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ABSTRACT

Theoretically and practically, Spline regression estimator in semiparametric or partially linear model is not only
switable for handling cross section data, but it can be generalized for longitudinal data. Linear partial models
Jor longitudinal data with y, = X:ﬁi + f(tb ) +e, J=L2..n, i=L2,..,n, there are n subjects which have
“he i..y observation. By using the truncated spline regression approach and the weighted least squares
apimization, the estimation in partially linear model for longitudinal data was Y = A(k .k ...,k )Y, where

ale.r, ... 2 )= Y(k)(Y(L ) W‘((k)) x{(x ) w. The application was used to predict the pattern of the

welationship among the number of leukocytes in leukemia patients (y) toward the number of platelets (x) and
checkup iime (1). The result of model estimation showed the number of leukocytes leukemia (v) had linear pattern
Wil the number of platelets (x) and it also had pattern which followed a linear spline two knots toward checkup
“wme (7). This model had a GCV value of 0.4118387 with MSE value of 0.0001967 and the coefficient of

Weermination (R°) of 0.9879.

. INTRODUCTION

Regression analysis is one of the data analysis
it is used to determine the model patterns of
“unonships  between predictor variables and
“wponse variables. If the pattern of relationships
“weween predictor variables and response variables
o= unknown, then the nonparametric regression is a
“wression approach which appropriate for the data
wsem of an unknown form of the regression curve

L mave specific statistical interpretation and an
~woclent visual interpretation [2]. Moreover, spline
w7z 1o handle the smooth character data and it has
o smcellent ability to handle data that changes its
~wowor in specific sub-interval [3]. Spline and
e spline estimator theoretically and practically
o only suitable for handling cross section data,
W cam be generalized to longitudinal data [4]. In a
uo of longitudinal data, in general, the
~memations are made of # mutually independent
~wnas where each subject is observed repeatedly
© L zrent time periods [5].

“me of the methods that can be used for
wimanimg parameters in linear partial models for
~woomdinal data is truncated spline regression
wmeech. Truncated spline regression approach has
wemn advantages including easier mathematically
W e interpretations same as the parametric
: Basically, the main issue in the
~wmseon of parameters using truncated spline

~ Spline is one of the nonparametric regressions’

Waywords: Leukemia, Linear Partial Model, Longitudinal Data, Truncated Spline

regression is about the selection of optimal knot
points with ordinary least squares optimization.
However, estimation of parameters in linear partial
models for longitudinal data is conducted using
weighted least squares optimization, which includes
W value for the completion of the smallest squares
optimization. This is caused by the observations of
longitudinal data are dependent on the same subjects
while for different subjects are independent, so that
the correlation between observations cause ordinary
least squares optimization need to be refined by a
value.

There are several studies which analyze
longitudinal data modeling using nonparametric
regression approach. They are Wu and Chiang [6]
who using kernel estimators, Zhang [7] using
generalized spline regression, Rice and Wu [8] using
the spline approach which based on a mixed effects
model to estimate the regression curve for
longitudinal data. On the other hand, there are
several studies on longitudinal data based on the
semiparametric model in particular linear partial
model, including the Fan and Zhang [9], Guo [10],
Liang and Xiao [11], and Laome [12].

In this study, it used spline regression approach
with weighted least square optimization to estimate -
parameters in partially linear model for longitudinal
data. Then, it was conducted the selection of optimal
knots point to find the best spline model estimator.
In the last step, the proposed method was applied to
predict the relationships pattern of the number of
leukocytes in leukemia patients based on the number
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of platelets and checkup time. The results showed
truncated spline estimators in linear partial models
for longitudinal data have the characteristics of
linearity. The selection of optimal knot points was
conducted by GCV method. Application of the
model showed the pattern of the relationship among
the number of leukocyte in leukemia patients, the
number of platelets, and checkup time may be
formed in a linear partial model, with the number of
platelets as parametric component and checkup time
as nonparametric component. Based on the result of
model estimation, it showed that the number of
leukocytes in leukemia patients had linear pattern on
the number of platelets and it also had pattern which
followed a linear spline two knots in checkup time.

II. METHODS

- The method used in this study was truncated
spline regression with weighted least square
optimization. Spline is polynomial pieces that have
continuous segmented characteristics thus it can
explain the local characteristics of the data function.
In general, the spline function of degree m with K
knots is any function that written as:

s(t)=2a?t‘”+zk;:¢§!(t—k‘_)? (1)

(Z_kr)i,:{(;_k,)” 2k

0 stk

with,

where a is polynomial parameter, § is truncated
parameter, and k4, k,, ..., ky are knot points.

In a study of longitudinal data, the observations
were conducted on n subjects which were mutually
independent, where ecach subject was observed
continuously in a specified period. If it is given the
longitudinal ~ data  (t;, x5, ¥;;), j=1,2,..,1,
i=1,2,..,n, then the linear partial model for
longitudinal data is obtained from [14]:

v, =XB+f(t,)+e, i=12m, i=12,..n (2)

where B =(B,,8.,..8,) is IxI-dimensional
vector of parametric regression coefficient X
X =(X,.X,...X, )y X,=(1.5.-%)
X, =, Xt s we Bosla 5,00, ),
7(1)) is an differentiable function and &, is

random error, j=1,2,.., A, i=12,..n.

The optimal curve of spline regression estimator
depends on the location of the knots points
ky, ky, ..., k. Therefore, it needs to choose optimal
knots point to determine the best spline model. Knot
points are the interface point to show the change of
behavior of spline functions on different intervals.

S.24

The method used in the selection of optimal knot
points is generalized cross validation (GCV), which
is defined as follows [13]:

NY (1-a(k ) w(i-a(x ))v
(¥ irace(1-A(k )))

Estimation of linear partial models for
longitudinal data with truncated spline regression
approach was performed with these following steps:
a. Approaching f (ti j) with truncated spline

degree m and knots ky, k,, ..., ky
b. Indicating the linear partial model for

longitudinal data as follows:

¥, =XB, +ia;ﬂt; +Z6 (t —k, )” +s,

i=1,2,...n, j=12,...n

Gev(k )=

c. Writing model in step (b) as follows:
Y=X(k)B+e, k =(k, &k, - k)
d. Determining B by using weighted least squares
optimization:
min_{ (Y=X(k )B) W(Y-X(k,)B) |

By I

e. Obtaining the spline estimation in linear partial
model as follpws:

5 =XB+Yar+ Y6 (n-k)

Furthermore, the results of estimates were
applied to observe the pattern of relationship among
the number of leukemia leukocyte toward the
number of platelets and the checkup time with these
following steps:

a. Creating data plot (ti;-, Xy ’yi}-),

b. Modeling the data with spline approach,

¢. Choosing the optimal knot points by the GCV
method,

d. Finding the smallest value of GCV,

e. Estimating model patterns of relationships with
leukemia leukocyte count,

f.  Calculating the value of determination
coefficient and mean square error.

HI. RESULTS

A. Estimation Spline Truncated with Weighted Least
Square Optimization in Linear Partial Models
for Longitudinal Data

If the curve regression in a linear partial model
for longitudinal data was approximated by truncated
spline regression,

() =Fay + X6 (n-k) @

where i=1,2,....n, j=L2..n
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Hence, the linear partial models for
fongitudinal data can be expressed in matrix notation
as follows:

Y=X(k )B+¢ (%)
where k = (k, &, k), i=12,..,n

By using weighted W, estimates of B in (5)
zan be obtained by solving the optimization:

min { (v=x(x)B) W(¥-X(x)B) | (6)

with W is a matrix:

w0 0

0w 0
W=

0 0 W

=0 that, we obtained:
B=(X(K) WX(B)) X(FY wy (1)
Szsed on the estimation of B in (7), then obtained:
Y=X(k )B

¥
= AR ok sk VY, i=100. /0

where, R
alk .k, k)= X(k;)(X(kY ) wx(x )) x(k ) W

5. Applications to Data Number of Leukocytes in
Leukemia Patients

The data used in this study was secondary data
Z=ived from studies conducted Oktiriani [14], that
was the data from leukemia patients were treated at
Surabaya Hajj General Hospital in 2009. It was
wout the development of leukocytes numbers in
‘sukemia patients who were influenced the checkup
“me and the number of platelets. Based on data from
medical records of Surabaya Hajj General Hospital
= 2009, there were four patients who had mutually
mdependent leukemia and assumed only having
‘cukemia. In each of patients was measured the
=zmber of leukocyte cell and platelet cell in a
cemzin period to be analyzed by using a truncated
spiine model. The study was focused to predict the
semern of the relationship among the number of
‘suzkocytes in leukemia patients () toward the
sumber of platelets (x)and time (:), where the
mumber of platelets medically as explanatory
wanables that was assumed as parametric component
= partially linear model.

In the analysis process, it would be conducted
“mear partial model estimation simultaneously to
voizined the optimal linear partial model. In
widition, the criteria for the best model with a
wuncated spline approach were measured by the

smallest value of GCV at the point of optimum knots
[15]. However, other criteria of the goodness of the
model were considered through the MSE and the
coefficient of determination R® In the model
estimation process, the calculation of the GCV was
limited to 2 knots with polynomial degree m = 1,
m = 2,dan m = 3, each of which is called a linear
spline, quadratic spline, and cubic spline. Thus, the
smallest GCV value was obtained through a
combination of the number of knots and the degree
of the polynomial used. Repetition which were
conducted for each patient caused the correlation
between observations in the same subjects. The
indication of a correlation could be seen in the
response variable that affected to the time variable.
So the estimation of the optimal spline model was
obtained from a weighting. In this case, the analysis
was conducted by using weighting of variance
covariance matrix.

Furthermore, the combinations of GCV with
the number of knots and the degree of the
polynomial spline for estimating the linear partial
model are shown in Table 1.

Table 1. GCV values for The Model with Linear
Parametric Components
Knots The Degree of GCV
Poly ial Spli

9 1 0,4118387

2 3 4,1987952

Based on Table 1, it was obtained the smallest
GCV values on a combination of two knots and one
degree of the polynomial (linear spline) of
0.4118387. Knot points for each patient are shown
in Table 2 below:

Table 2. Knot points with GCV Optimum Value
Subject Knots

Patient 1 138 154

Patient 3 102 153

Thus, the estimation of linear partial model
about the pattern of the relationship among the
number of leukocytes in leukemia patients toward
the number of platelets and checkup time is given:

S.25
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7, = 024789 +0,04287x +0,00065, +0,00237(r —138) +
~0.03945( ~154) , j=1,2...,7 ‘ ‘

5, = 0,02549 +0,00026x ~0,00004z +0,00097 (¢ ~106) +
-0,00079(r, ~162) , j=1,2 .8 4

3, =0,01704~0.11162x_+ 00001, ~0,00008(¢ —102) +
-0,0001(¢ ~153) ., j=1,2..9 '

3, = 0,01503+0,00038x,_+0,00004z +0,00031 (s —120) +
-0,00037(s, —174) . j-1.2 .5 ‘

This model has a MSE value of 0.0001967 and
coefficient of determination R? of 0.9879.

Based on (9), (10), (11), and (12) show that the
estimation of the number of leukocytes for each
leukemia patient (y ) is as bellow:

(1) It has linear pattern with the number of platelets
( X, ), and

(ii) It patterns which follows a linear spline with two
knots with checkup time ("'., )

Based on the model, it appears that in patient 2

and patient 4 have a tendency that the number of
leukocytes keeps increasing with the length of time
of checkup. It means that the longer time the patient
undergoes the checkup; therefore the patient's
condition keep declining instead, although in the
beginning of each patient has different patterns. In
-contrast, patient | and patient 3 have a tendency that
the number of leukocytes keeps decreasing along the
length of time of checkup, which means that the
longer the patient undergoes the checkup of the
patient's condition improved. This difference may be
influenced by the circumstances and background of
different patients, as well as the influence of other
factors that are not included in the model. While the
pattern of the relationship between the number of
platelets and the numbers of leukocytes, leukocyte
numbers have a tendency to increase as the numbers
of platelets also increase.

VII. CONCLUSION

If given a linear partial model for longitudinal
data y =XB + 1 (1 )+e,.j=02un.i=1,2, n

then by using a truncated spline regression approach
with weighted least squares (WLS) optimization, so

it is obtained V=aA (k. k..., k)Y, where

Ak k. k) =X(k )(x(k;)’ WX (k )) x(k ) w.

The results of model application show a pattern of
relationship among the number of leukocytes in
leukemia patients, the number of platelets, and
checkup time in the same time. They may be formed
in a linear partial model, with the number of
platelets as parametric component and checkup time
as nonparametric component. Model estimation
results show that the number of leukocytes leukemia
patients (v) have linear pattern toward the number of
platelets (x) and pattern which follow a linear spline

S.26

two knots for checkup time (7). This model has a
GCV value of 0.4118387 with MSE value of
0.0001967 and the coefficient of determination (R?)
of 0.9879.
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