics, biomedical, biotechnological, agricultural and food industries, and in non-food applications as well water treatment, paper and textile. Chitosan is an antibacterial, biocompatible, environment-friendly, biodegradable material and has great potential for sorption of metal ions due to amino and hydroxyl groups in its chemical structure. The physico-chemical properties of chitosan are related to the presence of amine functions that make it very efficient for binding cations from near neutral solutions. The sorption capacity of chitosan is mainly controlled by its degree of deacetylation which influences the physical, chemical and biological properties of chitosan, such as acid—base and electrostatic characteristics, biodegradability, self aggregation, sorption properties and the ability to interact with metal ions.

The chemical modification of natural or synthetic polymers is an elaborate experimental task that improves the original surface properties of the materials for use in academic and technological applications. The modification of natural polymers is a promising method to yield new materials having special properties that enlarge the field of the potential applications of biopolymers. Various investigations have demonstrated the effectiveness of chitosan and its derivatives in the uptake of metals, such as lead, copper, cadmium, nickel and oxyanions, as well as complexed metal ions. Various methods have been used to modify chitosan in order to improve its sorption capacity (Saha and Orvig, 2010; Rojas et al, 2005;). The large number of primary amino and hydroxyl groups at the second and sixth positions with high reactivity enables a variety of chemical modifications. Chitosan has been attractive because the free amino groups in this modified product contribute polycationic and chelating properties and has recently been subjected to many chemical modifications to produce advanced functional materials. This chemically modified chitosan has greater uptake capacity for heavy metal ions such as mercury, chromium, copper, zinc, tin, cobalt, nickel, lead, mercury and cadmium (Padmaja, 2011; Gulay, 2006, Kushwaha, 2011). This paper will report the making of chitosan from shrimp shell and its application on heavy metals removal in aquatic samples.

II. Experimental Method

Chitin was isolated from prawn and shrimp shell. Chitosan (2-amino-2-deoxy-(1 \rightarrow 4)- β -D-glucopyranan), a polyaminosaccharide, was obtained by alkaline deacetylation of chitin (Figure 1). Colorimetry method using spectrophotometry (Spectronic 20D) in the visible region utilized diphenil carbazide as complexing agent for determination of Cr, while neocuproin was used for Cu. Detailed analytical method was following the method written in Vogel, 1989 and Firdaus, 2007. All experiments were conducted in a batch system following Cheng, 2011.

Figure 1. Synthetic scheme to produce chitosan from chitin using alkaline deacetylation method.

Chitosan

III. Results and Discussion

The specification of home-made chitosan is shown in Table 1. Water content of 9.33% meets the quality standard of chitosan. Chitosan is hygroscopic which has the ability to absorb moisture in the air around 230-440%. Factors that must be considered in order to produce low moisture content is drying, packaging and storage conditions of the chitosan. Therefore, the produced chitosan must be stored in closed containers. Ash content of 1.93% chitosan is within the range allowed by quality standard. Ash content shows the number of remaining mineral content in the material. Low ash content of chitosan was one factor that led to high levels of purity. Low ash content also indicates that the demineralization process was successful.

Table 1. Comparison of home-made chitosan with those of quality standard chitosan

Parameter	Quality Standard	Present Study
Particle Form	Shard to Powder	Shard
Water Content (%)	≤ 10,0	9,33
Ash Content (%)	\leq 2,0	1,93
Color	Yellowish White	Yellowish White

The sorption of elements using biopolymers such as chitin and chitosan is one of the reported emerging biosorption methods for the removal, even at low concentration (ppm or ppb levels). Chitin and chitosan are abundant, renewable and biodegradable resources. Chitin, a naturally occurring mucopolysaccharide, has been found in a wide range of natural sources such as crustaceans, fungi, insects, annelids and molluscs. However, chitin and chitosan are only commercially extracted from crustaceans (crab, krill, crayfish) primarily because a large amount of the crustacean exoskeleton is available as a by-product of food processing. The annual worldwide crustacean shells production has been estimated to be 1.2×10^6 tonnes, and the recovery of chitin and protein from this waste is an additional source of revenue. Utilization of industrial solid wastes for the treatment of wastewater from another industry could be helpful not only to the environment in solving the solid waste disposal problem, but also to the economy (Guo *et al.*, 2009).

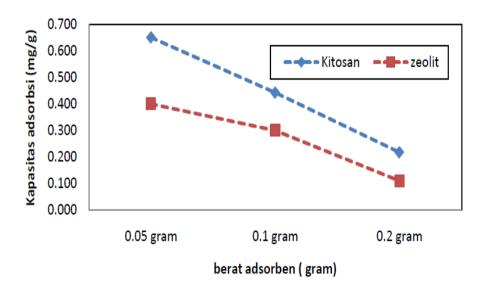


Figure 2. Adsorption capacity of Cu for various adsorbents weight

Determination of the weight of adsorbent was conducted using uniform adsorbate concentration equal to 100 mg/L with optimum mixing time obtained in previous treatments. Figure 2 shows the various adsorbents weight of chitosan compared with zeolite as already

well known adsorbent. We found that chitosan gives a higher adsirption capacity than zeolite for both Cr and Cu. Figure 3 shows Adsorption capacity of Cr for various mixing time. In general, chitosan also gives better adsorption capacity than those of zeolite.

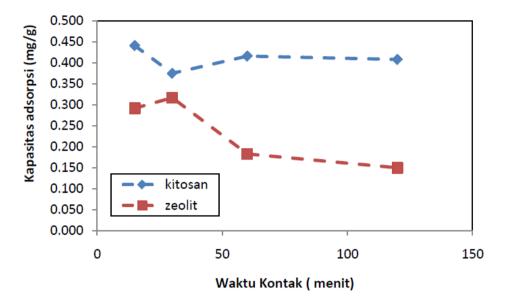


Figure 3. Adsorption capacity of Cr for various mixing time

Chitosan has drawn particular attention as a complexing agent due to its low cost compared to zeolite and its high contents of amino and hydroxy functional groups showing high potential for adsorption of a wide range of molecules, including phenolic compounds, dyes and metal ions. This biopolymer represents an attractive alternative to other biomaterials because of its physico-chemical characteristics, chemical stability, high reactivity, excellent chelation behavior and high selectivity toward pollutants (Chojnacka, 2010).

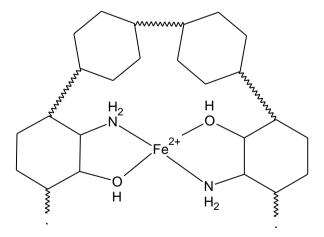


Figure 4. Proposed bonding mechanism of chitosan and Fe

The study demonstrated that chitosan-based biosorbents are efficient materials and have an extremely high affinity for heavy metals. They are also versatile materials. This versatility allows the sorbent to be used in different forms, from flake-types to gels, bead-types or fibers. The proposed bonding mechanism is shown in Figure 4. Functional groups of amine and hidroxyl provide excellent bonding agent for heavy metals such as Fe or Cu and Cr.

IV. Conclusion

The preference of chemisorptions nature of heavy metals onto chitosan than those of physisorption probably cause in high adsorption capacity of chitosan for selected metals. We found that chitosan is a more promising agent to collect toxic heavy metals from environments than other well known agent such as zeolite. Chitin and chitosan are underutilized natural polymers. Although cost effective isolation remains difficult primarily because raw material sources not consolidated or stabilized, derivation of chitosan produces a remarkably diverse group of potential products, primarily as chelating resin, which can be stored for long periods, thus giving high economic value for chitosan. Optimum adsorption conditions of Cr onto chitosan as adsorbent with a variation of adsorption time, weight of adsorbent and optimum pH were 15 minutes, 0.05 gr and pH 5, whereas those for Cu were 30 minutes, 0.05 gr and pH 6, respectively.

References

- 1. Adnan Khan, Syed Badshah, Claudio Airoldi (2011) Dithiocarbamated chitosan as a potent biopolymer for toxic cation remediation. *Colloids and Surfaces B: Biointerfaces*, 87, 88–95.
- 2. Bidyut Saha and Chris Orvig (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. *Coordination Chemistry Reviews*, 254, 2959–2972.
- 3. Gülay Bayramoğlu, Ilhami Tuzun, Gokce Celik, Meltem Yilmaz b, M. Yakup Arica (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. *Int. J. Miner. Process.* 81, 35–43.

- Graciela Rojas, Rojasa, Jorge Silvaa, Jaime A. Floresb, Angelica Rodriguezb, Martha Lyc, Holger Maldonadob (2005) Adsorption of chromium onto cross-linked chitosan, Separation and Purification Technology, 44. 31–36.
- 5. Fan Yang, Huijuan Liu, Jiuhui Qu, J. Paul Chen (2011) Preparation and characterization of chitosan encapsulated *Sargassum sp*.biosorbent for nickel ions sorption. *Bioresource Technology*, 102. 2821–2828.
- 6. Katarzyna Chojnacka (2010) Biosorption and bioaccumulation the prospects for practical applications. *Environment International*, 36. 299–307.
- 7. M. Lutfi Firdaus, Kazuhiro Norisuye, Taishi Sato, Shouhei Urushihara, Yusuke Nakagawa, Shigeo Umetani and Yoshiki Sohrin (2007) Preconcentration of Zr, Hf, Nb, Ta and W in seawater using solid-phase extraction on TSK-8-hydroxyquinoline resin and determination by inductively coupled plasma-mass spectrometry. *Analytica Chimica Acta*, 583, 296-302.
- 8. Shilpi Kushwaha, Padmaja Sudhakar (2011) Adsorption of mercury(II), methyl mercury (II) and phenyl mercury (II) on chitosan cross-linked with a barbital derivative. *Carbohydrate Polymers*, 86. 1055–1062.
- 9. Vogel A.I. (1989) Textbook of Quantitative Chemical Analysis. New York, Bath Press.
- 10.Yu-Shen Cheng, John Labavitch, Jean S. VanderGheynst (2011) High-throughput analysis of hexosamine using a colorimetric method. *Analytical Biochemistry*, 408. 160–162.
- 11.Zhi Guo, Xiang Hu, Yansong Ao (2009) Effect of chitosan on the available contents and vertical distribution of Cu²⁺ and Cd²⁺ in different textural soils. *Journal of Hazardous Materials*. 167. 1148–1151.

