BAB IV

`HASIL PENELITIAN DAN PEMBAHASAN

A. Hasil Penelitian

Hasil penelitian yang berjudul hubungan antara daya ledak otot tungkai dengan keterampilan *jump service* dalam permainan bola voli di SMPN 06 Kota Bengkulu Tahun 2014. Dari data yang diperoleh hasil tes *vertikal jump* yang berjumlah 30 orang siswa SMP N 06 Kota Bengkulu yang mendapat norma baik sekali 26 orang (86,7%), mendapatkan norma baik 4 orang (13,3%) dan rata-rata mendapatkan nilai 53.73 dalam katagori baik sekali. Sedangkan untuk *jump service* yang mendapatkan norma sedang 16 orang (46,7%), dan 14 orang (53,3%) mendapatkan kreteria norma baik dan rata-rata mendapatkan nilai 38.7 dalam katagori baik.

1. Uji Persyaratan Data Vertikal Jump

a. Uji Normalitas tes *Vertikal Jump* siswa kelas VII dan VIII Putra di SMPN 06
 Kota Bengkulu tahun ajaran 2013-2014.

Banyak kelas interval

 $1 + 3.3 (\log n)$

 $= 1 + 3.3 (\log 30)$

 $= 1 + 3,3 \cdot 1,47$

= 1 + 4,77

= 5,7 Dibulatkan 6

Jadi Jarak jumlah kelas interval adalah 6

Jarak kelas interval tes Vertikal Jump

$= \frac{Data\ Tertinggi-Data\ Terendah = 65-41=4}{Jumlah\ kelas\ interval}$

Tabel 4.1 Tabel Kerja Uji Normalitas Data *Vertikal Jump*

No	Interval	Meliputi	Dalam	Dibulatkan
		Frekuensi Sebesar	Persentase	
1	< 41 Kebawah	1	3,3 %	3,3
2	42 – 46	2	6,6 %	6.7
3	47 – 51	5	16,6 %	16.7
4	52 - 56	16	53,3 %	53,3
5	57 – 61	3	10 %	10
6	62 > Keatas	3	10 %	10
	Total	30	100 %	100

Berikut perhitungan rumus Chi-kwadrat Nilai Fe digunakan rumus :

$$\chi^2_{\text{hitung}} = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

Keterangan:

Oi = frekuensi hasil pengamatan pada klasifikasi ke-i

Ei = Frekuensi yang diharapkan pada klasifikasi ke-i

Kriteria:

Jika x^2 hitung $> x^2$ tabel, maka distribusi data tidak normal

Jika x^2 hitung $< x^2$ tabel, maka distribusi data normal

$$E_i = \frac{\sum O_i = 30 = 5}{N}$$

Tabel 4.2

No	Interval	O_{i}	E_{i}	$(O_{i} - E_{i})^{2}$	$\frac{(O_{i-}E_{i})^2}{E_{i-1}}$
					E _i
1	< 41 Kebawah	1	5	16	3.2
2	42 - 46	2	5	9	1.8
3	47 – 51	5	5	0	0
4	52 – 56	16	5	121	24.2
5	57 – 61	3	5	4	0.8
6	62 > Keatas	3	5	4	0.8
	Total	30			30.8

Nilai $X^2 = 30.8$ Sedangkan nilai X^2 Tabel adalah 43.773 Data berdistribusi normal

Jika x^2 hitung $> x^2$ tabel, maka distribusi data tidak normal

Jika x^2 hitung $< x^2$ tabel, maka distribusi data normal.

 Uji Normalitas tes *Jump Service* siswa kelas VII dan VIII Putra di SMPN 06 Kota Bengkulu tahun ajaran 2013-2014.

Banyak kelas interval

$$1 + 3.3 (\log n)$$

$$= 1 + 3.3 (\log 30)$$

$$= 1 + 3,3 \cdot 1,47$$

$$= 1 + 4,77$$

= 5,7 Dibulatkan 6

Jadi Jarak jumlah kelas interval adalah 6

Jarak kelas interval tes Jump service

= $\underline{\text{Data Tertinggi- Data Terendah}} = 47 - 30 = 2.83$ di bulatkan menjadi 3 Jumlah kelas interval 6

Tabel 4.3

Tabel Kerja Uji Normalitas Data Jump Service

No	Interval	Meliputi Frekuensi	Dalam	Dibulatkan
		Sebesar	Persentase	
1	<30 Kebawah	2	6.6 %	6.7
2	31 – 34	3	10 %	10
3	35 - 38	11	36.6 %	36.7
4	39 – 42	7	23.3 %	23.3
5	43 – 46	6	20 %	20
6	> 47 Keatas	1	3.3 %	3.3
	Total	30	100 %	100

Berikut perhitungan rumus Chi-kwadrat Nilai Fe digunakan rumus :

$$\chi^2_{\text{ hitung }} = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

Keterangan:

Oi = frekuensi hasil pengamatan pada klasifikasi ke-i

Ei = Frekuensi yang diharapkan pada klasifikasi ke-i

Kriteria:

Jika x^2 hitung $> x^2$ tabel, maka distribusi data tidak normal

Jika x^2 hitung $< x^2$ tabel, maka distribusi data normal

$$E_i = \frac{\sum O_i}{N} = \frac{30 = 5}{6}$$

Tabel 4.4

No	Interval	O_i	E _i	$(O_{i} - E_{i})^{2}$	$(O_{i-}E_{i})^2$
					$\mathrm{E_{i}}$
1	<30 Kebawah	2	5	9	1.8
2	31 – 34	3	5	4	0.8
3	35 – 38	11	5	36	7.2
4	39 – 42	7	5	4	0.8
5	43 – 46	6	5	1	0.2
6	> 47 Keatas	1	5	16	3.2
	Total	30	5		14

Nilai X^2 = 14 Sedangkan nilai X^2 Tabel adalah 43.773 Data berdistribusi normal

Jika x^2 hitung $> x^2$ tabel, maka distribusi data tidak normal

Jika x^2 hitung $< x^2$ tabel, maka distribusi data normal.

3. Uji Homogenitas tes *vertikal jump dan jump servisce* menggunakan uji varians dengan rumus sebagai berikut :

$$S_X^2 = \sqrt{\frac{n \cdot \sum X^2 - (\sum X)^2}{n(n-1)}}$$
 $S_Y^2 = \sqrt{\frac{n \cdot \sum Y^2 - (\sum Y)^2}{n(n-1)}}$

$$F = \frac{S_{besar}}{S_{kecil}}$$

Keterangan:

 $Sx^2 = Standar deviasi X yang di kuadratkan$

 Sy^2 = Standar deviasi variabel Y yang di kuadratkan

 $\sum X^2 =$ Jumlah variabel X yang di kuadratkan

 $\sum Y^2 =$ Jumlah variabel Y yang di kuadratkan

 $\sum X = Jumlah \ variabel \ X$

 $\sum Y = Jumlah \ variabel \ Y$

Membandingkan F hitung dengan F tabel pada tabel distribusi F, dengan

- Untuk varians terbesar adalah dk pembilang n-1
- Untuk varians terkecil adalah dk penyebut n-1
- Jika F hitung < F tabel, berarti homogen
- Jika F hitung > F tabel, berarti tidak homogen

Perhitungan variabel Sx^2 sebagai berikut :

$$Sx^{2} = \sqrt{30.87300 - (1612)^{2}}$$
$$30(30-1)$$

$$Sx^2 = \sqrt{20456}$$

$$Sx^2 = \sqrt{23.51}$$

$$Sx^2 = 4.84$$

Perhitungan Variabel Sy2 adalah sebagai berikut :

$$Sy^2 = \sqrt{\frac{30.45627 - (1161)^2}{30(30-1)}}$$

$$Sy^2 = \sqrt{20889} \\ 870$$

$$Sy^2 = \sqrt{24.01}$$

$$Sy^2 = 4.9$$

Perhitungan distribusi F sebagai berikut :

$$F = \frac{S_{besar}}{S_{kecil}}$$

 $S_{BESAR} = 4.9$

 $S_{KECIL} = 4.84$

$$F = 4.9 = 1.01$$

Membandingkan F hitung dengan F tabel pada tabel distribusi F, untuk varians terbesar adalah dk pembilang n -1. Untuk varians terkecil adalah dk penyebut n -1. Jika F hitung < F tabel, berarti data homogen. Yaitu varians terbesar adalah dk pembilang 30 - 1 = 29 dan untuk varians terkecil adalah dk penyebut 30 - 1 = 29, dan terdapat hasil F hitung adalah 1.01 dan F tabel adalah 1.85 berarti data homogen.

4. Perhitungan korelasi product moment

$$r_{xy} = \frac{n \sum XY - (\sum X)(\sum Y)}{\sqrt{|n \sum X^{2} - (\sum X)^{2}|} N \sum Y^{2} - (\sum Y)^{2}}$$

Keterangan:

 r_{xy} = Koefisien Korelasi antara variabel X dan variabel Y

n = Jumlah Sampel (30)

X = variabel bebas (Daya Ledak Otot Tungkai)

Y = Variabel Terikat (Keterampilan Jump servis)

 $\sum X$ = Jumlah Skor Variabel X adalah (1612)

 $\sum Y$ = Jumlah Skor Variabel Y adalah (1161)

 $\sum X^2$ = Jumlah dari kuadrat skor X adalah (87300)

 $\sum Y^2$ = Jumlah dari kuadrat skor Y adalah (45627)

∑XY =Jumlah Skor X Kali Skor Yadalah (62770)

$$r_{xy} = \frac{n \sum XY - (\sum X)(\sum Y)}{\sqrt{\left\{n \sum X^{2} - (\sum X)^{2}\right\}} N \sum Y^{2} - (\sum Y)^{2}}$$

$$r_{xy} = \frac{30 \times 62770 - (1612) \times (1161)}{\sqrt{(30 \times 87300) - (1612)^2 \times (30 \times 45627) - (1161)^2}}$$

$$= \frac{1883100 - 1871532}{\sqrt{2619000 - 2598544 \times 1368810 - 1347921}}$$

$$= \underbrace{\frac{11568}{\sqrt{20456} \times 20889}}$$

$$= \frac{11568}{\sqrt{427305384}}$$

$$=\frac{11568}{20671}$$

$$= 0.55$$
 [sedang]

Perhitungan koefisien korelasi dengan uji t distribusi

t hitung
$$= r \sqrt{n-2} \sqrt{1-r}$$
 2

t hitung =
$$\frac{0.55\sqrt{30-2}}{\sqrt{1-(0.55)^2}}$$

t hitung =
$$\frac{2.91}{0.83}$$

t hitung = 3.50

Nilai t tabel di tentukan berdasarkan tingkat singnifikansi adalah 5% yang digunakan dan derajat kebebasan (d.f = n-2) yang besarnya sampel (n) adalah 30. maka d.f = 30-2=28 berdasarkan tabel distribusi t tabel di peroleh 2,048, keputusan diambil dengan jalan membandingkan nilai t hitung dengan t tabel jika t hitung lebih kecil dari pada t tabel, maka keputusan menolak H_0 dan menerima H_a , pada pengujian ini t hitung adalah 3,50 lebih besar dari pada t tabel adalah 2,048, maka keputusan menolak hipotesis nol (H_0) dan menerima hipotesis alternatif (H_a). Maka kesimpulannya adalah terdapat hubungan antara variabel x dan y.

B. Pembahasan

Berdasarkan hasil tes *vertikal jump* dan *jump service* yang dilakukan terhadap 30 orang siswa putra kelas VII dan VIII SMPN 06 Kota Bengkulu. Yaitu yang memperoleh jumlah nilai ± 100 tes *vertikal jump* dan *jump service* sebanyak 5 orang. Yang mendapatkan kriteria norma baik sekali sebanyak 26 dan sebanyak 4 orang mendapatkan kriteria baik. Dapat diketahui bahwa rata-rata penelitian *vertikal jump* yang mendapatkan hasil skor 53.73 yaitu di norma tes baik sekali, sedangkan nilai tertinggi adalah 65 dan nilai terendah 41. Sedangkan tes *jump service* diketahui bahwa yang mendapatkan kriteria norma sedang sebanyak 16 orang dan sebanyak 14 orang mendapatkan kriteria norma baik, rata-rata penelitian *jump service* yang mendapatkan hasil skor 38.7 yaitu di norma tes baik, sedangkan nilai tertinggi adalah 47 dan nilai terendah 30. Tes normalitas di dapatkan hasil Nilai X² = 30.8 Sedangkan nilai X² Tabel adalah 43.773 Data

berdistribusi normal. Sedangkan untuk tes *jump service* diketahui bahwa Nilai X²

= 14 Sedangkan nilai X² Tabel adalah 43.773 Data berdistribusi normal. Dan hasil analisis uji homogenitas maka dapat di kemukakan terdapat hasil F hitung adalah 1.01 dan F tabel adalah 1.85 berarti data berdistribusi homogen. Sedangkan hubungan antara daya ledak otot tungkai dengan keterampilan *jump service* dalam permainan bola voli di SMPN 06 Kota Bengkulu adalah 0.55 pada posisi kategori sedang. Maka menurut Sugiyono (2009 :184) memberikan standar untuk menilai koefisien korelasi suatu tes sebagai berikut :

Pedoman Untuk Memberikan Interprestasi Koefisien Korelasi tabel 4.5

Interval koefisien	Tingkat hubungan	
0,00 – 0,199	Sangat renda	
0,20 – 0,399	Rendah	
0,40 – 0,599	Sedang	
0,60 – 0,799	Kuat	
0,80 – 1,000	Sangat kuat	

Sedangkan Nilai t tabel ditentukan berdasarkan tingkat signifikansi (a) adalah 5 % yang digunakan dan derajat kebebasan (d.f = n - 2) yang besarnya sampel (n) adalah 30. Maka d.f = 30 - 2 = 28 berdasarkan tabel distribusi t tabel diperoleh 2.048. Keputusan diambil dengan jalan membandingkan nilai thitung dengan t tabel. Jika thitung lebih kecil dari pada t tabel, maka keputusan menerima hipotesis H_0 . Dan sebaliknya jika Jika t hitung lebih besar dari pada t tabel menolak H_0 dan menerima

H_a, pada pengujian ini, t_{hitung} adalah 3,50 lebih besar daripada t _{tabel} adalah 2.048, maka keputusan menolak hipotesis nol (H₀) dan menerima hipotesis alternatif (H_a). Maka kesimpulannya adalah terdapat korelasi antara variabel x dan variabel y. Yaitu kesimpulannya terdapat hubungan antara daya ledak otot tungkai dengan keterampilan *jump service* dalam permainan bola voli di SMPN 06 Kota Bengkulu dalam kategori sedang, hal ini masih banyak faktor lainnya yang mempengaruhi hubungan *vertikal jump* dan *jump service* yang menyebabkan kategori sedang.

BAB V

SIMPULAN DAN SARAN

A. Simpulan

Berdasarkan hasil penelitian yang telah dilakukan pada siswa kelas VII dan VIII putra di SMPN 06 Kota Bengkulu yang telah dilakukan maka ada beberapa hal di antaranya:

- 1. Kekuatan daya ledak otot tungkai pemain bola voli SMPN 06 Kota Bengkulu. Yang mendapatkan kriteria norma baik sekali sebanyak 26 dan sebanyak 4 orang mendapatkan kriteria baik. Dan rata-rata memiliki kategori baik sekali dengan nilai kekuatan otot tungkai sebesar 53.73. Dalam melakukan *jump service* pada permainan bola voli.
- 2. Kemampuan melakukan *jump service* pada permainan bola voli SMPN 06 Kota Bengkulu. Yang mendapatkan kriteria norma sedang sebanyak 16 orang dan sebanyak 14 orang mendapatkan kriteria norma baik. Dan rata-rata mendapatkan nilai 38.7 dalam melakukan *jump service* bola voli dengan katagori kategori norma baik.
- 3. Bahwa daya ledak otot tungkai dengan keterampilan *jump service* dalam permainan bola voli SMPN 06 Kota Bengkulu memiliki hubungan hal ini di tunjukkan dengan koefisien korelasi 0.55 berada di kategori sedang, berdasarkan nilai r dalam product moment di peroleh 0.361 maka menolak H_O. Pada pengujian analisis t di peroleh, t hitung adalah 3.50 lebih besar dari pada t tabel adalah 2,048, maka keputusan menolak H_O dan menerima H_a. Maka kesimpulannya terdapat hubungan antara daya ledak otot tungkai dengan

keterampilan *jump service* dalam permainan bola voli SMPN 06 Kota Bengkulu dalam kategori sedang.

B. Implikasi

Sebagai suatu penelitian yang telah dilakukan di SMPN 06 Kota Bengkulu, khusus siswa kelas VII dan VIII putra yang berjumlah 30 orang. Maka kesimpulan yang ditarik tentu mempunyai implikasi dalam bidang pendidikan dan juga penelitian-penelitian selanjutnya, sehubungan dengan hal tersebut maka implikasinya adalah sebagai berikut:

- 1. Hasil penelitian mengenai daya ledak otot tungkai dengan keterampilan *jump service* dalam permainan bola voli SMPN 06 Kota Bengkulu. Mempunyai hubungan, ternyata menunjukkan hubungan, kedua variabel tersebut. memberikan hubungan sebesar 0.55.
- 2. Berdasarkan pada hasil penelitian di atas bahwa memberikan hubungan yang berarti pembelajarran penjaskes dalam permainan bola voli. Selama ini masalah siswa mendapatkan nilai yang rendah dan kurangnya tingkat kemampuan bermain bola voli. Maka dalam mengatasi masalah tersebut, diperlukan adanya usaha dan upaya dari pihak siswa yang bersangkutan dan guru mata pelajaran penjaskes, sedangkan pihak sekolah mendukung semua aktivitas olahraga.
- 3. Dengan adanya penelitian ini diharapkan siswa dan guru mempunyai kualitas yang akan semakin meningkat. Untuk itu perlu adanya upaya-upaya yang harus dilakukan oleh siswa, guru dan pihak sekolah dan di antaranya sebagai berikut:

- a. Bagi siswa sebagai tolak ukur kemampuan diri sendiri, dan merubahnya ke lebih baik lagi dalam cara atau kabiasaan dalam berolahraga ke yang lebih baik lagi, lebih bersemangat lagi untuk berolahraga guna meningkatkan prestasi di bidang permainan bola voli.
- b. Bagi guru lebih berupaya meningkatkan lagi dalam permainan bola voli.

C. Keterbatasan Penelitian

- 1. Peneliti sadari banyaknya dana, waktu maka penelitian hanya berlangsung ± 2 bulan dari tanggal 10 maret -30 april bedasarkan surat izin penelitian dan selesainya penelitian.
- 2. Jumlah sampel peneliti mengambil 30 siswa putra. Dikarenakan jumlah populasi putri sedikit yang pandai bermain bola voli.
- 3. Peneliti hanya memiliki dua variabel penelitian, yaitu daya ledak otot tungkai (X) dan keterampilan *jump service* (Y). Sehingga model dalam penelitian ini hanya mampu menjelaskan variansi dalam terikat.

D. Saran-saran

Adapun saran-saran yang dapat penulis sampaikan melalui hasil penelitian ini adalah sebagai berikut :

- 1. Kepada seluruh siswa-siswi SMP Negeri 06 Kota Bengkulu, agar memiliki motivasi diri dalam menjalani pembelajaran penjaskes di sekolah. Sehingga bisa meningkatkan keterampilan bermain bola voli.
- 2. Kepada guru-guru penjaskes, agar bisa memancing motivasi siswa dalam permainan bola voli dan juga membuat pembelajaran penjaskes lebih

menyenangkan anak-anak didik. Meningkatkan prestasi siswa SMP Negeri 06 Kota Bengkulu

3. Pihak sekolah, agar memiliki sarana dan prasarana olahraga yang bisa menumbuh kembangkan motivasi siswa-siswi untuk berprestasi SMP Negeri 06 Kota Bengkulu.

DAFTAR PUSTAKA

Ahmadi, Nuril. (2007). *Panduan Olahraga Bola Voli*. Surakarta: Era Pustaka Utama

Arikunto, Suharsimi. (19930). *Prosedur Penelitian*. Yogyakarta Jawa Tengah: PT.Rineke Cipta

Asril. (2010). Evaluasi Pendidikan Jasmani dan Kesehatan: Wineka Media

Ichsan. (1988). Pendidikan Kesehatan dan Olahraga. jakarta

irwansyamzani.blogspot.com/.../hubungan-daya-ledak-otot-tungkai

Munasifah. (2009). Bermain Bola Voli. Semarang: Aneka Ilmu

Robinson Borni. (1991). Bola Voli. Semarang: PT. Dahara Prize.

Riduwan dan Akdon. (2010). *Rumus Dan Data Dalam Analisis Statistika*. Bandung: ALFABETA

rosy46nelli.wordpress.com/2009/12/07/daya-ledak-otot

Sudjana. (2002). Metode Statistik. Bandung: Tarsito

Sugioyono. (2009). *Metode Penelitian Kuantitatif dan Kualitatif:* Bandung ALFABETA

Sugiyono. (2013). Statistika Untuk Penelitian: Bandung ALFABETA

Syafruddin. (2004). Permainan Bola voli. Padang: FIK UNP

LAMPIRAN

PERHITUNGAN KORELASI

		VERTICAL	JUMP				
NO	NAMA	JUMP(X)	SERVICE(Y)	X2	Y2	X.Y	TOTAL
1	Ok	52	35	2704	1225	1820	87
2	AG	58	45	3364	2025	2610	103
3	VR	50	38	2500	1444	1900	88
4	TS	62	37	3844	1369	2294	99
5	AL	55	38	3025	1444	2090	93
6	AN	56	37	3136	1369	2072	93
7	AK	51	30	2601	900	1530	81
8	Yu	45	30	2025	900	1350	75
9	Fu	56	36	3136	1296	2016	92
10	IR	55	45	3025	2025	2475	100
11	BG	57	40	3249	1600	2280	97
12	AD	55	43	3025	1849	2365	98
13	Dw	45	32	2025	1024	1440	77
14	NO	41	36	1681	1296	1476	77
15	Yo	65	46	4225	2116	2990	111
16	DM	55	42	3025	1764	2310	97
17	DA	56	36	3136	1296	2016	92
18	RE	56	43	3136	1849	2408	99
19	AK	47	32	2209	1024	1504	79
20	RA	56	39	3136	1521	2184	95
21	FS	54	40	2916	1600	2160	94
22	YA	57	46	3249	2116	2622	103
23	MR	55	35	3025	1225	1925	90
24	NO	54	31	2916	961	1674	85
25	МО	51	38	2601	1444	1938	89
26	DI	56	42	3136	1764	2352	98
27	NR	50	38	2500	1444	1900	88
28	YN	55	42	3025	1764	2310	97
29	FN	53	47	2809	2209	2491	100
30	HR	54	42	2916	1764	2268	96
	JUMLAH	1612	1161		45627	62770	2773

KRITERIA NORMA VERTIKAL JUMP DAN JUMP SERVICE

		VERTICAL		JUMP	
NO	NAMA	JUMP(X)	Norma	SERVICE(Y)	norma
1	ОК	52	BAIK SEKALI	35	SEDANG
2	AG	58	BAIK SEKALI	45	BAIK
3	VR	50	BAIK SEKALI	38	SEDANG
4	TS	62	BAIK SEKALI	37	SEDANG
5	AL	55	BAIK SEKALI	38	SEDANG
6	AN	56	BAIK SEKALI	37	SEDANG
7	AK	51	BAIK SEKALI	30	SEDANG
8	YU	45	BAIK	30	SEDANG
9	FU	56	BAIK SEKALI	36	SEDANG
10	IR	55	BAIK SEKALI	45	BAIK
11	BG	57	BAIK SEKALI	40	BAIK
12	AD	55	BAIK SEKALI	43	BAIK
13	DW	45	BAIK	32	SEDANG
14	NO	41	BAIK	36	SEDANG
15	YO	65	BAIK SEKALI	46	BAIK
16	DM	55	BAIK SEKALI	42	BAIK
17	RA	56	BAIK SEKALI	36	SEDANG
18	DE	56	BAIK SEKALI	43	BAIK
19	AK	47	BAIK	32	SEDANG
20	RA	56	BAIK SEKALI	39	BAIK
21	FS	54	BAIK SEKALI	40	BAIK
22	YR	57	BAIK SEKALI	46	BAIK
23	MR	55	BAIK SEKALI	35	SEDANG
24	МО	54	BAIK SEKALI	31	SEDANG
25	NO	51	BAIK SEKALI	38	SEDANG
26	DI	56	BAIK SEKALI	42	BAIK
27	NR	50	BAIK SEKALI	38	SEDANG
28	YN	55	BAIK SEKALI	42	BAIK
29	FN	53	BAIK SEKALI	47	BAIK
30	HR	54	BAIK SEKALI	42	BAIK

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BENGKULU

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

PROGRAM STUDI S 1 PENDIDIKAN JASMANI DAN KESEHATAN JLN. W.R. SUPRATMAN, KANDANG LIMUN BENGKULU 38371A Telepon (0736) 21170, Ps.203-232, 21186 Faksimile: (0736) 21186

Laman: www.unib.ac.ide-ma.l: rektorat@unib.ac.id

No : 140.43 /UN30.3/PP/2014

Bengkulu, 10 Maret 2014

Lamp: 1 berkas

Hal : Permohonan izin Penelitian

Yth, Wakil Dekan Bidang Akademik FKIP Universitas Bengkulu.

Sehubungan dengan rencana penelitian yang akan dilakukan oleh mahasiswa prodi Pendidikan Jasmani dan Kesehatan (PENJASKES) Fakultas Keguruan dan Ilmu Pendidikan Universitas Bengkulu, yaitu:

Nama

: Muktaridi

NPM

: A1H010083

Prodi

: Penjaskes FKIP UNIB

Judul Skripsi

:Hubungan Antara Daya Ledak Otot Tungkai Dengan Keterampilan Jump

Service Dalam Permainan Bola Voli Di SMP N 06 Kota Bengkulu

Lokasi Penelitian

: SMP N 06 Kota Bengkulu

Waktu Penelitian

: 13 Maret s.d 13April 2014

Maka dengan ini kami mohon bantuan bapak/ibu agar dapat memberikan surat pengantar penelitian kepada yang bersangkutan.

Demikian surat permohonan kami buat atas perhatian dan kerja sama yang baik kami ucapkan terima kasih.

Ketua Prodi

Drs. Tono Sugihartono, M. Pd NIP. 196208231988031002

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BENGKULU

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan WR.Supratman Kandang Limun Bengkulu 38371A Telepon (0736) 21170.Psw.203-232, 21186 Faksimile: (0736) 21186 Laman: www.fkip.unib.ac.id e-mail: dekanat.fkip@unib.ac.id

Nomor

: /300 /UN30.3/PL/2014

11 Maret 2014

Lamp

: 1 (satu) Expl Proposal

Perihal

: Izin Penelitian

Yth. Kepala Dinas Pendidikan dan Kebudayaan Kota Bengkulu Di Bengkulu

Untuk kelancaran dalam penulisan Skripsi mahasiswa, bersama ini kami mohon bantuan Saudara untuk dapat memberikan izin melakukan penelitian / pengambilan data kepada:

Nama

: Muktaridi

NPM

: A1H010038

Program Studi Tempat penelitian : Pendidikan Jasmani dan Kesehatan : SMP negeri 06 Kota Bengkulu

Waktu Penelitian

: 13 Maret s.d 13 April 2014

dengan judul

: "Hubungan Antara Daya Ledak Otot Tungkai Dengan Keterampilan Jump Service Dalam Permainan Bola Voli di SMP Negeri 06 Kota

Bengkulu." Proposal terlampir.

Atas bantuan dan kerjasama yang baik kami ucapkan terima kasih.

a.n. Dekan

Wakil Dekan Bidang Akademik

Prof.Dr. Bambang Sahono, M.Pd NIP.19591915 (98503 1 016

Tembusan:

Yth. Dekan FKIP sebagai laporan

PEMERINTAH KOTA BENGKULU DINAS PENDIDIKAN DAN KEBUDAYAAN

Jalan Mahoni Nomor 57 Kota Bongkulu 35227 Tolp.(0736) 21429 FAX (07360 345444.

SURA'T IZIN PENELITIAN Nomor: 421.2/453 /IV.Dikbud

Surat Dekan Fakultas Keguruan Dan Ilmu Pendidikan Universitas Bengkulu Nomor: 1300/UN30.3/PL/2014 tanggal 11 Maret 2014 tentang Izin Penelitian.

Mengingat untuk kepentingan penulisan Ilmiah dan pengembangan Pendidikan dalam wilayah Kota Bengkulu, maka dapat memberikan izin penelitian kepada:

Nama

: Muktaridi

NPM

: A1H010038

Program Studi : Pendidikan Jasmani dan Kesehatan

Judul penelitian: "Hubungan antara Daya Ledak Otot Tungkai Dengan Keterampilan Jump Service Dalam Permainan Bola Voli di SMP Negeri 06 Kota Bengkuiu."

Dengan ketentuan sebagai berikut:

1. a. Tempat penelitian: SMP Negeri 06 kota Bengkulu b. waktu penelitian : 13 Maret s.d 13 April 2014

2. Penelitian tersebut khusus dan terbatas untuk kepentingan studi ilmiah tidak untuk di

3. Setelah selesai penelitian untuk menyampaikan laporan ke Dinas Pendidikan dan Kebudayaan Kota Bengkulu.

Demikian surat izin ini diberikan untuk dapat dipergunakan seperlunya.

Bengkulu, A Maret 2014 An.Kepala Dinas Pendidikan dan Kebudayaan Kota Bengkulu Kabid Dikdas

51,173 198603 1 007

Tembusan Yth:

1. Walikota Bengkulu (Sebagai laporan)

Dekan FKIP Universitas Bengkulu

Kepala SMP Negeri 06 Kota Bengkulu

PEMERINTAH KOTA BENGKULU DINAS PENDIDIKAN DAN KEBUDAYAN

SEKOLAH MENENGAH PERTAMA NEGERI (SMP N) 6 AKRETASI "B"

Alamat : Jalan Muhajirin, Dusun Besar Telepon (0736) 24437 BENGKULU 38229

SURAT PERSETUJUAN NO.: 421.2/066 /SMPN 6

Yang bertanda tangan dibawah ini Kepala SMP Negeri 6 Kota Bengkulu, memperhatikan Surat Dekan Fakultas Ilmu Pendidikann Universitas Bengkulu, Tanggal 11 Maret 2014 Nomor 1300/UN 30-3/PL/2014, dan Surat Dinas Dikbud Kota Bengkulu No. 421.2/803 /IV.Dikbud, Tanggal -11 Maret 2014 perihai izin penelitian dengan judul Skripsi:

"Hubungan Antara Daya Ledak Otot Tungkai Dengan Kerteramfilan Jump Service Dalam Permainan Bola Voli di SMP Negeri 06 Kota Bengkulu "

Mengingat kepentingan penelitian skripsi:

Nama : Muktaridi NPM : A1H010038

Program Studi : Pendidikan Jasmani dn Kesehatar Tempat Penelitian : SMP Negeri 6 Kota Bengkulu Waktu Penelitian : 13 Maret s.d 13 April 2014

Dengan ketentuan sebagai berikut:

 Sebelum mengadakan penelitian , peneliti supaya melapor dan berkoordinasi dengan Kepala Sekolah.

 Penelitian tersebut terbatas untuk kepentingan Studi Ilmiah dan tidak diperbolehkan / dipublikasikan sebelum mendapat izin tertulis dari Kepala Dinas Dikbud Kota Bengkulu.

3. Setelah selesai penelitian agar menyampaikan hasil penelitian kepada Kepala Sekolah.

Demikian surat persetujuan ini disampaikan untuk dimaklumi, terima kasih.

VAS DIK DAMRI, S.Pd.MM

NIP. 1966060618 198903 1 009

Bengkulu, 20 Maret 2014

TABEL II NILAI-NILAI DALAM DISTRIBUSI I

	, ,	α untuk u	ji dua fihak	α untuk uji dua fihak (two tail test)	000	001
	0,00	α untuk u	ji satu fihak	α untuk uji satu fihak (one tail test)		
dk	0.25	0,10	0.05	0,025	0,01	0,005
-	1,000	3,078	6,314	12,706	31,821	63,657
2	0,816	1,886	2,920	4,303	6,965	9,925
w	0,765	1,638	2,353	3,182	4,541	5,841
4	0.741	1,533	2,132	2,776	3,747	4,604
S	0,727	1,476	2.015	2,571	3,365	4,032
6	0.718	1,440	1,943	2,447	3,143	3,707
7	0.711	1,415	1,895	2,365	2,998	3,499
ço .	0,706	1,397	1,860	2,306	2,896	3,355
9	0,703	1,383	1,333	2,262	2,821	3,250
10	0,700	1,372	:.812	2,228	2,764	3,169
11	0,697	1,363	1,796	2.201	2,718	3,106
12	0,695	1,356	1.782	2,179	2,681	3,055
13	0,692	1,350	1,771	2,160	2,650	3,012
14	0,691	1,345	1,761	2,145	2,624	2,977
15	0,690	1,341	1,753	2,131	2,602	2,947
16	0,689	1,337	1,746	2.120	2,583	2,921
17	0,688	1,333	1,740	2,110	2,567	2,898
18	0,638	1,330	1,734	2,101	2,552	2,878
19	0.687	1,328	1,729	2,093	2,539	2,861
20	0,687	1,325	1,725	2,086	2,528	2,845
21	0,686	1,323	1,721	2,080	2,518	2,831
22	0,686	1,321	. 1,717	2,074	2,508	2,819
23	0,685	1,319	1,714	2,069	2,500	2,807
24	0,685	1,318	1,711	2,054	2,492	2,797
25	0,684	1,316	1,708	2,060	2,485	2,787
26	0,684	1,315	1.706	2,056	2,479	2,779
27	0,684	1,314	1,703	2,052	2,473	.2,771
28	0,683	1,313	1,701	(2,048)	2,467	2,763
29	0,683	1.311	. 1,699	2,045	2,462	2,756
30	0,683	1,310	1.697	2,042	2,457	2,750
40	0,681	1,303	1.584	2,021	2,423	2,704
60	0,679	1,296	1,571	2,000	2,390	2,660
120	0,677	1,289	1.658	1.980	2,358	2,617
3	0.674	1,282	1,645	1,960	2,326	2,576

TABEL III
NILAI r PODUCT MOMENT

2	Taraf	Taraf Signifikan	*	Taraf	Taraf Signifikan		Taraf	Taraf Signifikan
Z	5%	1%	7	5%	157	2	5%	1%
3	0,997	0,999	.27	0.381	0,487	5.5	0,266	0.345
4	0,950	0,990	28	0,374	0,478	60	0.254	0,330
S	0,878	0,959	29	0,367	0,470	65	0,244	0.317
)	3					
6	0,811	0,917	30	10.361	0,463	70	0,235	0,306
7	0,754	0 874	31	0,355	0,456	75	0,227	0,296
00	0.707	0,834	5.7	0.349	0.449	80	0.220	0.286
9	0,666	0,798	33	0,344	0.442	85	0,213	0.278
10	0,632	0,765	34	0,339	0.436	:90	0,207	0,270
=	0,602	0.735	35	0,334	0,430	95	0.202	0,263
12	0,576	0,708	36	0.329	0,424	100	0.195	0.256
13	0,553	0,684	37	0,325	0,418	125	0,176	0.230
4	0,532	0,661	38	0,320	0,413	150	0.159	0.210
15	0,514	0,641	39	0,316	0,408	175	0,148	0,194
9	0,497	0.623	40	0.312	0,403	200	0.138	0.181
17	0,482	0.606	4-	0,308	0.398	300	0.113	0.148
18	0,468	0,590	42	0,304	0,393	400	0.008	0.128
19	0,456	0,575	43	0,301	0.389	500	0.088	0.115
20	0,444	0,561	4	0.297	0.384	000	0.080	0.105
21	0,433	0,549	45	9,294	0.380	700	0.074	0.097
22	0,423	0.537	46	0.291	0.376	800	0,070	0.091
23	0,413	0,526	47	0.288	0,372	000	0,065	0.086
24	0,404	0,515	48	0,284	0.568	1000	0,062	0.081
25	0.396	0.505	49	0.281	0,364			
36	0.388	0.496	50	0.279	0.361			

TABEL VI NILAI-NILAI CHI KUADRAT

30	1 0	00	28	27	20		25	24	2 6	22	22	21		20	.9	10	10	17	16		15	14	13	12	=	:	10	9	00	7	6		· (A	4	ىي	2	-	-	Jk.	
29,330	2000	28 336	27,336	26,330	20,000	75236	24,33	10,00	72 277	22.337	21,33/	20,337	20 22	19,337	10,000	10,000	222	16.338	15,338		14,339	13,339	12,340	0+6,11	10,040	10241	9,342	8,343	7,344	6,346	5,348		4,351	3,357	2,366	F,386	0,400	227.0	50%	
00000	025 22	32,461	31,391	20,219	20210	9 246	28,172		27.096	26,018	24,939	2,000	22 8 5 8	1.2,113	277 775	21 689	20.601	19,511	18,418		17.322	10,222	15,119	14,011	14011	12.899	11,781	10,656	9,524	8,383	1,231	2	6,064	4,873	3,600	2,400	3,00	1 074	30%	
- Contract	36.250	35,139	34,021	1100	2001	31,795	20,075	20 675	29,553	28,429	10,00	101 70	26.171	20,000	25.038	23.900	22,760	21,615	20,465	20105	19,311	10,101	18181	230 21	15.812	14,631	13,442	12,242	11,030	9,803	0,000	0 0 0	1,289	5,989	140,4	2,2,2	3710	1,642	20%	Larat signitikansi
	40,256	39,087	37,310	37016	36.741	35,563	0.11.00	74 787	33,196	32,007	2000	30.813	29,615		28.412	27,204	25,989	24,769	23,342	CVS CC	22,307	2000	21 064	19 812	18,549	17,275	15,987	14,054	13,302	12,017	17017	10 645	9,230	255	7 770	6251	4.605	2,706	10%	HUKansı
Y	(43,773)	100.74	L33 CF	41 337	40,113	38,885		37.652	33,413	00,11	35 170	33,924	32,671		31,410	30,144	28,869	27,307	Los Lo	26 296	64,5.0	34 006	23,685	22,362	21,026	19,675	10,507	10,717	16,000	15 507	14 067	12.592	11,000	11 070	0.488	7.815	5,991	3,841	5%,	
	20,004	10,000	885 07	48,278	46,963	45,642		44.214	42,700	12000	41.638	40,289	38,932		37,566	36,191	04,000	34 005	33,400	32,000		30 578	29,141	27,688	26,217	24,725	1	23 200	21 666	20,090	18,475	16,812		15 086	13,277	11,341	9,210	6,635	1%	

TABEL VIIa HARGA-HARGA KRITIS r DALAM TEST RUN . SATU SAMPEL, UNTUK $\alpha=5~\%$

20	19		17	16	15	7	13		= -	10	9	99	7	6	·s	4	w	:2	0.1	
2	2	13	2	2	2	2	2	1.3											2	
u	ىي	w	w	w	ىي	13	13	13	12	14	13	1.3	ы	12					w	
4		4	4	4	w	س	سا	· Lu	·	س.	(J	u	12	12	ы				4	
	N	U.	4	44	1.	4	-	4-	L.	L.	Ų.	14	u	w	w	2			55	
6	6	S	S	5	5	5	5	-	-	£	2	w	r.		, J	2	2		6	
0	0	0	6	6	6	٠,	· y.			7			4	Ç.	w.	بيا	12		7	
7	-1	~2	4	o	0	٥	2	>	J.	-	->	4	4	ŗ	-11		13		20	
56	×	36	7	7	7	7	0	2	5		~	.~	4-	24	1.00	درا	13		9	
9	00	90	-oc	50	7	7	7	-1	0	6	's	S	-54	2.	-	" <u>\$</u>	2		10	
9	9	9	9	oc.	90	>6	~	7	-4	9	?	5	5	4-	Ja.	ند	1.3		=	1
10	10	٥	٥	9	50	00	~	7	7	~	6	0	15	-	4-	لدا	13	13	12	
Ξ	5	5	5	٥	ى	9	36	>=	-4	7	0	5	~	->		w	1,1	:0	13	
=	=	5	5	5	9	9	9	20	50	7	7	6	-	S	4	S	14	2	7	
1.2	Ξ	Ξ	=	10	5	٥	\$	96	.26	~1	-7	0		Un.	-		س.	0	15	
72	13	Ξ	=	=	5	10	0	٥	25	25	7		6	S	4	4	w	13	10	
53	12	12	1.1	Ξ	Ξ	0	5	٥	c	У.	7	7	6	2	4	-	اد:	13	17	
1.3	5.	12	=	=	=	10	10	٥	2	**	56		0	0	- 54	24		13	-50	
=	=	=	=	7.5	=	Ξ	=	Ξ	. 5	16	×	~		0	40	-	54	13	19	
7.	-	-		=	=	-	3	7					-					-,,	13	1

V ₂ = dk		12									٧,	= dk per	mbilang											
en; ebut	11	2	3	4	5	6	7	8	9	10	11	12	14	16	20	24	30	40	50	75	100	200	500	0
12	4,75	3,88	3,49	3,26 5,41	3,11	3,00	2,92	2,85 4,50	2,80	2,76 4,30	2,72	2,59	2,64 4,05	2,50 3,98	2,54 3,86	2,50 3,78	2,46 3,70	2.42 3,61	2,40 3,56	2,36 3,49	2,35 3,46	2,32 3,41	2,31 3,38	2,30 3.36
13	4,67	3.80	3,41 5,74	3,18 5,20	3,02 4,85	2,92 4,62	2,84	2,77 4,30	2.72 4.19	2,67 4,10	2,63 4,02	2,60 3,96	2,55 3,85	2,51 3,78	2,46 3,57	2,42 3,59	2,38 3,51	3,42		3,30	2,26 3,27	3,21	2,22 3,18	3,15
14	4,60 8,85	3.74 6.51	3,34 5,56	3,11 5,03	2,96 4,69	2,85 4,46	2,77 4,28	2,70 4,14	2.65 4.03	2,60 3,94	2,55 3,86	2,53 3,80	2,48 3,70	2,44 3,62	2,39 3,51	2,35 3,43	2,31 3,34	3,26	3,21	3,14	3.11	3,03	3,02	3,00
15	4,54 8,68	3,68 6,36	3,29 5,42	3,06 4,89	2,90 4 56	2,79 4,32	2.70 4,14	2.64 4,00	2.59	3,80	2,51 3,73	3,57	3,56	3,48	2,33 3,36	2,29 3,29	2,25 3,20	3,12	3,07	3,00	2.12	2,10	2,08	2,07
16	4,49 8,53	3,53 6,23	3.24 5.29	3,01 4,77	2,85 4,44	4,20	2,55	2,59 3,89	3,78	2,49	2,45 3.61	3,55	2,37 3,45	2,33 3,37	3,25	2,24 3,18	3,10	2,15 3,01	2,13		2,8€	2,04	2,02	2,01
17	4,45 8,40	3,59 6,11	3.20 5.18	- 2,95 4,67	2,81 4,34	2,70	2,62 3 93	2,55	2,50	2,45	3.41 3.52	2 78	20000	2,29 3,27	2,23 3,15		1000		2,08	2,79	2,75		2,57	1.96
18	4,41 8,28	3.55 6,01	3,16 5,09	4,58	2,77 4,25	2,66 4,01	2.58 3,85	2,51	2.46 3,60	3,51	2.37 3,44	3.37	3,27	3,19		3,00	2,91	2,07 2,83 2,02	1	2,71	2,68	2.62	2,59	1,92 2,57 1,88
19	4,38 9.18	3,52 5,93		4,50	100000	2,63 3,94	2,55 3,77	3,63	2,43 3.52	2,38 3,43	10000	3,30		3,12	3,00		1	2.76	2,70	2,5	2,50	2.54	2,51	2,49
20	4,35 8,10	3.49 5.85	4,94	4,43	2,71	2,60 3,87	2,52 3,71	2,45 3,56	2,40 3,45	2,35		1	3,13	3,05	2,94	2,86	2.7	2,59	2.6	3 2,5	2.5	2.47	2,44	2.4
21	4,32 8,02	3,47 5,78	4,87	4,37	2.58 4,04	3.81	2,49 3,65	2,42 3,51	2,37 3,40	3,31	3.24	3,17	3,07	2,99	2,88	2,8	2.7	2,5	2.5	8 2,5	1 2,4	2.4	2,36	2,3
22	4,30 7,94	5,72	4,83	4,31	3,99	3,76	3,59	0.00	2.35 3.35		3,18	3,12	3,02	2.9	2.6	2,7	2,5	7 2.5	8 2,5	3 2,4	5 2,4	2.3	7 2.3	, 2,3
23	7,88	5,66	4,7	6 4.26	3,94	3,71	3,54	3,41	3,30	3.2	3.14	3,07	2,9	2,8	2.7	2,7	2.0	2 2.5	3 2,4	5 2.4	1 2,3	7 2.3	2 2.2	2,2
24	7,82	5,6	4.7	2 4,22	3,90	3.57	3,50	3,36	3.25	3,1	3.0	3,01	3 2.9	3, 2,8	5 2,7	4 2.5	5 2.5	5 2,4	9 2,4	4 23	36 2.3	3 2.2	7 2.2	3 2.2
25	7.77	5.5	4,5	8 4,1	3,86	3,63	3,46	1	1	3.1	3 3.0	5 2.9	9 2,8	9 2,8	1 2.7	0 2.5	2.5	4 2.4	15 2.4	10 2,	32 2,3	9 2.2	3 2,1	9 2.1
25	4,22																							

V ₂ = 0k Penyebut		V, = dk pembilang																						
	1 1	2	3 1	4	5 1	6	7	8	9	10	11	12	14	15	20	24	30	40	50	75	100	200	500	0
27	4,21	3,35 5,49	2,95 4,50	2.73	2,57	2.45 3,56	2,37	2,30	2.25	2.20 3.05	2,16 2,98	2,13	2.08	2.03 2.74	1,97	1,93	1,88	1,84	1,90	1,76 2,25	1.74	1,71 2,15	1,68	1,57
23	4.20 7.64	3,34 5,45	2,95	2,71	2,56 3,76	2,44 3,53	2,36 3,36	2,29 3.23	2,24	2.19 3.03	2,15 2,95	2,12	2,36	2,02	1,96 2,50	1,91	1,87	1,31	1,78	1,75	1.72	2,13	1,87	1,65
29	4,18 7,60	3.33 5.42	2.93	2,70	2,54 3,73	2,43	2,35 3,33	3,20	2,22	3,00	2,14	2,10	2,05 2,77	2,00	1,94 2,57	1,90	1,85	1,80	1,77 2,27	1,73 2,19	2,15	2,10	1,55	1,64
243	4,17 7,56	3.32 5.39	2,92 4,51	2,69 4,02	2 53 3.70	2,42 3.47	2,34 3,30	2.27 3,17	3.06	2.16 2.98	2,12	7,09 2,84	2,04	1,99 2,65	1,93	1,89	2.39	1,79	1,76	2,10	1	1,56 2,07	1,51	2,01
32	4,15 7,50	3.30 5.34	2,90 4,45	2.57 3.97	2.51 3.56	3,42	2,32 3,25	2,25 3,12	3.01	2,14	2.10	2,07	2,02	1,97	1,91 2,51	1,86 2,42	1,82	1,76 2,25	1,74 2,20	1,59			1.98	1,59
3.4	4 13 7,44	3.28 5.29	2.58 4.42	2,65 3.93	2.49 3.61	2,39	2.30 3.21	3,08	2,17	2.89	2,08 2,82	2,05 2,76	2,56	1,95 2,58		1,84 2,38	1,80	2.21	1.71 2.15	1.57	1 0000	1,61		1,31
38	4,11 7,39	3.25 5.25	2,86 4,38	2,53	3.58	2,35	2,28 3,18	3,04	2.15	2,10	2,05	2,53	1,98 2,52	1,93 2,54	2.43	1,82	1,78 2,26	2.17	2.12	2.04	2,00	1,94	1,9	1,65
38	4,10 7,35	3.25 5.21	2.85	2,52 3,85	2,46 3,54	3,32	2,25 3,15	3.02	2,14	2.09	2.75	2,52			2.40	1,90	1.75	2.14	1	1,53 2,90	1,97	1,90	1,86	1,53
40	4,26 7,31	3 23	4.31	2,61	2,45	3,29	2,25 3,12	2,18	2,12	2,60	2,04	2,00	1,95 2,55	2.43	2.37	1,79	1,74 2,20	1,69	2,35		1,94	1.88	1 34	1.31
42	1.27	5.15	4.29	3,59	2,44	2.32 3.26	2,24 3,10	2.17 2.96	2,11	2,77	2,70	2.54	2.54	2.4	2.35	2.25	1,73	2,08	2,02	1,9	1.3	1.55	1.50	
44	1,00	52.	2.62	2.58	2.43	2.31 3.24	2,23	2.16 2.94	2,10 2,84	2.05		2 62	2.52	2.4	2.33	1	2,15	2,06	2.00	1.9	1.6	1.82	10.78	1.1
45	4,05 7,21	3.20 5.10		3,75	3,44	2.30 3.22	2,22 3,05	2 14	2,09	2 **	2.55	2.53	2.51	2,4	2.3	2.22	2,13	2,64	1,98	19	1 19		1 176	1.7
48	1.19	3.19 6.08			3,42	2,50 3,20	2,21 3,04	2,14	2,08			3.5	1.4	2.4			1.1			1.0	1.3		5	
	7,17		3,13			2,29		2,13 2,88	2,75						3 2,2	5 2,18			1,9	1,8	6 1,3	2 1,7	5 1.7	
55	7,12						2,18	2,11 2.85	2,05										3					